最全第9章热力学(的习题、答案)打印版.doc

合集下载

最新第9章热力学(习题、答案)文件.doc

最新第9章热力学(习题、答案)文件.doc

大学物理Ⅱ习题集第9 章热力学基础一. 基本要求1. 理解平衡态、准静态过程的概念。

2. 掌握内能、功和热量的概念。

3. 掌握热力学第一定律,能熟练地分析、计算理想气体在各等值过程中及绝热过程中的功、热量和内能的改变量。

4. 掌握循环及卡诺循环的概念,能熟练地计算循环及卡诺循环的效率。

5. 了解可逆过程与不可逆过程的概念。

6. 解热力学第二定律的两种表述,了解两种表述的等价性。

7. 理解熵的概念,了解热力学第二定律的统计意义及无序性。

二. 内容提要1. 内能功热量内能从热力学观点来看,内能是系统的态函数,它由系统的态参量单值决定。

对于理想气体,其内能 E 仅为温度T 的函数,即EM M iC TVMmolM 2molRT当温度变化ΔT 时,内能的变化EM M iC TVM Mmol 2molR T功热学中的功与力学中的功在概念上没有差别,但热学中的作功过程必有系统边界的移动。

在热学中,功是过程量,在过程初、末状态相同的情况下,过程不同,系统作的功 A 也不相同。

系统膨胀作功的一般算式为A V2V1pdV在p—V 图上,系统对外作的功与过程曲线下方的面积等值。

热量热量是系统在热传递过程中传递能量的量度。

热量也是过程量,其大小不仅与过程、的初、末状态有关,而且也与系统所经历的过程有关。

2. 热力学第一定律系统从外界吸收的热量,一部分用于增加内能,一部分用于对外作功,即Q E A热力学第一定律的微分式为1大学物理Ⅱ习题集dQ dE pdV3. 热力学第一定律的应用——几种过程的A、Q、ΔE的计算公式(1)等体过程体积不变的过程,其特征是体积V =常量;其过程方程为1pT常量在等体过程中,系统不对外作功,即 A 0。

等体过程中系统吸收的热量与系统内V能的增量相等,即R TM M iQ E C TV 2VM Mmol mol(2) 等压过程压强不变的过程,其特点是压强p =常量;过程方程为1VT常量在等压过程中,系统对外做的功MV 2APd ( ) R(T T )p V p V VV1 2 1 2 1MmolM系统吸收的热量( 2 T )Q C TP P 1Mmol式中C C RP 为等压摩尔热容。

热力学习题与答案(原件)

热力学习题与答案(原件)

材料热力学习题1、阐述焓H 、内能U 、自由能F 以及吉布斯自由能G 之间的关系,并推导麦克斯韦方程之一:T P PST V )()(∂∂-=∂∂。

答: H=U+PV F=U-TS G=H-TS U=Q+W dU=δQ+δWdS=δQ/T, δW=-PdV dU=TdS-PdVdH=dU+PdV+VdP=TdS+VdP dG=VdP-SdTdG 是全微分,因此有:TP P TP ST V ,PT G T P G ,T V P G T P T G P ST G P T P G )()()()()()(2222∂∂-=∂∂∂∂∂=∂∂∂∂∂=∂∂∂∂=∂∂∂∂∂-=∂∂∂∂=∂∂∂因此有又而2、论述: 试绘出由吉布斯自由能—成分曲线建立匀晶相图的过程示意图,并加以说明。

(假设两固相具有相同的晶体结构)。

由吉布斯自由能曲线建立匀晶相图如上所示,在高温T 1时,对于所有成分,液相的自由能都是最低;在温度T 2时,α和L 两相的自由能曲线有公切线,切点成分为x1和x2,由温度T 2线和两个切点成分在相图上可以确定一个液相线点和一个固相线点。

根据不同温度下自由能成分曲线,可以确定多个液相线点和固相线点,这些点连接起来就成为了液相线和固相线。

在低温T 3,固相α的自由能总是比液相L 的低,因此意味着此时相图上进入了固相区间。

HPV UGTSTS FPV3、论述:通过吉布斯自由能成分曲线阐述脱溶分解中由母相析出第二相的过程。

第二相析出:从过饱和固溶体α中(x0)析出另一种结构的β相(xβ),母相的浓度变为xα. 即:α→β+ α1α→β+ α1 的相变驱动力ΔGm的计算为ΔGm=Gm(D)-Gm(C),即图b中的CD段。

