角的度量与计算
2024年湘教版七年级数学上册 4.3.2 第1课时 角的度量与计算(课件)

4. 时钟 4 点 15 分时,时针和分针所成的角为_3_7_._5_°.
5. 计算下列各题: (1) 153°39′+25°40′38″; (2) 90°-37°24′38″. 解:(1) 153°39′+25°40′38″
=178°79′38″ =179°19′38″. (2) 90°-37°24′38″
③ 50°40′33″=50.43°;
④ 50°40′30″=50.675°.
A.①和②
B.①和③
C.②和③
D.②和④
2. 填空: (1)0.65°= 39 ′; (2)32.43°= 32 ° 25 ′ 48 ″; (3)120°38′54″ ≈ 120.65 °; (4)108°40′24″ =__1_0_8_.6_7__ °.
第4章 图形的认识
4.3 角
4.3.2 角的度量与计算
第1课时 角的度量与计算
教学目标
1. 掌握角的度量单位及换算,并能进行角的度数的 计算.
2. 掌握直角、平角、周角的度数,会计算钟表上的 角度问题.
重点:度、分、秒的换算及角的计算. 难点:角的度数的计算.
你知道如何衡量一个角的大小?
1 角的分类
= 37°41'40".
练一练
2. 计算:(1) 20°26′ + 35°54′; 解:(1) 20°26′ + 35°54′ = 55°80′ = 56°20′.
(2) 90° - 43°18′ = 89°60′ - 43°18′ = 46°42′.
(2) 90° - 43°18′.
例4 小红早晨 8:30 出发,中午 12:30 到家,则小 红出发时时针和分针的夹角为 75° ,到家时时针和 分针的夹角为 165° .
角的度量计算

角的度量计算角是平面几何中重要的概念之一,我们常常需要计算角的度量,以便解决各种几何问题。
本文将介绍角的度量计算的方法及其应用。
一、角的度量单位角的度量单位常用的有度(°)和弧度(rad)。
一圆周的度量为360°或2π弧度,其中1°等于π/180弧度。
二、角度的计算方法1. 两条直线的夹角计算当两条直线相交时,它们的夹角可以通过以下方法计算:- 度数法:通过使用量角器或直角器等工具,将夹角两边各延伸出一段,然后使用量角器等工具进行测量,读取测量结果即得到夹角的度数。
- 弧度法:使用三角函数sin、cos或tan计算夹角的正弦、余弦或正切值,然后在查找三角函数表或使用计算器的反三角函数功能,得到夹角的弧度值。
2. 弧长与半径的关系弧是圆周上的一段曲线。
当我们知道弧的长度和半径时,可以使用以下公式计算角的度数:角度 = 弧长 / (半径× π) × 360°3. 扇形面积扇形是由圆心、半径和两个夹角构成的图形。
当知道扇形的夹角时,可以使用以下公式计算扇形的面积:面积 = (夹角 / 360°)× π × (半径^2)4. 弓形长弓形是由圆周上两点和圆心共同围成的图形。
当知道弓形的夹角时,可以使用以下公式计算弓形的弧长:弧长 = (夹角 / 360°)× 2π × 半径三、角度计算的应用角度计算在实际问题中具有广泛的应用。
以下是一些常见的应用场景:1. 建筑工程:计算建筑物之间的夹角,以确定设计中的空间排布和布局。
2. 航海导航:计算经纬度之间的夹角,以确定船只或飞机的航向和方位。
3. 机器人运动控制:通过计算关节之间的夹角,控制机器人的姿态和运动。
4. 游戏开发:计算游戏角色的朝向和旋转角度,以实现虚拟世界中的模拟效果。
总结:角的度量计算在几何学和工程学中起着重要的作用。
通过了解角度的计算方法和应用场景,我们可以更好地理解和解决各种与角度有关的问题。
角的度量与计算

