测量不确定度评定实例
测量不确定度评定例

相对频率偏差的测量不确定度评定1. 测量方法相对频率偏差:参考频标:铯原子频率标准5071A 被检频标:铷原子频率标准 频标比对器:PO7D 2. 测量结果测量10次,数据如下:oox f f f y -=)(τ3. 测量不确定度来源(1)铯原子频标不准引入的不确定度1u铯原子频标检定证书给出其频率准确度为5×10-13, 按B 类方法进行不确定度评定。
视其为均匀分布,包含因子3=k ,则有:13131109.23/105--⨯=⨯=u(2)铯原子频标不稳引入的不确定度2u测量相对频率偏差的取样时间为100s 。
铯原子频标检定证书给出其100s 频率稳定度为4.9×10-13,按A 类方法进行评定,k=1,则有:132109.4-⨯=u(3)频标比对器引入的不确定度3u频标比对器检定证书100s 比对不确定度为1.2×10-13,按A 类方法进行不确定度评定,k=1,则有:133102.1-⨯=u(4)测量重复性引入的不确定度4u实验标准偏差)(x s n1212109.11)()(-=⨯=--=∑n y yx s ni i in对于平均值,重复性测量引入的不确定度为:13124100.610/109.1--⨯=⨯=u3. 合成标准不确定度c u相对频率偏差测量结果的不确定度分量如下表:以上各不确定度分量互相独立各不相关,可得合成标准不确定度c u :21321321321324232221)100.6()102.1()109.4()109.2(----⨯+⨯+⨯+⨯=++++=u u u u u c 13104.8-⨯= 4. 扩展不确定度取k=2, 则扩展不确定度: 12102-⨯=U 5. 结论相对频率偏差:11100.7-⨯ 不确定度: 12102-⨯ (k=2)频率稳定度的测量不确定度评定1. 测量方法参考频标:高稳晶振8607 被检频标:铷原子频率标准 频标比对器:5120A 2. 测量结果3.不确定度来源(1) 参考频标引入的不确定度测量频率稳定度时使用的参考源为高稳晶振8607,根据其检定证书,其1 s 频率稳定度为7.2E-14,按B 类方法进行评定,k=1,则有:141102.7-⨯=u(2) 测量装置引入的不确定度测量装置使用5120,实测1 s 比对不确定度为1.19E-13,按A 类方法进行不确定度评定,k=1,则有:1321019.1-⨯=u(3) 有限次测量引入的不确定度按A 类方法进行有限次测量不确定度的评定。
力学性能测量不确定度评定中的几个实例

⑵试样的标距
试样原始标距由划线操作和测量来决 定的,因此量化该项不确定度分量时 仅仅考虑量具是远远不够的。
按GB/T 228–2002标准中规定 原始标距的标记应准确到±1%
⑶断后伸长率不确定度的评定
GB/T 228-2002国家标准中, 对断后伸长的规定有误。
如果按照该标准的规定来评定不确定度, 即使方法正确,也不能得到正确的结果。
CSM 01 01 02 03 -2006 钢绞线弹性模量测量结果不确定度评定
CSM 01 01 02 04 -2006 金属薄板和薄带塑性应变比(r值)测量结果不确定 度评定
⑴ 各种参数都有明确的物理公式作为数学模型。
⑵ 拉伸试验机力值的不确定度分项都是通过标准测 力仪进行检定来评定的。
⑶ 在B类不确定度分量的量化过程中,由于测量方 法和条件的限制,测量的结果往往不是由量具的 误差决定的。也就是说合乎要求的量具仅仅是达 到技术文件规定的保证。
(绝对不可以不考虑)
在“金属材料拉伸试验测量结果不确定 度评定”中采用了25个试样。为了示 范评定A类不确定度中的合并样本标准 差,在 “金属洛氏硬度试验(HRC) 测量结果不确定度评定” 中采用了3个 样本。 绝大多数项目的A类不确定度评定都是 采用5或6个测量点为测量列,并用极 差法来计算标准偏差。
GB/T 228-2002标准B4中给出, 测定原始横截面积时,
测量每个得出的, 在评定工作中可直接引用。
试样断后横截面积的测量误差不取决于量具, 断后缩径处最小直径测量用卡尺,
