第六章理想流动反应器习题精讲.

合集下载

第三章理想流动反应器习题精讲教材

第三章理想流动反应器习题精讲教材

10
AB
r2

k e167368/( 20
RT
)CRCB
选取最佳的操作方式。
B
解:对于A, A n12 R n 2 1 S
A
应选用高CA0, PFR反应器。
m11 R 对于B, B m22 S
CB与生成R无关,尽管B可以任意方式加入,为 维持高CA,考虑B分段加入为佳
习题-1请考虑化学反应:
A B 催化剂DC
该反应在全混流反应器中进行,反应温度为20℃, 液料的体积流量为0.5m3/h, CA0=96.5mol/m3, CB0=184mol/m3,催化剂的浓度CD=6.63mol/m3。实 验测得该反应的速度方程为:
rA=kCACD
式中k=1.15*10-3m3/(mol.ks)。若要求A的转化率 为40%,试求反应器的体积。
490.2
913.8
1188 ∞
-0.55591
-0.6311
-0.7151
-0.9177
-1.0479
99
90.6
83
70.6
65.3
42.4
-0.55591
-0.6311
-0.7151
-0.9177
-1.0479
0 0
-0.2
500
1000
1500
-0.4
-0.6
-0.8
-1 y = -0.0005x - 0.4912 R2 = 0.9987
V0
(2) 两个CSTR串联
CSTR-1: CSTR-2:
V0CA0 xA1 kCA20 (1 xA1)2VR1
1
VR1 V0

x A1 kCAo (1

《化学反应工程》(第四版)课后习题答案详解

《化学反应工程》(第四版)课后习题答案详解
3
(3)两个CSTR串联
VR C A0 x A1 C A0 ( x A2 x A1 ) 根据 V0 rA1 rA2
m 1 m2
C A0 x A1 C A0 ( x A2 x A1 ) kCA0 (1 x A1 )C A0 x A1 kCA0 (1 x A2 )C A0 x A2 1 ( x A2 x A1 ) ; (1 x A1 ) (1 x A2 ) x A2

x A1
0
xA2 dxA dxA 4.35 2 2 x A1 (1 x ) (1 x A1 ) A1
1 1 1 1 4.35 1 x A1 1 x A2 1 x A1 1 1 4.35; 1 x A1 1 5.35 4.35; 1 x A2 1 5.35; x A1 0.81; 1 x A1
1 1 8.314 0.7 1 ln[ / ln ] 423 T2 83.681000 1 0.7 1 0.6 1 1 8.314 0.9347 ; 423 T2 83.681000
T2 441K
习题3-5解答
C A0
1 C B 0 2.0 1.0mol / L 2 CP 0 CR 0 0; xAf CB 0 xBf 1.0 0.8 0.533 xBf 0.8; ; C A0 1.5 CA 1.5 (1 0.533) 0.7; CP CR CB0 xBf 1.0 0.8 0.8;
1 5 0.99 t2 ln 5.81(h) 4 0.615 0.307 5 (1 0.99)
分析:等当量配料,随转化率提高,反应时间迅速增长; 若采用过量组分配料,随转化率提高,反应时间增长放慢。

大学化学反应工程课程各章的习题思路

大学化学反应工程课程各章的习题思路

目录第一章绪论 (2)第二章反应动力学基础 (3)第三章釜式反应器 (8)第四章管式反应器 (16)第五章停留时间分布与反应器的流动模型 (23)第六章多相系统中的化学反应与传递现象 (25)第七章多项催化反应器的分析与设计 (30)第一章 绪论第一题: 解题思路:(1) 可直接由式(1.12)求得其反应的选择性(2) 设进入反应器的原料量为100kmol/h ,并利用进入原料气比例,求出反应器的据反应的化学计量式求出水、氧及氮的摩尔数,即可计算出反应器出口气体的组成。

