三年中考数学经典真题题库一元二次方程_(含答案
中考数学《二次函数与一元二次方程》专项练习题及答案

中考数学《二次函数与一元二次方程》专项练习题及答案.()=--2y x x my=mA.0个B.1个C.2个D.3个7.二次函数()20y ax bx c a =++≠()1,0-A .5个B .4个C .3个D .2个,使得ABP为等腰直角三角形,其中正确的结论的有(A.1个B.2个C.3个D.4个A.1个B.2个C.3个D.4个四个根的和为4-.其中正确的结论有_____.12.如图,抛物线1C :223y x x =+-与抛物线2C :2y ax bx c =++组成一个开口向上的“月牙线”,抛物线1C 和抛物线2C 与x 轴有着相同的交点A 、B (点B 在点A 右侧),与y 轴的交点分别为C 、D .如果BD CD =,那么抛物线2C 的表达式是______.13.二次函数()20y ax bx c a =++≠的图象的一部分如图所示,已知图象经过点()2,0-其对称轴为直线 2.x =下列结论①0abc >;①240b ac -<;①80a c +>;①9315a b c a ++=-;①点()()123,0,C y D y 是抛物线上的两点,则12y y <;①若抛物线经过点()3,n -,则关于x 的一元二次方程()200ax bx c n a ++-=≠的两根分别为3-,7.正确的有______ (填序号).14.已知y 是关于x 的函数,若该函数的图象经过点(),P t t ,则称点P 为函数图象上的“平衡点”,例如:直线23y x =-+上存在“平衡点”()1,1P ,若函数()2132y m x x m =--+的图象上存在唯一“平衡点”,则m =___________.15.已知抛物线2y ax bx c =++(a ,b ,c 是常数,a c ≠),且0a b c -+=,0a >下列四个结论:①对于任意实数m ,()()2110a m b m -+-≥恒成立;①若0a b +=,则不等式20ax bx c ++<的解集是12x -<<; ①一元二次方程()222a x bx b c --+=+有一个根1x =;①点()11,A x y ,()22,B x y 在抛物线上,若c a >,则当121x x -<<时,总有12y y <.其中正确的是__________.(填写序号)(1)求点M 的坐标;(用含m 的式子表示)时,请求出ODE 面积(3bx a +≠(1)求该二次函数解析式;,求BCP面积的最大值;所得新函数图象如图轴交于C点,(1)求该二次函数的表达式及其图象的顶点坐标;1.B2.B3.B4.D5.A6.D7.C。
2024年全国各省市数学中考真题汇编 专题6一元二次方程及其应用(11题)含详解

专题06一元二次方程及其应用(11题)一、单选题1.(2024·四川自贡·中考真题)关于x 的一元二次方程220x kx +-=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根2.(2024·山东泰安·中考真题)关于x 的一元二次方程2230x x k -+=有实数根,则实数k 的取值范围是()A .98k <B .98k ≤C .98k ≥D .98k <-3.(2024·甘肃兰州·中考真题)关于x 的一元二次方程2960x x c -+=有两个相等的实数根,则c =()A .9-B .4C .1-D .14.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为()A .17或13B .13或21C .17D .13二、填空题5.(2024·广东·中考真题)若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =.6.(2024·四川巴中·中考真题)已知方程220x x k -+=的一个根为2-,则方程的另一个根为.7.(2024·甘肃临夏州·中考真题)若关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根,则m 的值为.三、解答题8.(2024·黑龙江齐齐哈尔·中考真题)解方程:x 2﹣5x +6=09.(2024·安徽·中考真题)解方程:223x x -=10.(2024·青海·中考真题)(1)解一元二次方程:2430x x -+=;(2)若直角三角形的两边长分别是(1)中方程的根,求第三边的长.11.(2024·辽宁·中考真题)某商场出售一种商品,经市场调查发现,日销售量y (件)与每件售价x (元)满足一次函数关系,部分数据如下表所示:每件售价x /元⋅⋅⋅455565⋅⋅⋅日销售量y /件⋅⋅⋅554535⋅⋅⋅(1)求y 与x 之间的函数关系式(不要求写出自变量x 的取值范围);(2)该商品日销售额能否达到2600元?如果能,求出每件售价:如果不能,请说明理由.专题06一元二次方程及其应用(11题)一、单选题1.