由于断口配接存在一定困难, 实际的测量误差要远大于量具的误差。
GB/T 228–2002标准19.1中规定 断裂后最小横截面积的测定应准确到±2%。
3.3 硬度试验
电子天平测量结果不确定度评定实例

电子天平测量结果不确定度评定实例1.概述1.1测量依据:JJF1847-2020 《电子天平校准规范》1.2 环境条件:温度最大变化不超过1℃。
相对湿度最大不超过10%1.1测量标准:F1、F2砝码1.4被测对象:实际分度值0.0001g,最大量程100g的电子天平1.5测量模型为:E=I-m r e f2.1 标准不确定度评定2.1.1 空载示值的化整误差引起的标准不确定度u(δI0)δI0表示空载示值的化整误差。
其区间半宽度为d0/2;服从矩形分布,其标准不确定度为:u(δI0)=d L/2√3=0.1×10-3g/2√3=0.000 029 g2.1.2 加载示值的化整误差引起的标准不确定度u(δI digL)δI digL表示加载时的示值误差。
其区间半宽度为d L/2,服从矩形分布,其标准不确定度为:u(δI digL)=d L/2√3=0.1×10-3g/2√3=0.000 029 g2.1.3 重复性引起的标准不确定度u(δI rep)δI rep表示天平的重复性误差。
测量值见表2.表2重复性测量值u(δI rep)=s(I j)=0.000 075 g2.1.4同一载荷在不同位置的重心偏离引起的标准不确定度u(δI ecc)δI ecc表示由于试验载荷重心的偏离引起的误差,见表3。
表3载荷在不同位置的测量值按照8.3确定的最大差值,其标准不确定度为:u(δI ecc)=I∣ΔI ecci∣max/(2L ecc√3)=100.000 3 g×0.000 2 g/(2×50g×√3)=0.000 115 g2.1.5 示值的标准不确定度示值的标准不确定度通过以下公式获得:u2(I)=u2(δI0)+u2(δI digL)+u2(δI rep)+u2(δI ecc)=d02/12 + d I2/12 + u2(δI rep)+ u2(δI ecc)=(0.000 029 g)2+(0.000 029 g)2+(0.000 075 g)2+(0.000 115 g)2=0.000 000 021 g2u(I)=√u2(I)=√0.000 000 21 g2=0.000 144 g2.2 参考质量的不确定度评定2.2.1 标准砝码的标准不确定度u(δmc)标准砝码检定证书中给出了砝码的折算质量,其标准不确定度为:u(δmc)=MPE / 6=0.5/6=0.000 083 g2.2.2空气浮力引起的标准不确定度u(δm B)因在校准之前已对天平进行了内部调整,查JJG 99 表1得最大允许误差0.5mg的三分之一,其标准不确定度为:u(δm B)≈∣MPE∣4√3=0.5 g×10-3/4√3=0.000 072g2.2.3 砝码不稳定性引起的标准不确定度u(δm D)砝码的不稳定性根据JJG 99选择最大允许误差0.3 mg 的三分之一,服从矩形分布,其标准不确定度为:u (δm D )=∣MPE ∣3√3=0.5 g×10-3/3√3=0.000 096g2.2.4 参考质量的标准不确定度为u 2(m ref )=u 2(δm c )+u 2(δm B )+u 2(δm D )=(0.000 083 g )2+(0.000 072 g )2+(0.000 096g )2=0.000 000 0213g 2u (m ref )=√u 2(m ref )=√0.000 000 005 6 g 2=0.000146 g 2.3 示值误差的合成标准不确定度u c (E ) 误差的标准不确定度根据下式计算:u c 2(E )=u 2(I )+u 2(m ref )=0.000 000 021 g 2+0.000 000 0213 g 2=0.000 000 0423 g 2u c (E )=)(E 2c u =√0.000 000 026 3 g 2 =0.000206g2.4 扩展不确定度取k =2,U = k u c (E )=2×0.000 206 g=0.000 412 g由于天平实际分度值为0.000 1 g ,因此:U =0.0005g3..