经典线性回归分析
七种回归分析方法个个经典

七种回归分析方法个个经典什么是回归分析?回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。
这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。
例如,司机的鲁莽驾驶与道路交通事故数量之间的关系,最好的研究方法就是回归。
回归分析是建模和分析数据的重要工具。
在这里,我们使用曲线/线来拟合这些数据点,在这种方式下,从曲线或线到数据点的距离差异最小。
我会在接下来的部分详细解释这一点。
我们为什么使用回归分析?如上所述,回归分析估计了两个或多个变量之间的关系。
下面,让我们举一个简单的例子来理解它:比如说,在当前的经济条件下,你要估计一家公司的销售额增长情况。
现在,你有公司最新的数据,这些数据显示出销售额增长大约是经济增长的2.5倍。
那么使用回归分析,我们就可以根据当前和过去的信息来预测未来公司的销售情况。
使用回归分析的好处良多。
具体如下:1.它表明自变量和因变量之间的显著关系;2.它表明多个自变量对一个因变量的影响强度。
回归分析也允许我们去比较那些衡量不同尺度的变量之间的相互影响,如价格变动与促销活动数量之间联系。
这些有利于帮助市场研究人员,数据分析人员以及数据科学家排除并估计出一组最佳的变量,用来构建预测模型。
我们有多少种回归技术?有各种各样的回归技术用于预测。
这些技术主要有三个度量(自变量的个数,因变量的类型以及回归线的形状)。
我们将在下面的部分详细讨论它们。
对于那些有创意的人,如果你觉得有必要使用上面这些参数的一个组合,你甚至可以创造出一个没有被使用过的回归模型。
但在你开始之前,先了解如下最常用的回归方法:1.Linear Regression线性回归它是最为人熟知的建模技术之一。
线性回归通常是人们在学习预测模型时首选的技术之一。
在这种技术中,因变量是连续的,自变量可以是连续的也可以是离散的,回归线的性质是线性的。
线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。
回归分析公式深入研究回归分析的数学公式

回归分析公式深入研究回归分析的数学公式回归分析是一种统计方法,用于研究变量之间的相互关系。
在回归分析中,数学公式是非常重要的,它们描述了变量之间的关系,并提供了预测和解释的基础。
本文将深入研究回归分析的数学公式,帮助读者更好地理解和应用这一方法。
一、简单线性回归分析公式简单线性回归分析是回归分析中最基本的形式,用于研究一个自变量和一个因变量之间的线性关系。
其数学公式可以表示为:Y = α + βX + ε其中,Y代表因变量,X代表自变量,α代表截距,β代表斜率,ε代表误差项。
在简单线性回归分析中,我们的目标是通过最小二乘法估计α和β的值,使得拟合线尽可能地接近实际观测值。
通过求导等数学方法,我们可以得到最小二乘估计公式:β = Σ((X-Ȳ)(Y-Ȳ))/(Σ(X-Ȳ)²)α = Ȳ - βXȲ其中,Ȳ代表因变量Y的平均值,XȲ代表自变量X与因变量Y的平均值的乘积。
二、多元线性回归分析公式当我们研究的问题涉及到多个自变量时,可以使用多元线性回归分析。
其数学公式可以表示为:Y = α + β₁X₁ + β₂X₂ + ... + βₚXₚ + ε其中,p代表自变量的个数。
在多元线性回归分析中,我们的目标是通过最小二乘法估计α和β的值,使得拟合线尽可能地接近实际观测值。
通过求导等数学方法,我们可以得到最小二乘估计公式:β = (X'X)⁻¹X'Yα = Ȳ - β₁X₁Ȳ - β₂X₂Ȳ - ... - βₚXₚȲ其中,X代表自变量矩阵,X'代表X的转置,Y代表因变量向量,(X'X)⁻¹代表X'X的逆矩阵。
三、多项式回归分析公式简单线性回归和多元线性回归都是基于线性关系的回归分析方法。
然而,有时候变量之间的关系并不是线性的,而是呈现出曲线的趋势。
这时我们可以使用多项式回归分析来建模。
多项式回归分析的数学公式可以表示为:Y = α + β₁X + β₂X² + ... + βₚXᵩ+ ε其中,ᵩ代表多项式的阶数。
线性回归分析