(2024·四川自贡·中考真题)关于x 的一元二次方程220x kx +-=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根【答案】A【分析】本题考查的是一元二次方程根的判别式,熟知一元二次方程20(0)ax bx c a ++=≠中,当0∆>时,方程有两个不相等的实数根是解题的关键.根据一元二次方程根的判别式解答即可.【详解】解: △()2241280k k =-⨯⨯-=+>,∴方程有两个不相等的实数根.故选:A .2.(2024·山东泰安·中考真题)关于x 的一元二次方程2230x x k -+=有实数根,则实数k 的取值范围是()A .9k <B .98k ≤C .98k ≥D .98k <-【答案】B【分析】本题考查了判别式与一元二次方程根的情况,熟知一元二次方程有实数根的条件是解题的关键.根据一元二次方程有实数根的条件是0∆≥,据此列不等式求解即可.【详解】解:∵关于x 的一元二次方程2230x x k -+=有实数根,∴()2Δ3420k =--⨯≥,解得98k ≤.故选B .3.(2024·甘肃兰州·中考真题)关于x 的一元二次方程2960x x c -+=有两个相等的实数根,则c =()A .9-B .4C .1-D .1【答案】D【分析】此题考查了根的判别式,根据根的情况确定参数k 的取值,解题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠根的判别式24b ac ∆=-,当方程有两个不相等的实数根时,0∆>;当方程有两个相等的实数根时,Δ0=;当方程没有实数根时,Δ0<.【详解】解:∵关于x 的一元二次方程2960x x c -+=有两个相等的实数根,∴()2Δ64936360c c =--⨯⨯=-=,解得:1c =,故选:D .4.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为()A .17或13B .13或21C .17D .13【答案】C【分析】本题考查了解一元二次方程,等腰三角形的定义,三角形的三边关系及周长,由方程可得13x =,27x =,根据三角形的三边关系可得等腰三角形的底边长为3,腰长为7,进而即可求出三角形的周长,掌握等腰三角形的定义及三角形的三边关系是解题的关键.【详解】解:由方程210210x x -+=得,13x =,27x =,∵337+<,∴等腰三角形的底边长为3,腰长为7,∴这个三角形的周长为37717++=,故选:C .二、填空题5.(2024·广东·中考真题)若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =.【答案】1【分析】由220x x c ++=有两个相等的实数根,可得240b ac ∆=-=进而可解答.【详解】解:∵220x x c ++=有两个相等的实数根,∴24440b ac c ∆=-=-=,∴1c =.故答案为:1.【点睛】本题主要考查根据一元二次方程根的情况求参数,掌握相关知识是解题的关键.6.(2024·四川巴中·中考真题)已知方程220x x k -+=的一个根为2-,则方程的另一个根为.7.(2024·甘肃临夏州·中考真题)若关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根,则m 的值为.【答案】-1【分析】根据关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根可知△=0,求出m 的取值即可.【详解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案为-1.【点睛】本题考查的是根的判别式,即一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.三、解答题8.(2024·黑龙江齐齐哈尔·中考真题)解方程:x 2﹣5x +6=0【答案】x 1=2,x 2=3【分析】利用因式分解的方法解出方程即可.【详解】利用因式分解法求解可得.解:∵x 2﹣5x +6=0,∴(x ﹣2)(x ﹣3)=0,则x ﹣2=0或x ﹣3=0,解得x 1=2,x 2=3.【点睛】本题考查解一元二次方程因式分解法,关键在于熟练掌握因式分解的方法步骤.9.(2024·安徽·中考真题)解方程:223x x -=【答案】13x =,21x =-【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.【详解】解:∵223x x -=,∴223=0x x --,∴(3)(1)0x x -+=,∴13x =,21x =-.【点睛】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.10.(2024·青海·中考真题)(1)解一元二次方程:2430x x -+=;(2)若直角三角形的两边长分别是(1)中方程的根,求第三边的长.11.(2024·辽宁·中考真题)某商场出售一种商品,经市场调查发现,日销售量(件)与每件售价x (元)满足一次函数关系,部分数据如下表所示:每件售价x /元⋅⋅⋅455565⋅⋅⋅日销售量y /件⋅⋅⋅554535⋅⋅⋅(1)求y 与x 之间的函数关系式(不要求写出自变量x 的取值范围);(2)该商品日销售额能否达到2600元?如果能,求出每件售价:如果不能,请说明理由.【答案】(1)100=-+y x ;(2)该商品日销售额不能达到2600元,理由见解析。