习题答案:(1) 反应选择性解题思路:(1进料的平均相对分子质量 0m i i M yM =∑。

冷凝分离后气体平均相对分子质量'm iiM y M =∑。

设放空气体流量为A(kmol/h);粗甲醇的流量为B(kmol/h)。

对整个系统中的惰性组分N 2和总量进行物料衡算,求得反应后产物CO 摩尔流量F CO ,利用全程转化率和单程转化率的定义即可求得CO 的全程转化率X CO 和单程转化率x CO 。

(2)甲醇的收率。

首先,计算产物粗甲醇所溶解的气体总量,再求得粗甲醇中甲醇的含量,按收率定义式进一步计算出甲醇的全程收率Y 和单程收率y 。

习题答案:(1) 一氧化碳的全程转化率83.48%X = ;单程转化率16.18%x = (2) 甲醇的全程收率79.24%Y =;单程收率15.36%y =。

第二章反应动力学基础1.解题思路:利用反应时间与组分的浓度变化数据,先作出的关系曲线,用镜面法求得反应时间下的切线,即为水解速率,切线的斜率α。

再由求得水解速率。

习题答案:水解速率============================================== ======================2.解题思路:是一个流动反应器,其反应速率式可用式(2.7)来表示,整理后反应速率可表示为:用的点作切线,即得该条件下的,从而求得CO的转化速率.习题答案:CO的转化速率============================================== ============================3.解题思路:利用式(2.10)及式(2.27)可求得问题的解。

第三章 理想流动反应器.

第三章 理想流动反应器.
某组分流入量 = 某组分流出量 ﹢ 某组分反应消耗量 ﹢ 某组分累积量
反应器
反应单元
流入量
0 √ √ √
流出量
0 √ √ √
反应量
√ √ √ √
累积量
√ 0 0 √
间歇式 平推流(稳态)
整个反应器 微元长度
全混釜(稳态) 整个反应器 非稳态
(2)热量衡算方程式
热量衡算以能量守恒与转化定律为基础。在计算反应 速率时必须考虑反应体系的温度,通过热量衡算可以计算 反应器中温度的变化。
rA=kCA rA=kCA2
kt ln
C A0 CA
1 1 xA
xA 1 xA
1 1 kt C A C A0
C A0 kt
表3-1 间歇反应器中整级数单反应的反应结果表达式 反应级数 反应速率 残余浓度式
kt CA0 CA
转化率式
kt CA0 xA
xA kt C A0
流入量 = 流出量 + 反应量
+ 累积量
0
间歇操作中流人量和流出量都等于零。
若V为液相反应混合物的体积,因而对反应组分A的物 料衡算式可写成
dnA dx A rAV nA0 ( nA nA0 (1 x A )) dt dt
积分
nA 0 t VR

x Af
0
xAf dx dxA A C A0 0 rA rA
2、非理想流动模型
偏离平推流的情况
涡流、湍动或流体碰撞 反应器中的填料或催化 剂引起旋涡运动 垂直于流体流动方向 截面上的流速不均匀 填料或催化剂装填不 均匀引起的沟流或短 路
偏离全混流的情况
S
S
(a). 死角

化学反应工程习题精选(201105)

化学反应工程习题精选(201105)

τ2
=
1 22
=
1 4
= 0.25 =
1 N
N =4
C Af = C A0 /(1 + kτ / N ) N = C A0 /(1 + 2 × 2 / 4)4
= 0.0625C A0
(5凝聚流模型,一级不可逆反应
∫ ∫ 间歇反应器:t =
dC CA0
A
=
CA0 dC A = ln C A0
CA (−rA ) CA kC A
器,CA1=1kmol/m3 (0.5koml/m3, 1.25koml/m3,0.8055koml/m3)
4 A 进行平行分解反应,其速率为:
R
rR=1 mol/(L.min)
A
S
rS=2CA mol/(mol.min)
T
rT=CA mol/(L.min)
其中R是所要求的目的产物,CA0=1mol/L,问在下列反应器进行等
(1 + 1.63)2
C
A0
×
4
×1.63
×
exp(
7.657 2
)
exp(1.63× 7.657) − (1 −1.63)2 exp(−1.63× 2
7.657 2)
= 0.0845C A0
(3)平推流模型,一级不可逆反应
θ = t = 1,τ = t = 2 min τ
∫ ∫ τ =
dC C A 0
2 反 应 A+B→R+S , 已 知 VR = 1L , 物 料 进 料 速 率 V0 = 0.5L/min , CA0 = CB0 = 0.005mol/L 动 力 学 方 程 式 为 (−rA ) = kCACB , 其 中 k =100L/(mol.min)。试求: (1)反应在平推流反应器中进行时出口转化率为多少? (2)欲用全混流反应器得到相同的出口转化率,反应体积应