图b中EF是指在母相中出现较大为xβ的成分起伏时,由母相α析出第二相的驱动力。

4、根据Boltzman方程S=kLnW,计算高熵合金FeCoNiCuCrAl和FeCoNiCuCrAlTi0.1(即FeCoNiCuCrAl各为1mol,Ti为0.1mol)的摩尔组态熵。

大学物理第九章热力学基础习题答案精品.doc

大学物理第九章热力学基础习题答案精品.doc

习题九9-1 一系统由图示的状态。

经Q&/到达状态。

,系统吸收了320J热量,系统对外作功126J。

⑴若。

沥过程系统对外作功42J,问有多少热量传入系统?(2)当系统由b沿曲线ba返回状态。

,外界对系统作功84 J,试问系统是吸热还是放热?热量是多少?懈]由热力学第一定律Q = \E + A p得星=。

-4在a<b过程中,E b - E = M = 0 - A = 320 -126 = 194/在讪过程中Q2 =^ + 4 = 194 + 42 = 236/o在ba过程中Q, = E. - E b + & = -AE + & = -194-84 = -278J本过程中系统放热。

9-2 2mol氮气由温度为300K,压强为 1.013x10*)(latm)的初态等温地压缩到 2.026 xl05Pa(2atm)o求气体放出的热量。

[解]在等温过程中气体吸收的热量等于气体对外做的功,所以Q T=A=/?TIn-^- = 2x8.3lx300x In-= -3.46x 103JM ]P,2mol 2即气体放热为3.46x103, o9-3 一定质量的理想气体的内能E随体积的变化关系为E- V图上的一条过原点的直线,如图所示。

试证此直线表示等压过程。

[证明]设此直线斜率为奴则此直线方程为E = ki,又E随温度的关系变化式为E = M—Cv ・T = k'TM mo i所以kV = k'T因此堂= C = C(C为恒量)T k又由理想气体的状态方程知,华=。

'(C'为恒量)所以P为恒量即此过程为等压过程。

9-4 2mol氧气由状态1变化到状态2所经历的过程如图所示:⑴沿I一所一2路径。

(2)1 — 2 直线。

试分别求出两过程中氧气对外作的功、吸收的热量及内能的变化。

[解](1)在1-初一2这一过程中,做功的大小为该曲线下所围的面积,氧气对外做负功。

[高等教育]第9章热力学基础习题解答.doc

[高等教育]第9章热力学基础习题解答.doc

第9章热力学基础习题解答9-1 Imol单原了分了理想气体,在4 atm、27°C时体积*=6L,终态体积K2=12L O若过程是:(1)等温;(2)等压;求两种情况下的功、热量及内能的变化。

解:(1)等温过程:M = 0A; E vRTQ T=A T= f;pdV = \—dV = vRT\nV2IV[J;J:V= 8.31x3001n2 = 1728 (J)(2)等压过程:\E = viRAT/2 = 3/?(^2 - )/2 = 3647 (J)A = p(V2 -^) = 2431 (J)Q p— AE A — 6078 (J)9-2 Imol单原子分子理想气体从300 K加热到350 K。

( 1)体积保持不变;(2)压强保持不变;在这两过程中系统各吸收了多少热量?增加了多少内能?气体对外做了多少功?解:(1)等体过程:A v =0Q v =AE = viR\T/2 = 3x8.31 x50/2 = 623.3 (J)(2)等压过程:A =-^) = ^7 = 8.31x50 = 415.5 (J)Q P=\E^A = 623.3 + 415.5 = 1039 (J)9-3将400 J的热量传给标准状态下的2mol纭l气。