专题10一元二次方程 专题训练 中考数学2023年真题 专项汇编(全国通用)(含答案)

专题10一元二次方程 专题训练 中考数学2023年真题 专项汇编(全国通用)(含答案)一、单选题A .B .3.(2023·山东聊城·统考中考真题)若一元二次方程取值范围是( )A .B .4.(2023·四川·统考中考真题)关于()4,41m ≥-A .B .8.(2023·四川泸州·统考中考真题)关于况是( )A .没有实数根C .有两个不相等的实数根(3,0)-A .0B .112.(2023·天津·统考中考真题)若A .B .126x x +=12x x +=①,②,③当线段长取最小值时,则④若点,则二、填空题23.(2023·重庆·统考中考真题)为了加快数字化城市建设,4124x x ⋅=-21242y y k +=+AB (0,1)N -AN BN⊥,三、解答题31.(2023·辽宁大连·统考中考真题)为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元,2022年用于购买图书的费用是7200元,求年买书资金的平均增长率.32.(2023·福建·统考中考真题)已知抛物线交轴于两点,为抛物线的顶点,为抛物线上不与重合的相异两点,记中点为,直20202022-23y ax bx =++x ()()1,0,3,0A B M ,C D ,A B AB E(1)求这两个函数的解析式;(1)当___________时,(2)设2023年甲乙两种蔬菜总种植成本为最小?①求证:.x =2m y =23DO EO =等腰三角形的底边,在的同侧作等腰和等腰,且.在线段上取一点,使,连接.(1)如图1,求证:;(2)如图2,若的延长线恰好经过的中点,求的长.42.(2023·浙江宁波·统考中考真题)定义:有两个相邻的内角是直角,并且有两条邻边相等的四边形称为邻等四边形,相等两邻边的夹角称为邻等角.(1)如图1,在四边形中,,对角线平分.求证:四边形为邻等四边形.(2)如图2,在6×5的方格纸中,A ,B ,C 三点均在格点上,若四边形是邻等四边形,请画出所有符合条件的格点D .(3)如图3,四边形是邻等四边形,,为邻等角,连接,过B 作交的延长线于点E .若,求四边形的周长.43.(2023·云南·统考中考真题)数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性、形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.同学们,请你结合所学的数学解决下列问题.在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数(实数为常数)的图象为图象.(1)求证:无论取什么实数,图象与轴总有公共点;(2)是否存在整数,使图象与轴的公共点中有整点?若存在,求所有整数的值;若不存在,请说明理由.AB ACD V BCE V A CBE ∠=∠EC F EF AD =,BF DE DE BF =2AD BF =,DE G BE ABCD ,90AD BC A ∠=︒∥BD ADC ∠ABCD ABCD ABCD 90DAB ABC ∠=∠=︒BCD ∠AC BE AC ∥DA 8,10AC DE ==EBCD 2(42)(96)44y a x a x a =++--+a T a T x a T x a(1)求,的值;(2)平行于轴的动直线与和反比例函数的图象分别交于点为顶点的四边形为平行四边形,求点k m y l参考答案:1.C2.D3.D4.C5.B6.B7.D8.C9.B10.C11.C12.A13.D14.D15.D16.C17.A18.C19.C20.A21.22.10 23.24.3 25.5 26.27.28.2()2100011440x+=2301(1)500x+=5-2-。