第六章 不可压缩理想流体平面无旋流动

第六章 不可压缩理想流体平面无旋流动

ϕ = xV∞ cos α + yV∞ sin α + c1 ∂ψ ∂ψ dψ = dx + dy = −V∞ sin α dx + V∞ cos α dy
∂x ∂y
ψ = − xV∞ sin α + yV∞ cos α + c2
令通过原点的流函数及势函数及势函数的值为零,则 c1 = c2 = 0 ,最后得到均匀场速度势与流函数为
V×V = 0
将V = ∇ϕ 及 V = ∇ψ × k 代入,得
V × V = ∇ϕ × (∇ψ × k ) = (∇ϕ ⋅ k )∇ψ − (∇ϕ ⋅ ∇ψ )k = −(∇ϕ ⋅ ∇ψ )k = 0
∇ϕ ⋅ ∇ψ = 0
所以
§ 9-4 不可压理想流体平面无旋流动的 复势与复速度
一.复势与复速度
2 2
1 d[(x − x0 ) +(y − y0 ) ] 2 2 σ 1 2 d ln σ 2
Γ φ = ∫ dφ + const = − ln σ + const 2π Γ ln σ φ= − 2π y − y0 Γ arctg ϕ= 2π x − x0 Γ ' ϕ= ε 2π
Γ ' ⎛ Γ ⎞ χ = ϕ + iφ = ε + i ⎜ − ln σ ⎟ 2π ⎝ 2π ⎠ iΓ ⎡ iε ⎤ =− ln σ + ln e ⎥ ⎣ ⎦ 2π ⎢ iΓ iε =− ln σ e 2π iΓ =− ( z-z0 ) 2π iΓ χ ( z ) = − ( z-z0 ) 2π
一、流函数的定义
∂ρ + ∇i( ρV ) = 0 ∂t ∇iV = 0 ∇i( ρV ) = 0 ∂ = 0 ,Vz = 0 ∂z 1 ⎛ ∂h2 ρV1 ∂h1ρV2 ⎞ ∇iV = + ⎜ ⎟=0 h1h2 ⎝ ∂q1 ∂q2 ⎠

理想流动非理想流动理想流动反应器的分类和应用

➢滞留区的存在 ➢存在沟流与短路 ➢循环流 ➢流体流速分布不均匀 ➢扩散
上述是造成非理想流动的几种常见原因,对一个流 动系统可能全部存在,也可能是其中的几种,甚至有 其它的原因。
返混及其对反应过程的影响
返混含义:专指不同时刻进入反应器的物料之间的混合, 是逆向的混合,或者说是不同年龄质点之间的混合。
理想流动 非理想流动 理想流动反应器的分类和应用
反应器内流体的流动特征主要指反应器内反应流体的流动状 态、混合状态等,它们随反应器的几何结构和几何尺寸而异。
反应流体在反应器内不仅存在浓度和温度的分布,而且还存在流 速分布。这样的分布容易造成反应器内反应物处于不同的温度和浓 度下进行反应,出现不同停留时间的微团之间的混合,即返混。
长径比较大和流速较高的连续操作管式反应器中的流体流 动可视为理想置换流动。
理想混合流动模型
含义:理想混合流动模型也称为全混流模型。反应物料以稳 定的流量进入反应器,刚进入反应器的新鲜物料与存留在其中 的物料瞬间达到完全混合。反应器内物料质点返混程度为无穷 大。
特点:所有空间位置物料的各种参数完全均匀一致,而且出 口处物料性质与反应器内完全相同。
种,其中重要的是__________。 连续搅拌釜式反应器为减少返混,工业上常采用________的操作
由于放大后的反应器中流动状况的改变,导致了返混程度 的变化,给反应器的放大计算带来很大的困难。因此,在分析 各种类型反应器的特征及选用反应器时都必须把反应器的返混 状况作为一项重要特征加以考虑。
降低返混程度的措施
降低返混程度的主要措施是分割,通常有横向分割和纵向分 割两种,其中重要的是横向分割。
理想置换流动模型
含义:理想置换流动模型也称作平推流模型或活塞流模型。 与流动方向相垂直的同一截面上各点流速、流向完全相同, 即物料是齐头并肩向前运动的。