同理可得:3.1分度值为0.1mg 的其它测量点的扩展不确定度为(k =2),U =k ×u c 为:3.2分度值为0.001g的电子天平,不同测量点的扩展不确定度为(k=2),U=k×u c为:3.3分度值为0.01g的电子天平,不同测量点的扩展不确定度为(k=2),U=k×u c为:3.4分度值为0.1g的电子天平,不同测量点的扩展不确定度为(k=2),U=k×u c为:3.5分度值为0.5g的电子天平,不同测量点的扩展不确定度为(k=2),U=k×u c为:3.6分度值为1g的电子天平,不同测量点的扩展不确定度为(k=2),U=k×u c为:。
测量不确定度评定的方法以及实例

测量不确定度评定的方法以及实例1.标准不确定度方法:U =sqrt(∑(xi-x̅)^2/(n-1))其中,xi表示测量值,x̅表示测量值的平均值,n表示测量次数。
标准不确定度包含随机误差和系统误差等。
例如,对一组长度进行测量,测得的数据为10.2、10.3、10.1、10.2、10.3,计算平均值为10.22,标准差为0.069、则标准不确定度为0.069/√5≈0.031,即U=0.0312.扩展不确定度方法:扩展不确定度是在标准不确定度的基础上,考虑到误差的正态分布,对标准不确定度进行扩展得到的结果,通常以U'表示。
其计算公式如下:U'=kU其中,k表示不确定度的覆盖因子,代表了误差分布的概率密度曲线下的面积,一般取k=2例如,对上述例子中的长度进行测量,标准不确定度为0.031,取k=2,则扩展不确定度为0.031×2=0.062,即U'=0.0623.组合不确定度方法:4.直接测量法:直接测量法是通过多次测量同一物理量,统计测得值的离散程度来评估测量的不确定度。
该方法适用于一些简单的测量,如长度、质量等物理量的测量。
例如,对一些小球的直径进行测量,测得的数据为2.51 cm、2.49 cm、2.52 cm、2.50 cm,计算平均值为2.505 cm,标准差为0.013 cm。
则标准不确定度为0.013/√4≈0.007 cm,即U=0.0075.间接测量法:间接测量法是通过已知物理量之间的数学关系,求解未知物理量的方法来评估测量的不确定度。
该方法适用于一些复杂的测量,如测量速度、加速度等物理量的测量。
例如,测量物体的速度v,则有v=S/t,其中S为位移,t为时间。
若S的不确定度为U_S,t的不确定度为U_t,则根据误差传递法则,计算得到v的不确定度为U_v = sqrt(U_S^2 + (U_t * (∂v/∂t))^2 )。
总之,测量不确定度评定的方法包括标准不确定度方法、扩展不确定度方法、组合不确定度方法、直接测量法和间接测量法。
不确定度评定举例

举例
• 数字多用表为 位,其最大允许差为 数字多用表为5.5位 • ±(0.005%×读数 ×最小分度 ×读数+3×最小分度) • 数字多用表最小分度为 数字多用表最小分度为0.01 k • 在相同条件下用数字多用表测量电阻器 次电阻, 在相同条件下用数字多用表测量电阻器10次电阻 次电阻, 得到平均值和平均值的标准偏差为: 得到平均值和平均值的标准偏差为: •
举例
不确定度评定
举例
• 例1.用K型热电偶数字式温度计直接测量温度示 . 型热电偶数字式温度计直接测量温度示 值400℃的工业容器的实际温度,分析其测量不 ℃的工业容器的实际温度, 确定度。 确定度。K型热电偶数字式温度计其最小分度为 0.1℃,在400℃经校准修正值为0.5℃,校准的不 确定度为0.3℃; • 测量的数学模型为: • t=d+b…………………………(1) • 式中:t——实际温度,℃ • d——温度计读取的示值,℃ • b——修正值,℃,b=0.5℃
举例
• 引用最大允许差按均匀分布得校准产生的标准不确 定度为
将以上两项合成得: 将以上两项合成得:
举例
• 取K=2,则有 ,
结果表示成: 结果表示成:
谢谢!