中考数学压轴题专题一元二次方程的经典综合题附答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.已知关于x 的一元二次方程x 2﹣x+a ﹣1=0.(1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值.【答案】(1)123,4x x =-=(2)54a ≤(3)-4【解析】分析:(1)根据一元二次方程的解法即可求出答案;(2)根据判别式即可求出a 的范围;(3)根据根与系数的关系即可求出答案.详解:(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣4=0,∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得54a ≤:; (3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,.∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦,把22112211x x a x x a -=--=-, 代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9,解得:a =﹣4,a =2(舍去),所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.2.从图象来看,该函数是一个分段函数,当0≤x≤m 时,是正比例函数,当x >m 时是一次函数.【小题1】只需把x 代入函数表达式,计算出y 的值,若与表格中的水费相等,则知收取方案.3.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x 个人,根据题意得:x+1+(x+1)x =36,解得:x =5或x =﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.4.观察下列一组方程:20x x -=①;2320x x -+=②;2560x x -+=③;27120x x -+=④;⋯它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.()1若2560x kx ++=也是“连根一元二次方程”,写出k 的值,并解这个一元二次方程; ()2请写出第n 个方程和它的根.【答案】(1)x 1=7,x 2=8.(2)x 1=n -1,x 2=n .【解析】【分析】(1)根据十字相乘的方法和“连根一元二次方程”的定义,找到56是7与8的乘积,确定k 值即可解题,(2)找到规律,十字相乘的方法即可求解.【详解】解:(1)由题意可得k =-15,则原方程为x 2-15x +56=0,则(x -7)·(x -8)=0,解得x 1=7,x 2=8.(2)第n 个方程为x 2-(2n -1)x +n(n -1)=0,(x -n)(x -n +1)=0,解得x 1=n -1,x 2=n.【点睛】本题考查了用因式分解法求解一元二次方程,与十字相乘联系密切,连根一元二次方程是特殊的十字相乘,中等难度,会用十字相乘解题是解题关键.5.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?【答案】(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.【解析】【分析】(1)设每次降价的百分率为 x ,(1﹣x )2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可【详解】解:(1)设每次降价的百分率为 x .40×(1﹣x )2=32.4x =10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元, 由题意,得()4030y (448)5100.5y --⨯+= 解得:1y =1.5,2y =2.5,∵有利于减少库存,∴y =2.5.答:要使商场每月销售这种商品的利润达到 510 元,且更有利于减少库存,则每件商品应降价 2.5 元.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.6.关于x 的一元二次方程ax 2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.【答案】(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x 1=x 2=﹣1.【解析】【详解】分析:(1)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.详解:(1)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=,解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.7.解方程:(x 2+x )2+(x 2+x )=6.【答案】x 1=﹣2,x 2=1【解析】【分析】设x 2+x =y ,将原方程变形整理为y 2+y ﹣6=0,求得y 的值,然后再解一元二次方程即可.【详解】解:设x 2+x =y ,则原方程变形为y 2+y ﹣6=0,解得y 1=﹣3,y 2=2.