理想流动反应器


A

C
A0

A
C i0
y A 0
A
3-4 平推流反应器 PFR
n V 1 x
A
Piston Flow Reactor
V V 0 (1 A y AO x A ) V O (1 A x A )
C
A
A
C (
AO
A
1 x
)
A
• 代入式(3-13)积分: V 当 n 1时, V [ (1 ) ln( 1 x ) x ] k
• ⑵全混流模型
刚进入反应器的新鲜物料与留存在器内的物料瞬间
达到完全混合(返混最大),器内物料温度、浓度均匀 且与出口处相等。物料质点在器内逗留时间参差不齐,
有的很长,有的很短,形成一个逗留时间分布。
• 搅拌良好的釜式反应器中的流动可视为全混流。
3-1
反应器中流体的流动模型
3-1
反应器中流体的流动模型
第三章
理想流动反应器
第一节 流动模型概述
流动模型分类 理想流动模型 平推流(理想臵换、活塞流)模型 全混流(理想混合、连续搅拌槽式反 应器)模型 非理热流动模型 (考虑轴向返混的)返混模型 (中间流模型) (考虑流速分布的)层流模型 多级串联全混流模型
第一节 流动模型概述
3-1
反应器中流体的流动模型
3-1
反应器中流体的流动模型
• 一、理想流动模型
• ⑴平推流模型 • 沿流动方向上物料质点无返混(所有质点逗留时间相 的物料质点参数相同。 • • 长径比大,流速较高的管式反应器,固定床 催化反应器中的流体流动可视为平推流。
同),物料的温度,浓度不断变化;垂直于流动方向上

理想流动反应器的分类和应用


返混对反应过程的影响
返混带来的最大影响是反应器进口处反应物高浓度区的消
失或减低。 返混改变了反应器内的浓度分布,使器内反应物的浓度下
降,反应产物的浓度上升。但是,这种浓度分布的改变对反
应的利弊取决于反应过程的浓度效应。 返混是连续反应器中的一个重要工程因素,任何过程在连
续化时,必须充分考虑这个因素的影响,否则不但不能强化
这些流动特征影响反应速率和反应选择率,直接影响
反应结果。所以,研究反应器中的流体流动模型是反应器选 型、计算和优化的基础。流动模型是对反应器中流体流动与
返混状态的描述。
一般将流动模型分为两大类型,即理想流动模型和非理想
流动模型。非理想流动模型是关于实际工业反应器中流体流 动状况对理想流动偏离的描述。
反应器内浓度变化
搅拌十分强烈的连续操作搅拌釜式反应器中的流体流动可视为 理想混合流动。
非理想流动
理想流动模型是二种极端状况下的流体流动,而实际的工 业反应器中的反应物料流动模型往往介于两者之间。对于所有 偏离理想臵换和理想混合的流动模式统称为非理想流动。
实际反应器中流动状况偏离理想流动状况的原因 滞留区的存在 存在沟流与短路 循环流
气液鼓泡反应器 由于气泡搅动所造成的液体反向流动,形成很大的液相循环
流量。因此,其液相流动十分接近于理想混合。
①放臵填料 ②设臵多孔多层横向挡板,把床层分成若干级 ③设臵垂直管
理想流动反应器的分类和应用
分类 理想混合流反应器 理想平推流反应器
应用
实际生产中,连续操作釜式反应器可以近似看作是理 想混合流,连续操作管式反应器可以近似看作是理想平
流体流速分布不均匀
扩散 上述是造成非理想流动的几种常见原因,对一个流