(1)若温度不变,纽气的压强、体积各变为多少?(2)若压强不变,纣气的温度、体积各变为多少?(3)若体积不变,氢气的温度、压强各变为多少?哪一过程中它p 。

做功最多?为什么?哪一过程中内能增加最多?为什么?5 , rz vRT. 2x8.31x273 叫。

解:(1)V =— = -------------- =44.8(L)°l.OBxlO 5等温过程:Q T =V RT\X \VJV.K = V () exp-^- = 44.8 exp --- ------- = 48.9 (L)vRT 2x8.31x273P I =p()、)/「=44.8/48.9 = 0.916 (atm) =9.27xl04(Pa) (2)等压过程:Q P =V C P (T 1-T Q )L=£ + L=————+ 273 = 279.9 (K)'vC p 0 2x7x8.31/2V 2 =T*L =279.9x44.8/273 = 45.9 (L)(3)等体过程:0 =“G,(4 一舄)7; =&- + /;)=——竺——+ 273 = 282.6 (K)3 vC v ° 2x5x8.31/2P3 fp/To = 282.6 X1.013 X105 / 273 = 1.049 x 105(Pa)等温过程做功最多,因为热量全部转化为功。

工程热力学(第三版)习题答案全解可打印第九章

工程热力学(第三版)习题答案全解可打印第九章

π
pV 400 ∴ q m = 400 × 1 es = × R g T1 60
可逆定温功压缩功率为:
Wc ,T = − p1V1 ln =−
p2 p1
400 8 π × 0.1 × 10 6 × 0.786 × × 0.3 2 × 0.2 × ln = 15.4 × 10 3 J = 15.4kW s 60 4 1
n = 3× p1 v1 (π n −1 t1 = 20°C
n −1 n
p4 12.5 =3 =5 p1 0 .1
(1) wc = 3wc , L
Q p1 = 0.1MPa
− 1) ∴v =
1 1.3−1 1.3
R g T1 p1
=
287 × 293.15 0.1× 10
6
= 0.8413 m
3
kg kg
− 1] =
1.4 × 0.1× 10 6 × 140 × [6 1.4 − 1
1.4 −1 1.4
− 1] = 327.9 × 10 5 J
h
327.9 ×10 5 = 9108.3W = 9.11KW 3600 p n p1V1 [( 2 ) n −1 p1
n −1 n
(3)多变压缩
Wt , n = Nn = − 1] = 1 .2 × 0.1×10 6 × 140 × [6 1 .2 − 1
V h = 0.009m 3
π =7
1 n
σ = 0.06
1 n
n = 1.3
1
(1) η v = 1 −
Vc (π Vh
− 1) = 1 − σ (π
− 1) = 1 − 0.06 × (7 1.3 − 1) = 0.792