①当y =2时,x 2+x =2,即x 2+x ﹣2=0,解得x 1=﹣2,x 2=1;②当y =﹣3时,x 2+x =﹣3,即x 2+x+3=0,∵△=12﹣4×1×3=1﹣12=﹣11<0,∴此方程无解;∴原方程的解为x 1=﹣2,x 2=1.【点睛】本题考查了换元法和一元二次方程的解法,设出元化简原方程是解答本题的关键.8.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现: 当a >0,b >0时:∵)2=a ﹣b ≥0∴a +ba =b 时取等号.请利用上述结论解决以下问题:(1)请直接写出答案:当x >0时,x +1x 的最小值为 .当x <0时,x +1x 的最大值为 ; (2)若y =27101x x x +++,(x >﹣1),求y 的最小值; (3)如图,四边形ABCD 的对角线AC 、BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.【答案】(1)2;﹣2.(2)y 的最小值为9;(3)四边形ABCD 面积的最小值为25.【解析】【分析】(1)当x >0时,按照公式a +b ab a =b 时取等号)来计算即可;当x <0时,﹣x >0,1x->0,则也可以按公式a +b ab a =b 时取等号)来计算; (2)将y 27101x x x ++=+的分子变形,分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,由三角形面积公式可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,再表示出四边形的面积,根据题中所给公式求得最小值,加上常数即可.【详解】(1)当x >0时,x 1x +≥1x x⋅=2; 当x <0时,﹣x >0,1x ->0.∵﹣x 1x -≥1x x ⎛⎫-⋅-= ⎪⎝⎭2,∴则x 1x +=-(﹣x 1x -)≤﹣2,∴当x >0时,x 1x +的最小值为 2.当x <0时,x 1x +的最大值为﹣2. 故答案为:2,﹣2.(2)∵x >﹣1,∴x +1>0,∴y 27101x x x ++=+()2(1)5141x x x ++++=+=(x +1)41x +++()411x x +⋅+5=4+5=9,∴y 的最小值为9. (3)设S △BOC =x ,已知S △AOB =4,S △COD =9 则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,∴x :9=4:S △AOD ,∴S △AOD 36x =,∴四边形ABCD 面积=4+9+x 36x +≥36x x⋅=25. 当且仅当x =6时,取等号,∴四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用.对不能直接应用公式的,需要正确变形才可以应用.9.解方程:x 2-2x =2x +1.【答案】x 1=2,x 2=2【解析】试题分析:根据方程,求出系数a 、b 、c ,然后求一元二次方程的根的判别式,最后根据求根公式x =求解即可. 试题解析:方程化为x 2-4x -1=0.∵b 2-4ac =(-4)2-4×1×(-1)=20,∴x =42±=, ∴x1=2,x 2=210.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x 元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x 的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7.【解析】【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解.【详解】(1)解:设甲、乙两种苹果的进价分别为a 元/千克, b 元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩解之得:108a b =⎧⎨=⎩答:甲、乙两种苹果的进价分别为10元/千克,8元/千克(2)由题意得:()()()()410010214010960x x x x +-++-=解之得:12x =,27x =经检验,12x =,27x =均符合题意答:x的值为2或7.【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.。
人教版中考数学《一元二次方程》专项练习题(含答案)