角的度量与计算角是几何学中常见的基本概念,用于描述两条线段之间的夹角或者两条射线之间的夹角。
想要精确地度量和计算角的大小,需要了解角的度量单位、角的类型以及角的计算公式等知识。
一、角的度量单位1. 弧度:弧度是用于度量角的标准单位,记作rad。
一个完整的圆周包含2π(约等于6.28)弧度,即360°等于2π弧度。
2. 度:度是另一种常见的角度量单位,记作°。
一个完整的圆周包含360度,即2π弧度等于360°。
二、角的类型1. 零角:零角是指两条相互重合的射线所形成的角,度数为0°,弧度数为0 rad。
2. 钝角:钝角是指大于90°但小于180°的角。
3. 直角:直角是指度数为90°,弧度数为π/2的角。
直角十分特殊,两条构成直角的射线互相垂直。
4. 锐角:锐角是指小于90°但大于0°的角。
5. 平角:平角是指度数为180°,弧度数为π的角。
平角表示两条射线平行。
三、角的计算公式1. 弧度与度的转换:弧度 = 度数× (π / 180)度数 = 弧度× (180 / π)2. 两个角的和/差:两个角的和等于它们的度数或弧度数之和,如 A + B。
两个角的差等于它们的度数或弧度数之差,如 A - B。
3. 角的倍数:一个角的 n 倍角等于它的度数或弧度数乘以 n,如 nA。
4. 角的补角/余角:一个角的补角是指与其相加等于 90°(或π/2弧度)的角,如 A 的补角为 90° - A。
一个角的余角是指与其相减等于 90°(或π/2弧度)的角,如 A 的余角为 A - 90°。
5. 角的相等/相似:两个角相等,意味着它们的度数或弧度数相等,如 A = B。
两个角相似,意味着它们的度数或弧度数成比例,如 A∽B。
四、角的计算实例1. 例题一:已知 A = 30°,求 A 的补角和余角。
4.3.2 第1课时 角的度量与计算

点击进入word链接
课件目录
首页
末页
第1课时 角的度量与计算
答案
点击进入答案PPT链接
点击进入答案word链接
课件目录
首页
末页
课件目录
首页
末页
第1课时 角的度量与计算
解:(1)∠MON=∠MOC+∠CON =12∠AOC+12∠COB =12(∠AOC+∠COB) =12×(28°+42°) =35°.
课件目录
首页
末页
第1课时 角的度量与计算
(2)OM,ON 的位置发生变化. 理由:当将 OC 绕点 O 转动时,∠AOC 的大小发生变化.∵∠AOM=12∠AOC, ∴∠AOM 的度数也发生变化. 又∵射线 OA,OB 的位置不变, ∴OM 的位置随 OC 位置的变化而变化. 同理,ON 的位置随 OC 的位置变化而变化.
第1课时 角的度量与计算
归类探究
类型之一 角的度数的换算 (1)用度、分、秒表示 42.34°;
(2)用度表示 15°24′36″. 解: (1)先把 0.34°化为分:60′×0.34=20.4′, 再把 0.4′化为秒:60″×0.4=24″, ∴42.34°=42°20′24″.
课件目录
首页
课件目录
首页
末页
第1课时 角的度量与计算
(3)∠MON 的大小不变,∠MON=35°. ∠MON=12∠AOC+12∠COB =12(∠AOC+∠COB) =12∠AOB =12×70° =35°.
课件目录
首页
末页
第1课时 角的度量与计算
9.如图 4-3-21①,将笔记本活页的一角折过去,使角的顶点 A 落在点 A′处, BC 为折痕.
数学中的角的度量与计算

数学中的角的度量与计算在数学中,角是两条线段或射线之间的空间区域。
角的度量与计算是数学中的重要概念之一,它在几何学、三角学以及其他数学分支中都有广泛的应用。
本文将介绍角的度量方法、角的计算公式以及一些常见的角度单位。
一、角的度量方法在数学中,我们通常用度(°)、弧度(rad)和梯度(grad)来度量角的大小。
1. 度(°)度是角度最常用的度量单位。
一个完整的圆周共有360°,即一个直角等于90°。
我们可以通过量角器或者运用角度转换公式来度量角的大小。
2. 弧度(rad)弧度是另一种常用的角度度量单位。
弧度的定义是:半径为1的圆的弧长等于它所对应的圆心角的弧度数。
换句话说,一个圆的周长等于2π弧度。
用符号表示,一个角的度数θ用弧度表示时,记作θ rad。
弧度和度之间的转换关系是:1弧度= 180° / π ≈ 57.3°1° = π / 180 ≈ 0.0175 rad弧度的优点是能更自然地与三角函数相结合,简化了很多计算。
3. 梯度(grad)梯度是角度的第三种度量单位,它主要在工程和土木学科中使用。
一个直角等于100 grad,一个圆周等于400 grad。
梯度的符号是gon。
度、弧度和梯度之间的换算关系是:1 grad = 360° / 400 = 0.9°1 grad = (π / 200) rad ≈ 0.0157 rad二、角的计算公式在数学中,有许多公式用于计算角的大小或者将角转化为其他形式。
以下是一些常见的角度计算公式。
1. 弧度和长度的关系给定一个角的弧度和半径,我们可以通过以下公式计算弧长(L)和弦长(C):L = rθC = 2r sin(θ/2)其中,r表示半径,θ表示弧度。
2. 弧度和角度的关系给定一个角的弧度,我们可以通过以下公式计算角度的大小(以度为单位):角度 = 弧度× (180 / π)3. 角的三角函数三角函数是角度计算中常用的概念。
五年级数学知识点归纳角的度量与计算