举例
• 第三,温度计最小分度为0.1℃,假定读取到其一 第三,温度计最小分度为 ℃ 半,接均匀分布则读数产生的标准不确定度为 :
将以上三项合成得
举例
• 取K=2,则有 • U(t)=0.37×2=0.74≈0.8℃ • 结果表达为 • (400.7±0.8) ℃
测量不确定度评定的方法以及实例

第一节有关术语的定义3.量值 value of a quantity一般由一个数乘以丈量单位所表示的特定量的大小。
例: 5.34m 或 534cm, 15kg, 10s,- 40℃。
注:对于不可以由一个乘以丈量单位所表示的量,能够参照商定参照标尺,或参照丈量程序,或二者参照的方式表示。
4.〔量的〕真值 rtue value〔of a quantity〕与给定的特定量定义一致的值。
注:(1)量的真值只有经过完美的丈量才有可能获取。
(2)真值按其天性是不确立的。
(3)与给定的特定量定义一致的值不必定只有一个。
5.〔量的〕商定真值 conventional true value〔of a quantity〕对于给定目的拥有适合不确立度的、给予特定量的值,有时该值是商定采纳的。
例: a) 在给定地址,取由参照标准复现而给予该量的值人作为给定真值。
b) 常数委员会 (CODATA)1986年介绍的阿伏加得罗常数值 6.0221367 × 1023mol-1。
注:(1)商定真值有时称为指定值、最正确预计值、商定值或参照值。
(2)经常用某量的多次丈量结果来确立商定真值。
13.影响量 influence quantity不是被丈量但对丈量结果有影响的量。
例: a) 用来丈量长度的千分尺的温度;b)沟通电位差幅值丈量中的频次;c)丈量人体血液样品血红蛋浓度时的胆红素的浓度。
14.丈量结果 result of a measurement由丈量所获取的给予被丈量的值。
注:(1)在给出丈量结果时,应说明它是示值、示修正丈量结果或已修正丈量结果,还应表示它能否为几个值的均匀。
(2)在丈量结果的完好表述中应包含丈量不确立度,必需时还应说明有关影响量的取值范围。
15.〔丈量仪器的〕示值 indication〔of a measuring instrument〕丈量仪器所给出的量的值。
注:(1)由显示器读出的值可称为直接示值,将它乘以仪器常数即为示值。
测量不确定度评定(很实用)课件
兼容多种数据格式
能够读取和处理多种数据格式 ,如Excel、CSV和数据库等
。
可视化报告生成
软件能够自动生成测量不确定 度评定报告,并以可视化形式
展示结果。
软件操作流程
数据导入
将测量数据导入到软件中,可 以选择多种数据格式。
参数设置
根据实际情况设置相关参数, 如评定方法、置信水平等。
定义
测量不确定度是测量结果的可信 程度或可靠性的度量,它反映了 测量结果的不确定性或分散性。
意义
测量不确定度是测量结果的一个 重要参数,它有助于评估测量结 果的可靠性和准确性,以及为决 策提供依据。
测量不确定度的来源
仪器设备误差
仪器设备的精度和稳定 性对测量结果的影响。
环境因素
如温度、湿度、气压、 振动等环境条件对测量
计算不确定度
软件自动进行不确定度的计算 ,并给出结果。
报告生成
根据计算结果生成测量不确定 度评定报告。
软件应用案例
案例一
某实验室使用该软件进行测量不确定 度评定,提高了测量数据的准确性和 可靠性。
案例二
某企业使用该软件对产品进行质量控 制,确保产品符合相关标准和客户要 求。
PART 05
测量不确定度的优势与局 限性
优势
01
02
03
量化评估
测量不确定度为测量结果 提供了量化评估,帮助我 们了解测量的可靠性和准 确性。
比较性
通过比较不同测量方法和 结果的测量不确定度,可 以评估哪种方法更可靠或 更精确。
改进空间
测量不确定度可以帮助识 别改进测量的空间,从而 优化测量过程。
测量不确定度评估实例M
三针法外螺纹中径测量不确定度评估实例1、测量概述:测量温度条件:符合表1规定的高准确度测量的温度要求。