热力学与统计物理第九章答案

热力学与统计物理第九章答案

热力学与统计物理第九章答案【篇一:热力学统计物理课后答案12】=txt>2.2 设一物质的物态方程具有以下形式:p?f(v)t,试证明其内能与体积无关.解:根据题设,物质的物态方程具有以下形式:故有??p????f(v). (2) ??t?v??u???p??t?????p, (3) ??v?t??t?vp?f(v)t,(1)但根据式(2.2.7),有所以??u????tf(v)?p?0. (4) ?v??t这就是说,如果物质具有形式为(1)的物态方程,则物质的内能与体积无关,只是温度t的函数.2.3 求证: (a)???0; (b??p?h解:焓的全微分为令dh?0,得内能的全微分为令du?0,得p??s???0. (4) ????v?utdu?tds?pdv. (3) ??s?v???0. (2) ???pt??h??s???s?)?????v?u0.dh?tds?vdp. (1)2.6 试证明在相同的压强降落下,气体在准静态绝热膨胀中的温度降落大于在节流过程中的温度降落.解:气体在准静态绝热膨胀过程和节流过程中的温度降落分别由偏导数???t???t?和???描述. 熵函数s(t,p)的全微分为 ?p?p??s??h??s???s?ds??dt???dp. ???t?p??p?t在可逆绝热过程中ds?0,故有??s???v?t???p????t??t?p???t?. (1) ?????s?pc????sp????t?p最后一步用了麦氏关系式(2.2.4)和式(2.2.8).焓h(t,p)的全微分为??h???h?dh??dt???dp. ???t?p??p?t在节流过程中dh?0,故有??h???v?t???p???v??t??t??t???p. (2) ?????h?pc????hp????t?p最后一步用了式(2.2.10)和式(1.6.6). 将式(1)和式(2)相减,得??t???t?v???0.(3) ??????p?s??p?hcp所以在相同的压强降落下,气体在绝热膨胀中的温度降落大于节流过程中的温度降落. 这两个过程都被用来冷却和液化气体.由于绝热膨胀过程中使用的膨胀机有移动的部分,低温下移动部分的润滑技术是十分困难的问题,实际上节流过程更为常用. 但是用节流过程降温,气体的初温必须低于反转温度. 卡皮查(1934年)将绝热膨胀和节流过程结合起来,先用绝热膨胀过程使氦降温到反转温度以下,再用节流过程将氦液化.2.9 证明范氏气体的定容热容量只是温度t的函数,与比体积无关.解:根据习题2.8式(2)??2p???cv????t?2?, (1) ?v??t??t?v范氏方程(式(1.3.12))可以表为nrtn2ap??. (2) v?nbv2由于在v不变时范氏方程的p是t的线性函数,所以范氏气体的定容热容量只是t的函数,与比体积无关.不仅如此,根据2.8题式(3)??2p?cv(t,v)?cv(t,v0)?t??2?dv, (3) v0?t??vv我们知道,v??时范氏气体趋于理想气体. 令上式的v0??,式中的cv(t,v0)就是理想气体的热容量. 由此可知,范氏气体和理想气体的定容热容量是相同的.顺便提及,在压强不变时范氏方程的体积v与温度t不呈线性关系. 根据2.8题式(5)2??cv???p?????2?, (2) ??v?t??t?v这意味着范氏气体的定压热容量是t,p的函数.2.16 试讨论以平衡辐射为工作物质的卡诺循环,计算其效率. 解:根据式(2.6.1)和(2.6.3),平衡辐射的压强可表为1p?at4, (1) 3因此对于平衡辐射等温过程也是等压过程. 式(2.6.5)给出了平衡辐射在可逆绝热过程(等熵过程)中温度t与体积v的关系t3v?c(常量).(2)将式(1)与式(2)联立,消去温度t,可得平衡辐射在可逆绝热过程中压强p与体积v的关系pv?c?(常量).(3)43下图是平衡辐射可逆卡诺循环的p?v图,其中等温线和绝热线的方程分别为式(1)和式(3).下图是相应的t?s图. 计算效率时应用t?s图更为方便.在由状态a等温(温度为t1)膨胀至状态b的过程中,平衡辐射吸收的热量为出的热量为循环过程的效率为q2?t2?s2?s1?.(5) q1?t1?s2?s1?. (4)在由状态c等温(温度为t2)压缩为状态d的过程中,平衡辐射放t2?s2?s1?q2t??1??1??1?2. (6)q1t1s2?s1t12.19 已知顺磁物质遵从居里定律:m?ch(居里定律). t若维物质的温度不变,使磁场由0增至h,求磁化热.解:式(1.14.3)给出,系统在可逆等温过程中吸收的热量q与其在过程中的熵增加值?s满足q?t?s. (1)在可逆等温过程中磁介质的熵随磁场的变化率为(式(2.7.7)) ??s???m???0????.(2) ?h?t??t??hcvh?c是常量?, (3) t如果磁介质遵从居里定律易知所以cv?0h??s???.(5) ??2?ht??thm?cv??m???h, (4) ??2t??t?h在可逆等温过程中磁场由0增至h时,磁介质的熵变为吸收的热量为补充题1 温度维持为25?c,压强在0至1000pn之间,测得水的实验数据如下:??v??3?63?1?1????4.5?10?1.4?10p?cm?mol?k. ??t?p?s??cv?0h2??s?(6) ??dh??2?h2t??tcv?0h2q?t?s??. (7)2t【篇二:热力学统计物理课后习题答案】t>8.4求弱简并理想费米(玻色)气体的压强公式.解:理想费米(玻色)气体的巨配分函数满足ln?????lln1?e?????ll??在弱简并情况下:2?v2?v3/23/22ln???g3?2m???1/2ln1?e?????ld???g3?2m???d?3/2ln1?e??? ??l30hh0????????2?v3/22?3/2??g3?2m????ln1?e?????l3?h?????0?3/2dln1?e???????l???? ?2?vd?3/22 ??g3?2m????3/2????l30he?1与(8.2.4)式比较,可知ln??再由(8.2.8)式,得3/23/2??1n?h2??1?h2?????????nkt?1??ln???nkt?1?????v2?mkt??2?mkt?????42???42???2?u 3?e??n?h2?????v?2?mkt??3/2?3/2h2???n????? ????e?????v?t?2?mkt??n?n v3/23/2??1?n?h2????n?n?h2?????????p?ln??kt?1???nkt?1???????v2?mkt?t2?mkt?t???? ???42????42??8.10试根据热力学公式 s?熵。