人教版中考数学《一元二次方程》专项练习题一、单选题(每小题3分,共36分)1.一元二次方程x 2﹣4x +4=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有一个实数根D .没有实数根2.用公式法解方程20(0)ax bx c a -+-=≠,下列代入公式正确的是( )A .x =B .x =C .xD .x = 3.下列方程属于一元二次方程的是( )A .2223x x -= B .20ax bx c ++= C .()2130x -+=D .()222154x x +-= 4.若关于x 的方程220x x a ++=有一个根是1,则a 等于( )A .1-B .3-C .3D .15.汽车产业的发展,有效促进了我国现代化建设.某汽车销售公司2018年盈利1000万元,2020年盈利1440万元,且从2018年到2020年,每年盈利的年增长率相同.设每年盈利的年增长率为x ,则列方程得( )A .1000(1+2x )=1440B .1000(1+x )2=1440C .1000×2×(1+x )=1440D .1000+1000(1+x )+1000(1+x )2=1440 6.若方程x 2﹣2x +m =0没有实数根,则m 的值可以是( )A .3B .1C .0D .﹣27.方程2x 2﹣3x ﹣32=0的根的情况是( ) A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根8.如果-2是方程20x m -=的一个根,则m 的值为( )A .4B .-4C .2D .-2 9.方程(1)(3)0x x -+=的解是( )A .1x =B .3x =-C .11x =,23x =D .13x =-,21x = 10.下列方程是关于x 的一元二次方程的是( )A .4x ²+320x +=B .2x ²﹣y ﹣1=0C .ax ²+2x +1=0D .x (4x ﹣2)=0 11.下列方程中是关于x 的一元二次方程的是( )A .20ax bx c ++=B .22321x x x -=+-C .20x =D .22250x xy y --=12.下列方程中,属于一元二次方程的是( )A .x +2y =1B .xy ﹣5=0C .ax 2+bx +c =0D .x 2﹣16=0二、填空题(每小题4分,共32分)13.如果关于x 的方程x 2+x +c =0有一个根为1,那么c 的值为 ___.14.某厂工业废气年排放量为2000万立方米,为了改善大气质量,决定分两期投入治理,使废气的年排放量减少到1280万立方米,如果每期治理中废气减少的百分率相同,每期减少的百分率是_______.15.关于x 的一元二次方程22(2)0x x m +--=有两个相等的实数根,则m 的值为______. 16.已知3是关于x 的一元二次方程240x x c -+=的一个根,则方程的另一个根_______. 17.已知关于x 的一元二次方程(x ﹣3)(x ﹣2)﹣p 2=0,下列结论:①方程总有两个不等的实数根;②若两个根为x 1,x 2,且x 1>x 2,则x 1>3,x 2<3;③若两个根为x 1,x 2,则(x 1﹣2)(x 2﹣2)=(x 1﹣3)(x 2﹣3);④若x p 为常数),则代数式(x ﹣3)(x ﹣2)的值为一个完全平方数,其中正确的结论是 _____.18.若x =a 是方程x 2+x ﹣1=0的一个根,则代数式a 3+2a 2﹣7的值是____.19.已知在△ABC 中,∠B =45°,AB =AC =10,则BC =_________.20.若2x =是关于x 的一元二次方程2280x mx -+=的一个根,则m 的值为________.三、解答题(52分)21.(6分)解方程:(1)2241x x -=(2)222(3)9x x -=-.22.(8分)已知α、β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根.(1)试确定m的取值范围;(2)当111αβ+=-时,求m的值.23.(8分)某单位开展了赈灾捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第二天该单位收到多少捐款?24.(10分)某农户计划利用现有的长为12m的一面墙再修四面墙,建造如图所示的长方体水池,来培育不同品种的鱼苗,他已备足可以修高为2m,长24m的墙材料并准备施工,设图中与现有一面墙垂直的三面墙的长度都为x m,即AD=EF=BC=x m.(不考虑墙的厚度)(1)则AB=;(用含x的代数式表示),长方体水池的容积V=;(用含x 的代数式表示);(2)若水池的总容积为72m3,x应等于多少?25.(10分)某单位组织员工前往九棵树艺术中心欣赏上海说唱《金铃塔》的表演.表演前,主办方工作人员准备利用26米长的墙为一边,用48米隔栏绳为另三边,设立一个面积为300平方米的长方形等候区,如图,为了方便群众进出,在两边空出两个各为1米的出入口(出入口不用隔栏绳).假设这个长方形平行于墙的一边为长,垂直于墙的一边为宽,那么围成的这个长方形的长与宽分别是多少米呢?26.(10分)已知关于方程x2+2x+m﹣2=0.(1)若该方程有两个不相等的实数根,求实数m的取值范围;(2)当该方程的一个根为1时,求m的值及方程的另一根.参考答案1.B2.B3.C4.B5.B6.A7.A8.A9.D10.D11.C12.D 13.-214.20%15.116.1x=17.①③18.6-19.220.321.(1)x1x22)x1=3,x2=922.(1)34m>-;(2)323.(1)10%;(2)11000元24.(1)(24-3x)m,(-6x2+48x)m3;(2)x=6.25.长方形的长为20米,宽为15米26.(1)3m<;(2) m的值是-1,该方程的另一根为-3.。