测量设备及技术指标:测长仪最大允许示值误差为±(0.5μm+L 6105-⨯);三针直径 d D = 3.464 mm (最佳直径 d 0 = 3.4641 mm),三针直径测量不确定度≤0.4μm ; 测量力1.5 N ;螺纹塞规M64x6,其名义值d 2 = 60.1336 mm ,P = 6 mm , α= 60°;测量方法:外螺纹(螺纹塞规)可以利用两个平面测帽和直径为d D 的三针测量(图1)。
图1. 利用三针测量螺纹塞规2、建立数学模型假设用图A2所示方法测量外螺纹,其中径计算利用公式(1),其中m = ΔL +d D假设各输入量不相关,中径d2的合成标准不确定度:其中:u (ΔL )是被测位移量ΔL 的标准不确定度,包括测量仪器校准和温度效应的影响; u (d D ) 是探针直径校准值的标准不确定度。
这个不确定度假设完全正确,因为其灵敏系数c dD = 1/sin(α/2)+1。
u (P )是螺距测量的标准不确定度,其灵敏系数c P = cot(α/2)/2;u (α/2)是牙侧角α/2测量的标准不确定度。
这可能有许多不同的值,特别是采用光学测量方法时,与螺距的大小成反比。
灵敏系数与测球直径d D 对最佳球径d 0的差相关。
注意牙型角α的单位: [α] = rad.d D cos(a/2)/sin2(a/2)-P/2sin2(a/2) ;P/2=d0*cos(a/2) (B8)u(A1) 是进行升角修正时采用近似公式引入的不确定度;u(A2) 是测量力修正引入的不确定度;u(δB)是被校螺纹量规不完善、校准程序等所有未明确分离的因素引入的不确定度。
B4.4 不确定度报告的数字示例按照组合3校准螺纹塞规M64x6,其名义值d2 = 60.1336 mm,P = 6 mm,α= 60°。
测量不确定度案例分析
标准不确定度A类评定的实例【案例】对一等活塞压力计的活塞有效面积检定中,在各种压力下,测得10次活塞有效面积与标准活塞面积之比l(由l的测量结果乘标准活塞面积就得到被检活塞的有效面积)如下:0.250670 0.250673 0.250670 0.250671 0.250675 0.250671 0.250675 0.250670 0.250673 0.250670问l的测量结果及其A类标准不确定度。
希望是本无所谓有,无所谓无的。
这正如地上的路;其实地上本没有路,走的人多了,也便成了路。
希望是本无所谓有,无所谓无的。
这正如地上的路;其实地上本没有路,走的人多了,也便成了路。
【案例分析】由于n =10, l 的测量结果为l ,计算如下∑===ni i .l n l 125067201由贝塞尔公式求单次测量值的实验标准差()612100521-=⨯=--=∑.n ll)l (s ni i由于测量结果以10次测量值的平均值给出,由测量重复性导致的测量结果l 的A 类标准不确定度为希望是本无所谓有,无所谓无的。
这正如地上的路;其实地上本没有路,走的人多了,也便成了路。
610630-=⨯=.)l (u n)l (s A【案例】对某一几何量进行连续4次测量,得到测量值:0.250mm 0.236mm 0.213mm 0.220mm ,求单次测量值的实验标准差。
【案例分析】由于测量次数较少,用极差法求实验标准差。
)()(i i x u CRx s ==式中,R——重复测量中最大值与最小值之差;极差系数c及自由度ν可查表3-2表3-2极差系数c及自由度ν希望是本无所谓有,无所谓无的。
这正如地上的路;其实地上本没有路,走的人多了,也便成了路。
希望是本无所谓有,无所谓无的。
这正如地上的路;其实地上本没有路,走的人多了,也便成了路。
查表得c n =2.06mm ../mm )..()x (u CR)x (s i i 018006221302500=-=== 2)测量过程的A 类标准不确定度评定对一个测量过程或计量标准,如果采用核查标准进行长期核查,使测量过程处于统计控制状态,则该测量过程的实验标准偏差为合并样本标准偏差S P 。
测量不确定度评定例
一、力学测量应用实例用拉力试验机测量金属试件拉伸强度。
已知试件的标准直径mm d 10=,断裂时拉力为40kN 。
拉力试验机的量程为200kN ,分度值为0.5kN ,示值误差为F %1+,示值误差的不确定度为0.2%F 。
试件直径用千分尺测量,其示值误差为m μ3+。