工程热力学课后作业答案(第九章)第五版

工程热力学课后作业答案(第九章)第五版

9-1压力为0.1MPa ,温度为20℃的空气,分别以100、300、500及1000m/s 的速度流动,当被可逆绝热滞止后,问滞止温度及滞止压力各多少?解:h 1=1T c p =1.01×293=296kJ/kgh 0=h 1+22c 当c=100m/s 时:h 0=301 kJ/kg ,T 0=p c h 0=298K ,11010)(-=k k T T p p =0.106 MPa 当c=300m/s 时:h 0=341 kJ/kg ,T 0=337.6K ,p 0= 0.158MPa当c=500m/s 时:h 0=421 kJ/kg ,T 0=416.8K ,p 0= 0.33MPa当c=1000m/s 时:h 0=796 kJ/kg ,T 0=788.1K ,p 0= 0.308MPa9-2质量流量1=mkg/s 的空气在喷管内作定熵流动,在截面1-1处测得参数值p 1= 0.3MPa ,t1=200℃,c1=20m/s 。

在截面2-2处测得参数值p 2=0.2MPa 。

求2-2截面处的喷管截面积。

解:=⨯==3.0528.01p p c β0.1584>0.2 MPa采用渐缩喷管。

c1=20m/s 较小忽略。

因此2-2截面处是临界点==-k k p p T T 12)12(1421K ==222P RT v 0.6m 3/kg =--=-])12(1[11221k k p p k kRT c 323m/s =⨯=222c m v f 0.00185m 39-3渐缩喷管进口空气的压力p 1= 2.53MPa ,t1=80℃,c1=50m/s 。

喷管背压p b = 1.5MPa 。

求喷管出口的气流速度c2,状态参数v2、t2。

如喷管出口截面积f2=1cm 2,求质量流量。

解: ⨯==528.01p p c β 2.53=1.33<1.5 MPa没有到临界。

滞止温度:pc c T T 21021+==354.24K滞止压力:1)10(10-=k k T T p p =2.56 MPa =--=-])02(1[10221k k p p k kRT c 317.5 m/s k k p p T T 1)12(12-==304K ==222P RT v 0.058 m 3/kg ==222v c f m 0.55 m 3/s9-4如上题喷管背压p b = 0.1MPa 。

《工程热力学》(第四版)习题提示及答案09章习题提示与答案

《工程热力学》(第四版)习题提示及答案09章习题提示与答案

习题提示与答案 第九章 气体动力循环9-1 活塞式内燃机定容加热循环的参数为:p 1=0.1 MPa 、t 1=27 ℃,压缩比ε=6.5,加热量q 1=700 kJ/kg 。

假设工质为空气及比热容为定值,试求循环各点的状态、循环净功及循环热效率。

提示:1-2过程为等熵压缩过程,压缩比21v v =ε;2-3过程为定容加热过程,过程热量q =c p 0ΔT ;3-4过程为等熵膨胀过程;4-1过程为定容放热过程。

循环净功: w 0=q 1-│q 2│;循环热效率:111-κt εη-=。

答案: v 1=0.861 m 3/kg ;p 2=1.37 MPa ,v 2=0.132 m 3/kg , T 2=634.3 K ;p 3=3.48 MPa ,v 3=0.132 m 3/kg ,T 3=161 2 K ;p 4=0.253 MPa ,v 4=0.861 m 3/kg ,T 4=762.4 K ;kJ/kg 9.3680=w ;527.0=t η。