线性回归分析线性回归是一种用来建立和预测变量间线性关系的统计分析方法。
它可以帮助我们了解变量之间的相互影响和趋势,并将这些关系用一条直线来表示。
线性回归分析常被应用于经济学、社会科学、自然科学和工程等领域。
一、概述线性回归分析是一个广泛使用的统计工具,用于建立变量间的线性关系模型。
该模型假设自变量(独立变量)与因变量(依赖变量)之间存在线性关系,并通过最小化观测值与模型预测值之间的误差来确定模型的参数。
二、基本原理线性回归分析基于最小二乘法,通过最小化观测值与模型预测值之间的残差平方和来确定模型的参数。
具体来说,线性回归模型可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε,其中Y是因变量,X1到Xn是自变量,β0到βn是回归系数,ε是误差项。
回归系数表示自变量对因变量的影响程度。
三、应用步骤进行线性回归分析时,通常需要以下几个步骤:1. 收集数据:获取自变量和因变量的样本数据。
2. 建立模型:根据数据建立线性回归模型。
3. 评估模型的准确性:通过计算残差、决定系数等指标来评估模型的准确性。
4. 进行预测和推断:利用模型对未知数据进行预测和推断。
四、模型评价指标在线性回归分析中,有几个常用的指标用于评价模型的准确性:1. R平方值:R平方值表示因变量的变异性能够被模型解释的比例,数值范围为0到1。
R平方值越接近1,表示模型对数据的拟合程度越好。
2. 残差分析:进行残差分析可以帮助我们判断模型是否符合线性回归的基本假设。
一般来说,残差应该满足正态分布、独立性和等方差性的假设。
五、优缺点线性回归分析有以下几个优点:1. 简单易懂:线性回归模型的建立和解释相对较为简单,无需复杂的数学知识。
2. 实用性强:线性回归模型适用于很多实际问题,可以解决很多预测和推断的需求。
然而,线性回归分析也存在以下几个缺点:1. 假设限制:线性回归模型对于变量间关系的假设比较严格,不适用于非线性关系的建模。
回归经典案例

回归经典案例
回归分析是一种统计学方法,用于研究变量之间的关系。
以下是一个经典的回归分析案例:
假设我们有一个数据集,其中包含一个人的身高(height)和体重(weight)信息。
我们想要研究身高和体重之间的关系,以便预测一个人
的体重。
1. 首先,我们使用散点图来可视化身高和体重之间的关系。
从散点图中可以看出,身高和体重之间存在一定的正相关关系,即随着身高的增加,体重也会增加。
2. 接下来,我们使用线性回归模型来拟合数据。
线性回归模型假设身高和体重之间的关系可以用一条直线来表示,即 y = ax + b。
其中,y 是体重,x 是身高,a 和 b 是模型参数。
3. 我们使用最小二乘法来估计模型参数 a 和 b。
最小二乘法是一种优化方法,它通过最小化预测值与实际值之间的平方误差来估计模型参数。
4. 拟合模型后,我们可以使用回归方程来预测一个人的体重。
例如,如果我们知道一个人的身高为米,我们可以使用回归方程来计算他的体重。
5. 最后,我们可以使用残差图来检查模型的拟合效果。
残差图显示了实际值与预测值之间的差异。
如果模型拟合得好,那么残差应该随机分布在零周围。
这个案例是一个简单的线性回归分析案例。
在实际应用中,回归分析可以应用于更复杂的问题,例如预测股票价格、预测疾病发病率等。
回归分析方法总结全面

回归分析方法总结全面回归分析是一种常用的统计分析方法,用于建立一个或多个自变量与因变量之间的关系模型,并进行预测和解释。
在许多研究领域和实际应用中,回归分析被广泛使用。
下面是对回归分析方法的全面总结。
1.简单线性回归分析:简单线性回归分析是最基本的回归分析方法之一,用于建立一个自变量和一个因变量之间的线性关系模型。
它的方程为Y=a+bX,其中Y是因变量,X是自变量,a是截距,b是斜率。
通过最小二乘法估计参数a和b,可以用于预测因变量的值。
2. 多元线性回归分析:多元线性回归分析是在简单线性回归的基础上扩展的方法,用于建立多个自变量和一个因变量之间的线性关系模型。
它的方程为Y = a + b1X1 + b2X2 + ... + bnXn,其中n是自变量的个数。
通过最小二乘法估计参数a和bi,可以用于预测因变量的值。
3.对数线性回归分析:对数线性回归分析是在简单线性回归或多元线性回归的基础上,将自变量或因变量取对数后建立的模型。
这种方法适用于因变量和自变量之间呈现指数关系的情况。
对数线性回归分析可以通过最小二乘法进行参数估计,并用于预测因变量的对数。
4.多项式回归分析:多项式回归分析是在多元线性回归的基础上,将自变量进行多项式变换后建立的模型。
它可以用于捕捉自变量和因变量之间的非线性关系。
多项式回归分析可以通过最小二乘法估计参数,并进行预测。
5.非线性回归分析:非线性回归分析是一种更一般的回归分析方法,用于建立自变量和因变量之间的非线性关系模型。
这种方法可以适用于任意形式的非线性关系。
非线性回归分析可以通过最小二乘法或其他拟合方法进行参数估计,用于预测因变量的值。
6.逐步回归分析:逐步回归分析是一种变量选择方法,用于确定最重要的自变量对因变量的解释程度。
它可以帮助选择最佳的自变量组合,建立最合适的回归模型。
逐步回归分析可以根据其中一种准则(如逐步回归F检验、最大似然比等)逐步添加或删除自变量,直到最佳模型被找到为止。
线性回归分析经典例题