五年级数学知识点归纳角的度量与计算五年级数学知识点归纳角的度量与计算数学作为一门抽象而又实用的学科,作为学生在学业中需要掌握的基本技能之一。
在数学学习的旅程中,五年级的学生将接触到更多的知识点,其中之一便是角的度量与计算。
角的度量与计算是数学中非常重要的一部分,对于学生建立几何图形的概念以及判断形状的大小起着至关重要的作用。
本文将对五年级数学课程中关于角的度量与计算的相关知识进行归纳。
一、角的概念角是由两条射线共同起点所围成的图形,通常用大写字母表示,如∠ABC。
角有两个重要的部分,一是顶点,即两条射线的共同起点,如点A;二是两条射线,分别为边,如AB和AC。
角可以分为锐角、直角、钝角和周角四种类型。
锐角是小于90度的角;直角是等于90度的角;钝角是大于90度小于180度的角;而周角则是等于360度的角。
二、角的度量角的度量是用度来衡量角的大小,1度等于一个直角划分为90等分之一。
角的度量主要使用角度符号°来表示,如∠ABC = 45°。
角度的大小与它所占据的弧长成正比,一个完整的圆周共有360度。
三、角的计算1. 角的加减法当两个角的度数已知时,可以进行角的加减法运算。
例如,已知∠ABC = 60°,∠BCD = 30°,要求∠ABD的度数,可以通过将两个角的度数相加得到∠ABD = ∠ABC + ∠BCD = 60° + 30° = 90°。
2. 角的乘法两个角的乘法是指将两个角的度数相乘,得到的结果仍为角的度数。
例如,已知∠ABC = 45°,∠BCD = 2,要求∠ABD的度数,可以通过将两个角的度数相乘得到∠ABD = ∠ABC ×∠BCD = 45° × 2 = 90°。
3. 角的除法角的除法是指将一个角的度数除以另一个角的度数,得到的结果仍为角的度数。
例如,已知∠ABC = 90°,∠BCD = 45°,要求∠ABD的度数,可以通过将第一个角的度数除以第二个角的度数得到∠ABD =∠ABC ÷∠BCD = 90° ÷ 45° = 2。
角的度量与计算方法

角的度量与计算方法角是几何学中重要的概念之一,它在各个领域都有广泛的应用。
本文将介绍角的度量方法以及常见的角的计算方法。
一、角的度量方法1. 角度制角度制是我们常见的一种度量角的方法。
在角度制中,一个圆的一周被分为360等分,每个等分的角度为1度(°)。
一个角度由度和分(’)两部分组成,例如60°30’,表示60度30分。
角度制是我们日常生活中常用的度量角的单位。
2. 弧度制弧度制是另一种常用的度量角的方法。
在弧度制中,角度的度量单位是弧度(rad)。
一个角度等于弧长等于半径的弧所对应的弧度数。
一个圆的一周等于2π弧度,也就是360°等于2π弧度。
弧度制在数学和科学领域中使用较多,因为它便于计算和表述一些复杂的几何问题。
二、角的计算方法1. 两角之和与差两角之和或差的计算常用于解决角的几何关系和运算问题。
假设有两角A和B,它们的度数分别为α和β。
(1)两角之和:A + B = (α + β)°在计算两个角的度数之和时,只需将它们的度数相加即可。
(2)两角之差:A - B = (α - β)°计算两个角的度数之差时,只需将它们的度数相减即可。
2. 角的倍数和子角角的倍数和子角的概念常用于解决旋转和周期性问题。
(1)角的倍数:如果一个角A的度数是另一个角B的度数的整数倍,我们称A是B的倍数。
(2)子角:如果一个角A的度数是另一个角B的度数的真子集,我们称A是B的子角。
3. 三角函数三角函数是一类与角度或弧度相关的数学函数,它们在解决几何和物理问题时非常有用。
常见的三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。
(1)正弦函数:sin(A) = a / c正弦函数表示一个角的对边与斜边之比。
(2)余弦函数:cos(A) = b / c余弦函数表示一个角的邻边与斜边之比。
(3)正切函数:tan(A) = a / b正切函数表示一个角的对边与邻边之比。
角的度量和角度的计算