9-2 若上题活塞式内燃机定容加热循环的压缩比由6.5提高到8,试求循环热效率的变化及平均吸热温度和平均放热温度的变化。

提示:循环热效率1t 11-εηκ-=;平均温度sq T Δ=m 。

答案:ΔT m1=58.8 K ,ΔT m2=14.3 K ,t η∆=3.8%。

9-3 根据习题9-1所述条件,若比热容按变比热容考虑,试利用气体热力性质表计算该循环的热效率及循环净功。

提示:w 0=q 1-│q 2│,121q q η-=t ,q =Δu ,工质可看做理想气体;热力过程终态与初态的比体积之比等于其相对比体积之比,即r1r212v v v v =,相对比体积为温度的单值函数。

答案:w 0=342.24 kJ/kg ,t η=0.489。

9-4 在活塞式内燃机中,为了保证气缸的机械强度及润滑,总是在气缸壁外面加以冷却。

如果考虑定容加热循环的T -s 图压缩过程和膨胀过程中工质与气缸壁间的热交换,根据习题9-1所给条件,则膨胀过程可近似为n =1.37的多变过程,压缩过程可近似为n =1.38的多变过程,试据此计算其状态变化及过程的功。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9章 热力学基础一. 基本要求1. 理解平衡态、准静态过程的概念。

2. 掌握内能、功和热量的概念。

3. 掌握热力学第一定律,能熟练地分析、计算理想气体在各等值过程中及绝热过程中的功、热量和内能的改变量。

4. 掌握循环及卡诺循环的概念,能熟练地计算循环及卡诺循环的效率。

5. 了解可逆过程与不可逆过程的概念。

6. 解热力学第二定律的两种表述,了解两种表述的等价性。

7. 理解熵的概念,了解热力学第二定律的统计意义及无序性。

二. 内容提要1. 内能 功 热量内能 从热力学观点来看,内能是系统的态函数,它由系统的态参量单值决定。

对于理想气体,其内能E 仅为温度T 的函数,即RT iM M T C M M E mol V mol 2==当温度变化ΔT 时,内能的变化T R iM M T C M M E mol V mol ∆=∆=∆2功 热学中的功与力学中的功在概念上没有差别,但热学中的作功过程必有系统边界的移动。

在热学中,功是过程量,在过程初、末状态相同的情况下,过程不同,系统作的功A 也不相同。

系统膨胀作功的一般算式为⎰=21V V pdV A在p —V 图上,系统对外作的功与过程曲线下方的面积等值。

热量 热量是系统在热传递过程中传递能量的量度。

热量也是过程量,其大小不仅与过程、的初、末状态有关,而且也与系统所经历的过程有关。

2. 热力学第一定律 系统从外界吸收的热量,一部分用于增加内能,一部分用于对外作功,即A E Q +∆=热力学第一定律的微分式为V p E Q d d d +=3. 热力学第一定律的应用——几种过程的A 、Q 、ΔE 的计算公式 (1)等体过程 体积不变的过程,其特征是体积V =常量;其过程方程为常量=-1pT在等体过程中,系统不对外作功,即0=V A 。

等体过程中系统吸收的热量与系统内 能的增量相等,即T R iM M T C M M E Q mol V mol V ∆=∆=∆=2(2) 等压过程 压强不变的过程,其特点是压强p =常量;过程方程为常量=-1VT在等压过程中,系统对外做的功⎰-=-==211212V V molP T T R M MV V p V p A )()(d 系统吸收的热量 )(12T T C M MQ P molP -=式中R C C V P +=为等压摩尔热容。

(3)等温过程 温度不变的过程,其特点是温度T =常量;其过程方程为pV =常量在等温过程中,系统内能无变化,即⎰===2112d V V mol T T V V n RT M MV p A Q l (4)绝热过程 不与外界交换热量的过程,其特点是dQ=0,其过程方程pV γ=常量在绝热过程中,系统对外做的功等于系统内能的减少,即)(212T T R iM M T C M M E A mol V mol Q --=∆-=∆-= 7. 循环过程 系统从某一状态出发,经过一系列状态变化后又回到了初始状态的整个变化过程。