理想流动反应器

理想流动反应器第⼆章理想流动反应器研究反应器中的流体流动模型是反应器选型、设计和优化的基础。

根据流体流动质点的返混情况{理想流动模型⾮理想流动模型本章主要介绍理想流动模型的反应器,包括平推流反应器和全混流反应器。

§2.1反应器流动模型反应器中流体流动模型是相对连续过程⽽⾔的。

间歇反应器:反映温度、浓度仅随时间⽽变,⽆空间梯度所有物料质点在反应器内经历相同的反应时间连续反应器:停留时间相同:平推流反应器(图⽰)停留时间不同:全混反应器(图⽰)⼀、理想流动模型1、平推流模型活塞流或理想置换模型特点:沿物流⽅向,反应混合物T、C不断变化,⽽垂直于物流⽅向的任⼀截⾯(称径向平⾯)上物料的所有参数,如:C、T、P、U等均相同。

总⽽⾔之,在定态情况下,沿流动⽅向上物料质点不存在返混,垂直于流动⽅向上的物料质点参数相同。

实例:长径⽐很⼤,流速较⾼的管式反应器。

2、全混流模型理想混合或连续搅拌槽式反应器模型特点:在反应器中所有空间位置的物料参数(C、T、P)都是均匀的,⽽且等于物料在反应器出⼝处的性质。

实例:搅拌很好的连续搅拌槽式反应器。

关于物料质点停留时间的描述:①年龄:指反应物料质点从进⼊反应器时算起已经停留的时间。

②寿命:指反应物料质点从进⼊反应器到离开反应器的时间,即质点在反应器中总共停留的时间。

寿命可看作时反应器出⼝物料质点的年龄。

关于返混:返混:⼜称逆向混合,是指不同年龄质点之间的混合,即“逆向”为时间上得逆向,⽽⾮⼀般的搅拌混合。

如间歇反应器,虽然物料被搅拌均匀,但并不存在返混,⽽只是统⼀时间进⼊反应器的物料之间的混合。

平推流反应器不产⽣返混,⽽全混流反应器中为完全返混,返混程度最⼤。

关于实际反应器的返混。

介于平推流和全混流反应器之间。

关于各种反应器的推动⼒:△C A(a)间歇反应器△C A随时间变化↘(b)平推流反应器△C A随时间变化↘(c)全混流反应器△C A随时间变化↘⾮理想流动反应器,其反应推动⼒介于平推流和全混流之间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

t
1 在一反应器中进行2A→D+C恒温恒容反应。已知 CA0=25mol/m3,分解动力学方程为r =0.025CA mol /(m3.min)。该反应器有效容积VR=1m3,送 入液体的流量为1.8m3/h,进行脉冲示踪法测得 =33.33min,δt2=272.22min2。请分别用: (1)多级混合槽模型;(2)平推流模型;(3)全混 流模型;(4)轴向扩散模型。 计算出口物料中A组分的浓度(轴向扩散模型只用开开式条件)。
ห้องสมุดไป่ตู้
例2 反应A+B→R+S,已知 V 1L,物料进料速率 C C 0.005mol/L动力学方程式 V0 0.5L/min, 为 (rA ) kCACB ,其中k 100L/(mol.min)。试 求: (1)反应在平推流反应器中进行时出口转化率为多 少? (2)欲用全混流反应器得到相同的出口转化率,反 应体积应多大? (3)若全混流反应器=1L,可达到的转化率为多少?
1 1 1 1 1 1 tanh( 3 ) 3 4.38 tanh( 3 4 . 38 ) 3 4 . 38 0.2109
习题-2 铬铝催化剂上进行丁烷脱氢反应
常压773 K
1 rA kW c A mol.s .g1
0
(4分)
C A C A0 exp(k ) 25 exp(0.05 33.33) 4.723m ol/ m3
(5分)
(3)全混流模型