求拉伸强度的测量不确定度。
2.1 数学模型 24d FA F R m π==m R — 拉伸强度 (Mpa )A — 试件截面积 (2mm )d — 试件直径 (mm )F — 拉力 (N )2.2 不确定度传播律)(4)()(222d u F u R u rel rel m rel c +=2.3 求相对标准不确定度分量)(d u rel2.3.1 千分尺示值误差导致的不确定度 )(1d u以均匀分布估计 m d u μ73.133)(1==2.3.2 由操作者引起的测量不确定度)(2d u经验估计,该测量误差在m μ10+范围内,以均匀分布估计, m d u μ77.5310)(2==以上二者合成 m d u μ02.677.573.1)(22=+=以上相对不确定度表示: %06.01010*02.6)(3==-d u rel2.4 求拉力F 的测量不确定度 )(F u rel2.4.1 拉力机的示值误差引入的测量不确定度)(1F u由于仪器说明书未说明置信概率,故取2=k%5.0%1)(1==k F u2.4.2 拉力机校准的不确定度)(2F u这是由上一级标准器对拉力机校准时产生的不确定度,即拉力机示值误差的不确定度,校准证书亦未给出置信概率,故取2=k%1.0%2.0)(2==k F u2.4.3 拉力机读数不准产生的不确定度)(3F u人工读数可以估计到刻度的五分之一,即0.1kN ,读数误差的不确定度可按均匀分布估计,3=k %144.03401.0)(3==F u以上三者合成 %53.0)144.0(%)1.0(%)5.0()(222=++=F u rel2.5 合成标准不确定度c u %543.0%)06.0(4%)53.0()(4)()(2222=+=+=d u F u R u rel rel m rel c 223.5094mm N d F R m ==π 28.2%543.0*3.509)(mmN R u R u m rel c m c === 2.6 扩展不确定度 U取包含因子 2=k26.58.2*2mm N ku U c ===2.7 测量结果报告 2)6.53.509(mm N R m +=……二、 电学测量应用实例用数学电压表测量电压9次,得到平均值V v 928571.0=,标准偏差V v s μ36)(=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 块 温 度 与 标 准 量 块 温 度 由 不 同 温 度 计 给 出 时 , 与 s 不 相
关 。 本 例 假 定 是 用 同 一 只 温 度 计 , 即 与 s 相 关 。 对 式 (5.1)进 行 数 学 变 换 得
数学处理过程非常复杂,故我们采用下述方法将相关转换成不相关,以简化数学处
理过程。 令 s , 由 于 与 s 相 减 , 故 来 源 于 同 一 只 温 度 计 的 相 同 因 素 被 抵 消 ,
消去相关性。
令 s ,由式(5.2),有
l f (ls , d , s , , , )
(2) 数学模型的建立
两量块直接比较的输出是被较量块与标准量块的长度差 d
d l (1 ) l s (1 s s )
式中 l — 被较量块在 20℃时的长度;
(5.1)
— ls 标 准 量 块 在 20℃ 时 的 长 度 ; — 被较量块的温度热膨胀系数;
s — 标准量块的温度热膨胀系数;
测量不确定度评定 实例
2021/2/23
测量不确定度评定实例
1
五、测量不确定度应用实例
一、长度测量中的应用
1. 在 比 较 仪 上 校 准 量 块 (1) 问 题 的 提 出 量 块 的 校 准 不 确 定 度 分 析 ,已 广 泛 的 出 现 在 多 个 国 家
有 关 不 确 定 度 评 估 的 技 术 资 料 中 。 GUM 的 第 一 实 例 就 选 用 了 它 ,原 因 是 该 实 例 几 乎 涉 及 了 G U M 所 有 章 节 的 基 本 内 容 (除 标 准 不 确 定 度 的 相 对 形 式 以 外 ), 因 而 具 有 较 理 想 的 指 导 作 用 。 下 面 依 据 JJF 1059 — 1999, 对 量 块的校准不确定度加以完整叙述和分析。