其特点是内能变化为零,即0=∆E在循环过程中,系统吸收的净热量(吸收热量1Q 与放出热量2Q 之差。

注意这里及以后的2Q 均指绝对值)与系统对外做的净功(系统对外作的功1A 与外界对系统作的功2A 之差)相等,即A A A Q Q Q =-=-=2121若循环沿过程曲线的顺时针方向进行(称为热循环),则其效率1212111Q Q Q Q Q Q A -=-==η 8. 卡诺循环 由两个等温过程和两个绝热过程组成的循环,其效率121211211T T T T T Q Q Q -=-=-=卡η习 题9-1有两个相同的容器,容积固定不变,一个盛有氦气,另一个盛有氢气(看成刚性分子的理想气体),它们的温度和压强都相等,现将5J 的热量都传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氦气传递的热量是:(A )6J (B )5J (C ) 3J (D ) 2J [ ] 9-2一定量的某种理想气体起使温度为T ,体积为V ,该气体在下面循环过程中经过下列三个平衡过程:(1)绝热膨胀到体积为2V ,(2)等容变化使温度恢复为T ,(3)等温压缩到原来体积V ,则此整个循环过程中(A )气体向外界放热。

(B )气体对外作正功。

(C )气体内能增加。

(D )气体内能减少。

[ ] 9-3 一定量的理想气体经历acb 过程时吸热200J ,则经历acbda 过程时吸热为 (A )-1200J (B )-1000J (C )-700J (D )1000J[ ]9-4一定质量的理想气体完成一个循环过程,此过程在V —T 图中用图线1→2→3→1描写,该气体在循环过程中吸热、放热的情况是(A )在1→2、3→1过程吸热,在2→3过程放热。

(B )在2→3过程吸热,在1→2,3→1过程放热 。

(C )在1→2过程吸热,在2→3,3→1过程放热。

(D )在2→3,3→1过程吸热,在1→2过程放热。

[ ]9-5一定量的理想气体分别由初态a 经1过程ab 和由初态a ′经2过程a ′cb 到达相同的终状态b ,如P —T 图所示,则两过程中气体从外界吸收的热量Q 1、Q 2的关系为(A)Q 1<0,Q 1>Q 2 (B )Q 1 >0,Q 1>Q 2(C )Q 1<0,Q 1<Q 2 (D )Q 1>0,Q 1<Q 2 [ ] 9-8设高温热源的热力学温度是低温热源的热力学温度的n 倍,则理想气体在一次卡诺循环中,传给低温热源的热量是从高温热源吸取的热量的(A )n 倍 (B )n -1倍 (C )n 1倍 (D )n n 1+倍 [ ]9-10如图所示的两个卡诺循环,第一个沿A 、B 、C 、D 、A 进行,第二个沿A 、B 、C /、D /、A 进行,这两个循环的效率η1和η2的关系及这两个循环所作的净功A 1和A 2的关系是(A )η1=η2,A 1=A 2 (B )η1>η2,A 1=A 2 (C )η1=η2,A 1>A 2(D )η1=η2,A 1<A 2 [ ]9-14 一定量的理想气体,分别经历如图(1)所示的abc 过程,(图中虚线ac 为等温线),和图(2)所示的def 过程(图中虚线df 为绝热线)。

判断这两种过程是吸热还是放热(A )abc 过程吸热,def 过程放热(B )abc 过程放热,def 过程吸热 (C )abc 过程和def 过程都吸热 (D )abc 过程和def 过程都放热 [ ]9-15一定量的理想气体,从P —V 图上初态a 经历(1)或(2)过程到达末态b ,已知a 、b 两态处于同一条绝热线上(图中虚线是绝热线),问两过程中气体吸热还是放热?(A )(1)过程吸热、(2)过程放热。

(B )(1)过程放热、(2)过程吸热。

(C )两种过程都吸热 。

(D )两种过程都放热。

[ ] 9-16对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所作的功与从外界吸收的热量之比A/Q 等于(A )1/3 (B )1/4 (C )2/5 (D )2/7 [ ] 9-18理想气体在卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为S 1和S 2,则二者的大小关系是:(A )S 1> S 2 (B )S 1= S 2 (C )S 1< S 2(D )不能确定 [ ]9-22一气缸内贮有10mol 的单原子分子理想气体,在压缩过程中外界作功209J ,气体升温1K ,此过程中气体内能增量为 ,外界传给气体的热量为 。