角的度量和角度的计算在数学中,角是指由两条射线共享一个共同顶点而形成的图形。
角度是用来度量角大小的单位。
在这篇文章中,我们将深入探讨角的度量和角度的计算方法。
一、角的度量方法角的度量可以通过几种不同的方式来进行。
以下是常用的度量方法:1. 弧度制度量:在弧度制度量中,角度被转化为弧长与半径之间的比值。
弧度是一个无量纲的数值,常用符号为rad。
一个完整的圆周对应的弧长为2π,相应地,一个直角对应的弧度为π/2。
2. 角度制度量:在角度制度量中,圆被等分为360个部分,每个部分称为一度。
一个直角对应的角度为90度。
二、角度的计算方法在数学运算中,我们经常需要计算角度的大小。
以下是一些常见的角度计算方法:1. 角度的加减计算:当两个角度相加或相减时,我们可以直接将它们的数值相加或相减。
例如,若角A的度数为45度,角B的度数为30度,角A与角B的和为75度,差为15度。
2. 角度的乘除计算:角度的乘除计算通常用于旋转角度的计算。
例如,若角A的度数为45度,将角A逆时针旋转60度后的角度为45度+60度=105度。
3. 倍数和分数的角度计算:有时候,我们需要计算某个角度的倍数或分数。
比如,一个角度的一半为180度/2=90度,一个角度的三分之一为180度/3=60度。
三、角度的单位换算在角度的计算中,有时候我们需要在不同的度量单位之间进行换算。
以下是一些常见的单位换算方法:1. 弧度与角度的换算:由于弧度和角度是常用的单位,我们需要进行它们之间的换算。
一个完整的圆周对应的弧度为2π,相应地,360度对应的弧度为2π。
因此,在弧度制和角度制之间的换算可以使用以下公式进行:角度 = 弧度× 180/π,弧度 = 角度× π/180。
2. 分和秒的换算:在角度的度量中,一个度可以进一步划分为60分,一个分也可以再划分为60秒。
因此,一个角度可以用度、分、秒三个单位来表示。
例如,一个角度为45度30分20秒,可以简记为45°30'20"。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
娄底一中初中一年级第一学期数学学科导学案(上课时间:年月日)
主备:黄晓娟辅备:周桃英审核:批准:授课人:班级:学生姓名:小组:评价:
第51课时§4.3角的度量与计算(1)
【学习目标】
1、了解角的度量单位,角的分类,度、分、秒之间的换算,计算.(重点)
2、学会度、分、秒之间的进位与借位方法.(难点)
【学法指导】1、用10分钟时间阅读教材内容,初步掌握角的分类,度、分、秒之间的换算。
2、结合课本内容和已有的知识完成预习自测题。
3、再读课本内容,尽力把不会做的题弄懂,实在不会的作为疑惑在讨论时解决或者询问老师同学。
一、【知识回顾】
1、什么是角的大小?
2、什么样的角是平角、周角?
3、表示时间单位的时、分、秒之间是如何换算的?
二、【自主学习】
请同学们预习教材P126-P127的内容,完成下面的问题。
4、用角的始边绕顶点旋转到终边位置的旋转量来度量角的______,旋转量用_____来表示.
5、什么是直角?什么是锐角?什么是钝角?
6、一个周角等于____°,一个平角等于____°.
三、【预习自测】课本P127的练习1,2,3.(解答写在课本上)
四、【和谐探究】
探究点一:角的度量与分类
问题1、把一个周角分为360等份,每一等份叫做_____,记做_____,一个周角等于_____°,一个平角等于_____°.
问题2、把1°的角分为60等份,每一等份叫做_____,记做_____;再把1′的角分成60等份,每一等份叫做____,记做____,即1=︒____′,1=′____″,1=′____°,1=
″____′.
问题3、角按大小是怎样分类的?
探究点二:度、分、秒的互化与计算
问题1、用度、分、秒表示54.26︒.问题2、把482548
︒′″化成度的形式.
例、计算下列各题.
()13728+2435
︒︒
′′()28320-453820
︒︒
′′″
()390-534742
︒︒′″()2180︒-(3746+4545)
︒︒
′′
五、【创新培优】
如图,时钟下午3:25,钟面上时针和分针所构成的角是多少度?
思考1:钟表上共有12个大格,时针与分针转一大格分别是多长时间?思考2:时针1h转多少度?1min呢?
思考3:分针1min转多少度?
六、【课堂小结】
七、【当堂检测】。