2021/2/23
测量不确定度评定实例
2
五、测量不确定度应用实例
在 比 较 仪 上 ,对 标 准 量 块 与 被 检 量 块 进 行 比 较 ,求 出 两 量 块的长度差值。考虑长度的温度修正,由标准量块的已知长 度,获得被较量块的长度。
这里指明了测量方法,直接测量的是两量块的长度差值, 即 修 正 值 d : l ls d , l 是 被 较 量 块 长 度 ,ls 是 标 准 量 块 长 度 (由 上 级证书给出), d 即是多次重复测量数据列的算术平均值。
ls
较大,但 s s
为二次项,非常小,
故次项也可忽略;
③ 对ls (ss ) ,虽然(ss ) 项较小,但它为一次项,故应
保留。因此,我们有
lห้องสมุดไป่ตู้ls d ls(ss )
(5.2)
2021/2/23
测量不确定度评定实例
6
五、测量不确定度应用实例
因 为 与 s 来 源 于 同 一 只 温 度 计 而 相 关 , 由 于 JJF 1059 — 1999 中 对 相 关 项 的
= ls d ls ( s )
= (1 s )ls + d
(5.3)
如此,各分量(输入量) ls , d , s , , , 互不相关。按不确定度传播律,输出量
估计值l 的方差为
2021/2/23
测量不确定度评定实例
7
五、测量不确定度应用实例
其中,各分量灵敏度系数为
c1
l ls
2021/2/23
测量不确定度评定实例
5
五、测量不确定度应用实例
在变换过程中,因为
<< 1,应用近似 1
,当 1 x
x
<< 1 时,
1 x
有
① 对d 项,在正常情况下d 很小,而量块是恒温室检
定,温度条件要求高,故 也很小,且 很小,故相比
于主要项ls d ,这项可忽略;
②
对 项,虽然 lsss
① 标准量块:u(ls ) u1 ② 测量长度差:u(d ) u2 ③ 比较仪随机效应:u3 ④ 比较仪系统效应:u4 ⑤ 热膨胀系数差: ls u( ) u5 ⑥ 温差: ls s u ( ) u 6
— 校准时的被较量块温度与 20℃的温度偏差;
s — 校准时的标准量块温度与 20℃的温度偏差。
2021/2/23
测量不确定度评定实例
4
三 、由 于 校 准 时 的 环 境 温 度 不 一 定 正 好 是 2 0 ℃ ,故 有 与 s ,
五、测量不确定度应用实 又 由 于 存 在 温 度 梯 度 , 故 与 s 可 能 不 一 致 。 当 被 较 量 块 温
考虑,不可遗漏,也不可重复。很明显函数表达式(5.3)未能全面包括所有不确定度 的 来 源 ,遗 漏 了 比 较 仪 (设 备 )及 校 准 者 (人 员 )读 数 因 素 。而 的 获 得 是 通 过 多 次 测 量 (读 数)获得,故我们认为人员读数因素已包含在u (d ) 中,而比较仪的不确定度分量应从 函数表达式(5.3)以外加入(灵敏系数为 1)。所以,不确定度的来源应包括
l l s (1 s s ) d 1
≈ l s (1 s s ) d (1 )
= l s d l s s s l s d l s s s = (l s d ) l s ( s s ) d l s s s ≈ (l s d ) l s ( s s )
1
s
1
c2
l d
1
c3
l
ls
c4
l
ls
0
c5
l s
ls
0
l c6
ls s
故
uc2
(l)
u
2
(ls
)
u
2
(d
)
ls2
2u
2
(
)
ls2
2 s
u
2
(
)
(5.4)
2021/2/23
测量不确定度评定实例
8
五、测量不确定度应用实例
(3) 不确定度来源 分 析 不 确 定 度 来 源 时 ,应 从 设 备 、人 员 、环 境 、方 法 及 被 测 对 象 几 个 方 面 全 面
从 上 级 证 书 中 已 知 20℃ 时 标 准 量 块 的 长 度 为ls = 50.000 623mm, 扩 展 不 确 定 度 为 U =0.075μ m, k = 3。 被 校 准 的 是 名 义值(标称值)为 50mm 的量块。
2021/2/23
测量不确定度评定实例
3
五、测量不确定度应用实例