中考数学一元二次方程专题(附答案)

中考数学一元二次方程专题(附答案)一、单选题(共12题;共24分)1.下列一元二次方程有两个相等实数根的是()A. x2﹣2x+1=0B. 2x2﹣x+1=0C. 4x2﹣2x﹣3=0D. x2﹣6x=02.方程=0有两个相等的实数根,且满足=,则的值是()A. -2或3B. 3C. -2D. -3或23.若关于x的一元二次方程x2﹣2x﹣k+1=0有两个相等的实数根,则k的值是()A. ﹣1B. 0C. 1D. 24.若关于的一元二次方程有两个不相等的实数根,则一次函数的图象可能是:A. B. C. D.5.下列一元二次方程中,有两个相等实数根的是()A. x2﹣8=0B. 2x2﹣4x+3=0C. 9x2﹣6x+1=0D. 5x+2=3x26.已知m、n、4分别是等腰三角形(非等边三角形)三边的长,且m、n是关于的一元二次方程的两个根,则k的值等于A. 7B. 7或6C. 6或D. 67.方程(x-1)•(x2+17x-3)=0的三根分别为x1,x2,x3 .则x1x2+x2x3+x1x3 =()A. 14B. 13C. -14D. -208.一元二次方程x2﹣4x+3=0的两个根分别是⊙O1和⊙O2的半径长,圆心距O1O2=4,则⊙O1和⊙O2的位置关系()A. 外离B. 外切C. 相交D. 内切9.已知关于的方程有两个实数根,则的取值范围是( )A. B. C. 且 D. 且10.设a、b、c和S分别为三角形的三边长和面积,关于x的方程b2x2+(b2+c2-a2)x+c2=0的判别式为Δ.则Δ与S的大小关系为( ).A. Δ=16S2B. Δ=-16S2C. Δ=16SD. Δ=-16S11.下列方程中,有两个不相等实数根的是().A. x2-4x+4=0B. x2+3x-1=0C. x2+x+1=0D. x2-2x+3=012.已知二次函数y=ax2+2ax+3a-2(a是常数,且a≠0)的图象过点M(x1,-1),N(x2,-1),若MN的长不小于2,则a的取值范围是()A. a≥B. 0<a≤C. - ≤a<0D. a≤-二、填空题(共6题;共12分)13.等腰三角形的腰和底边的长是方程x2-20x+91=0的两个根,则此三角形的周长为________.14.已知x=-1是方程x2+ax+4=0的一个根,则方程的另一个根为________ 。
2023年中考数学真题汇编:一元二次方程(含答案)

2023年中考数学真题汇编——一元二次方程一、选择题1. (2023·吉林省)一元二次方程x2―5x+2=0根的判别式的值是( )A. 33B. 23C. 17D. 172. (2023·天津市)若x1,x2是方程x2―6x―7=0的两个根,则( )A. x1+x2=6B. x1+x2=―6C. x1x2=76D. x1x2=73. (2023·甘肃省兰州市)关于x的一元二次方程x2+bx+c=0有两个相等的实数根,则b2―2(1+2c)=( )A. ―2B. 2C. ―4D. 44. (2023·江苏省无锡市)2020年―2022年无锡居民人均可支配收入由5.76万元增长至6.58万元,设人均可支配收入的平均增长率为x,下列方程正确的是( )A. 5.76(1+x)2=6.58B. 5.76(1+x2)=6.58C. 5.76(1+2x)=6.58D. 5.76x2=6.585. (2023·内蒙古自治区赤峰市)用配方法解方程x2―4x―1=0时,配方后正确的是( )A. (x+2)2=3B. (x+2)2=17C. (x―2)2=5D. (x―2)2=176. (2023·山东省菏泽市)一元二次方程x2+3x―1=0的两根为x1,x2,则1x1+1x2的值为( )A. 32B. ―3 C. 3 D. ―327. (2023·河南省)关于x的一元二次方程x2+mx―8=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根8. (2023·全国)据国家统计局发布的《2022年国民经济和社会发展统计公报》显示,2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x,依题意可列方程为( )A. 3.2(1―x)2=3.7B. 3.2(1+x)2=3.7C. 3.7(1―x)2=3.2D. 3.7(1+x)2=3.29. (2023·福建省)根据福建省统计局数据,福建省2020年的地区生产总值为43903.89亿元,2022年的地区生产总值为53109.85亿元.