9-24一定量的某种理想气体在等压过程中对外作功为200J ,若此种气体为单原子分子气体,则该过程中需吸热 J ;若为双原子分子气体,则需吸热 J 。

9-29刚性双原子分子理想气体在等压下膨胀所作的功为A ,则传给气体的热量为 。

9-32 一定量的某种理想气体进行如图所示的循环过程。

已知气体在状态A 的温度T A =300K ,求(1)气体在状态B 、C 的温度; (2)各过程中气体对外所作的功;(3)经过整个循环过程,气体从外界吸收的总热量(各过程吸热的代数和)。

9-33如图所示,abcda 为1mol 单原子分子理想气体的循环过程,求: (1)气体循环一次,在吸热过程中从外界共吸收的热量; (2)气体循环一次对外作的净功; (3)证明T a T c =T b T d 。

9-34一定量的单原子分子理想气体,从A 态出发经等压过程膨胀到B 态,又经绝热过程膨胀到C 态,如图所示。

试求:这全过程中气体对外所作的功,内能的增量以及吸收的热量。

9-36一定量的理想气体,从P —V 图上同一初态A 开始,分别经历三种不同的过程过渡到不同的末态,但末态的温度相同。

如图所示,其中A →C 是绝热过程,问 (1)在A →B 过程中气体是吸热还是放热?为什么? (2)在A →D 过程中气体是吸热还是放热?为什么?9-37 一定量的某种理想气体,开始时处于压强、体积、温度分别为Pa P 60102.1⨯=,3301031.8m V -⨯=,T 0=300K ,的状态,后经过一等容过程,温度升高到T 1=450K ,再经过一等温过程,压强降到P=P 0的末态。

已知该理想气体的等压摩尔热容与等容摩尔热容之比35=Vp C C 。

求:(1)该理想气体的等压摩尔热容C P 和等容摩尔热容C V 。

(2)气体从始态变到末态的全过程中从外界吸收的热量。

9-39一定量的某单原子分子理想气体装在封闭的气缸里,此汽缸有可活动的活塞(活塞与气缸壁之间无摩擦且无漏气)。

已知气体的初压强P 1=1atm ,体积V 1=1L ,现将该气体在等压下加热直到体积为原来的两倍,然后在等容下加热,到压强为原来的两倍,最后作绝热膨胀,直到温度下降到初温为止,试求: (1)在p —V 图上将整个过程表示出来。

(2)在整个过程中气体内能的改变。

(3)在整个过程中气体所吸收的热量。

(4)在整个过程中气体所做的功。

9-40一定量的理想气体,由状态a 经b 到达c 。

(如图,abc 为一直线)求此过程中 (1)气体对外作的功。

(2)气体内能的增量。

(3)气体吸收的热量。

9-47 在-热力学中做功和“传递热量”有本质的区别,“作功” 是通过 来完成的;“传递热量” 是通过 来完成的。

9-48 如图所示,理想气体从状态A 出发经ABCDA 循环过程,回到初态A 点,则循环过程中气体净吸的热量为 。

答 案9-1 (C ) 9-2 (A ) 9-3 (B ) 9-4 (C ) 9-5 (B ) 9-8(C ) 9-10 (D ) 9-14 (A ) 9-15(B ) 9-16 (D ) 9-18 (B ) 9-22 124.7; -84.3 9-24 500; 700 9-29 2A 79-32 T C =100K ;T B =300K ;A →B :400J ;B →C :-200J ;C →A :0 ;200J9-33 800J ;100J 9-34 5109.14⨯=A J ;ΔE=0;5109.14⨯=Q J9-36 A →B 过程中气体放热,A →D 过程中气体吸热9-37 R 25;R 23;41035.1⨯J9-39 (图略)∆E=0;2106.5⨯=Q J ;2106.5⨯==Q A J9-40 A=405.2J ;∆E=0 ;Q=405.2J9-47 宏观位移;分子间相互作用。

相关文档
最新文档