C A0 C A ( rA ) f C A0

C A0 C A kC A (5分)
CA
25 9.3756 m ol/ m 3 1 k 1 0.05 33.33 ( 4)轴向扩散模型 2 2 ) 2( ) 2 0.245 Pe Pe
De Vg p DK / 2.3810-3 pcm2 /s
p
k kw p 0.92 p s1
Vs Ss
1
0.92 p k k 0.8 1/ 2 L ( ) 7.86 3 De De 2 2.3810 p
1 1 1 1 1
tanh( tanh( 3 ) 3 7 . 86 3 7 . 86 ) 3 7.86

C A0 p A / RT (rA ) 7.99107 RTCA 则k 7.99107 8314 (273 630) 6.0s 1 f (C A ) C A , f (C AS ) 1 R 3 k 0.15 6 f (C As ) 4.38 4 De 3 7.8210
kW 0.92cm3 / s g
Vg 0.35cm3 /g ra 48 1010 m
2 .5
2L=0.8cm 试计算内扩散有效因子。
解:
1.013 p 105 cm
105 10.4 10 8 2ra 2 48 10

DK 9700 (48 108 )(775/ 58)1/ 2 1.7 102 cm2 /s
2 (
Pe 11.1
1 4k 1 4 0.05 33.33 / Pe 1.265
P C A0 4 exp( e ) 2 CA P P (1 ) 2 exp( e ) (1 ) 2 exp( e ) 2 2 11.1 25 4 1.265 exp( ) 2 11.1 11.1 (1 1.265) 2 exp( 1.265 ) (1 1.265) 2 exp(1.265 ) 2 2 5.665m ol/ m3
(rA ) 2 0.025C A 0.05C A m ol/(m 3 . min) k 0.05 min1 (1分) VR 1 33.33min t V0 1.8 / 60
2 272.22 2 t 2 0.245 (1分) 2 33.33 (t ) (1)多级混合槽模型 1 2 0.245, N 4.081 N 一级不可逆反应 CA 25 CA 6.181m ol/ m 3 k N 0.05 33.33 4.081 (1 ) (1 ) N 4.081 (2)平推流模型
习题-4
常压下正丁烷在镍铝催化剂上进行脱氢反应,反应为一级 不可逆。在500℃反应速度常数为k=0.94cm3/s.g(cat),若 采用直径为0.32cm的圆球形催化剂,其平均孔径为 d0=1.1×10-8 m.孔容为0.35cm3/g,孔隙率为0.36,曲折因 子为2.0。试求催化剂的效率因子
0.127
习题-3
某催化反应在500℃下进行,已知本征动力学方程:
(rA ) 7.310 pA
7
2
mol/ s.g (cat)
式中pA的单位是kPa,若催化剂是直径和高度均为5mm的原 3 柱体,P 0.8g / cm 密度,粒子外表面处反应物A的分压, 气体在粒子内的有效扩散系数De=0.025cm2/s。试计算催 化剂的效率因子。(0.2016)
R
A0
B0
VR 1 2 min V0 0.5 C A0 C B0 , A B 1 C A C A0 C A0 x A ; C B C B0 C A C B C A0 (1 x A )
习题-1
在硅铝催化剂上,粗柴油催化裂化反应可认为是一级反应。在温 度630℃时,常压裂解反应的本征动力学方程为:
(rA ) 7.9910 pA
式中,pA为柴油的分压,kPa
7
mol/(s.cm )
3
采用的催化剂是直径为0.3cm的球体。粗柴油的有效扩散系 数De=7.82×10-4 cm2/s。试计算催化反应的效率因子。
相关文档
最新文档