1. “团购”已经渗透到我们每个人的生活,这离不开快递行业的发展,下表是2013-2017年全国快递业务量(x 亿件:精确到0.1)及其增长速度(y %)的数据(Ⅰ)试计算2012年的快递业务量;(Ⅱ)分别将2013年,2014年,…,2017年记成年的序号t :1,2,3,4,5;现已知y 与t 具有线性相关关系,试建立y 关于t 的回归直线方程a x b yˆˆˆ+=; (Ⅲ)根据(Ⅱ)问中所建立的回归直线方程,估算2019年的快递业务量附:回归直线的斜率和截距地最小二乘法估计公式分别为:∑∑==--=ni ini ii x n xy x n yx b1221ˆ, x b y aˆˆ-=2.某水果种植户对某种水果进行网上销售,为了合理定价,现将该水果按事先拟定的价格进行试销,得到如下数据:单价元 7 8 9 11 12 13 销量120118112110108104已知销量与单价之间存在线性相关关系求y 关于x 的线性回归方程; 若在表格中的6种单价中任选3种单价作进一步分析,求销量恰在区间内的单价种数的分布列和期望.附:回归直线的斜率和截距的最小二乘法估计公式分别为:, .3. (2018年全国二卷)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1217,,…,)建立模型①:ˆ30.413.5y t =-+;根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立模型②:ˆ9917.5y t =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.4.(2014年全国二卷) 某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:年份 2007 2008 2009 2010 2011 2012 2013 年份代号t 1 2 3 4 5 6 7 人均纯收入y 2.93.33.64.44.85.25.9(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121niii ni i t t y y b t t ∧==--=-∑∑,ˆˆay bt =-5(2019 2卷)18.11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X 个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.。
第二章 经典线性回归模型

它表明,对于n个时期t =1,2,…,n,该模型成立。
6
更一般的形式为:
Yi xi ui
i 1,2,...,n
(2.4)
即模型对X和Y的n对观测值(i=1,2,…,n)成立。 (2.3)式一般用于观测值为时间序列的情形,在横 截面数据的情形,通常采用(2.4) 式。
7
例2.1 城镇居民家庭人均消费方程 根据凯恩斯的绝对收入消费理论,在其它 条件不变的情况下,消费与可支配收入同方向变 动,即消费曲线的斜率为正。根据中国2006年31 个省市的城镇居民家庭平均每人全年可支配收入 income(单位:元)和城镇居民家庭平均每人全年 消费性支出consume的数据(单位:元),画出散 点图如下:
(6)各解释变量之间不存在严格的线性关系。
上述假设条件可用矩阵表示为以下四个条件:
18
A1. E(u)=0 A2. E (uu) 2 I n
由于
u1 u2 uu u1 u2 ... u n
2
u12 u1u2 ...... u1un 2 u2u1 u2 ...... u2un ... un ................................. 2 unu1 unu2 ...... un
8
15,000 14,000 13,000 12,000
CONSUME
11,000 10,000 9,000 8,000 7,000 6,000 8,000
12,000
16,000 INCOME
20,000
24,000
从图中看出,两变量之间呈线性关系,可建立城镇居 民家庭人均消费方程如下:
C o n su m e * In c o m e u
经典线性回归模型

·β的OLS估计量:在假定2.3成立时
( ) å å b =
XTX
-1 X T Y
= çæ 1 èn
n i=1
xi xiT
Hale Waihona Puke -1ö æ1 ÷ç ø èn
n i=1
xi yi
÷ö ø
( ) ·估计量的抽样误差(sampling error): b - b = X T X -1 X Te
·第i次观测的拟合值(fitted value): yˆi = xiTb
且自变量的回归系数和 y 与 x 的样本相关系数之间的关系为
b1 == corr(Y , X )
å( 1 n
n - 1 i=1
yi
- y)2
º r sy
å( ) 1 n
n - 1 i=1
xi - x 2
sx
·修正决定系数(adjusted coefficient of determination, adjusted R square)
4.假定我们观测到上述这些变量的n组值: (y i , x i1 , L , ) x ip (i=1,…,n)。称
这n组值为样本(sample)或数据(data)。
§2.2 经典线性回归模型的假定
假定 2.1(线性性(linearity))
yi = b0 + b1xi1 + L + b p xip + e i (i=1,…,n)。
( ) ( ) E ~x jei
çæ E x j1e i =ç M
÷ö ÷=0
(i=1,…,n ; j=1,…,n )。
( ) ç
è
E
x jp e i
÷ ø
·不相关条件(zerocorrelation conditions)