设这两年福建省地区生产总值的年平均增长率为x,根据题意可列方程( )A. 43903.89(1+x)=53109.85B. 43903.89(1+x)2=53109.85C. 43903.89x2=53109.85D. 43903.89(1+x2)=53109.8510. (2023·山东省聊城市)若一元二次方程mx2+2x+1=0有实数解,则m的取值范围是( )A. m≥―1B. m≤1C. m≥―1且m≠0D. m≤1且m≠011. (2023·四川省广元市)关于x的一元二次方程2x2―3x+3=0根的情况,下列说法中正确2的是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定12. (2023·山东省滨州市)一元二次方程x2+3x―2=0根的情况为( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 不能判定13. (2023·四川省乐山市)若关于x的一元二次方程x2―8x+m=0两根为x1、x2,且x1=3x2,则m的值为( )A. 4B. 8C. 12D. 1614. (2023·湖南省永州市)某2020年人均可支收入为2.36万元,2022年达到2.7万元,若2020年至2022年间每年人均可支配收入的增长率都为x,则下面所列方程正确的是( )A. 2.7(1+x)2=2.36B. 2.36(1+x)2=2.7C. 2.7(1―x)2=2.36D. 2.36(1―x)2=2.715. (2023·湖南省怀化市)下列说法错误的是( )A. 成语“水中捞月”表示的事件是不可能事件B. 一元二次方程x2+x+3=0有两个相等的实数根C. 任意多边形的外角和等于360°D. 三角形三条中线的交点叫作三角形的重心16. (2023·四川省广安市)已知a、b、c为常数,点P(a,c)在第四象限,则关于x的方程ax2+bx+c=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断17. (2023·四川省眉山市)关于x的一元二次方程x2―2x+m―2=0有两个不相等的实数根,则m的取值范围是( )A. m<32B. m>3C. m≤3D. m<318. (2023·四川省泸州市)若一个菱形的两条对角线长分别是关于x的一元二次方程x2―10x+m=0的两个实数根,且其面积为11,则该菱形的边长为( )A. 3B. 23C. 14D. 21419. (2023·四川省泸州市)关于x的一元二次方程x2+2ax+a2―1=0的根的情况是( )A. 没有实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 实数根的个数与实数a的取值有关二、填空题20. (2023·江苏省泰州市)关于x的一元二次方程x2+2x―1=0的两根之和为______ .21. (2023·辽宁省)若关于x的一元二次方程x2―6x+k=0有两个不相等的实数根,则k的取值范围是______ .22. (2023·四川省雅安市)已知关于x的方程x2+mx―4=0的一个根为1,则该方程的另一个根为______ .23. (2023·全国)方程x2―4x―m=0有两个相等的实数根,则m的值为______ .24. (2023·山东省泰安市)已知关于x的一元二次方程x2―4x―a=0有两个不相等的实数根,则a的取值范围是______ .25. (2023·辽宁省营口市)若关于x的方程x2+mx―12=0的一个根是3,则此方程的另一个根是______ .26. (2023·黑龙江省牡丹江市)张师傅去年开了一家超市,今年2月份开始盈利,3月份盈利5000元,5月份盈利达到7200元,从3月到5月,每月盈利的平均增长率都相同,则每月盈利的平均增长率是______ .27. (2023·湖北省鄂州市)若实数a、b分别满足a2―3a+2=0,b2―3b+2=0,且a≠b,则1a +1b=______ .28. (2023·贵州省)若一元二次方程kx2―3x+1=0有两个相等的实数根,则k的值是______ .29. (2023·江苏省徐州市)若关于x的方程x2―4x+m=0有两个相等的实数根,则实数m的值为______ .30. (2023·湖南省常德市)若关于x的一元二次方程x2―2x+a=0有两个不相等的实数根,则实数a的取值范围是______ .31. (2023·辽宁省)若关于x的一元二次方程x2―x+k+1=0有两个实数根,则k的取值范围是______ .32. (2023·湖南省张家界市)已知关于x的一元二次方程x2―2x―a=0有两个不相等的实数根,则a的取值范围是______ .33. (2023·黑龙江省绥化市)已知一元二次方程x2+x=5x+6的两根为x1与x2,则1x1+1x2的值为______ .34. (2023·湖南省岳阳市)已知关于x的方程x2+mx―20=0的一个根是―4,则它的另一个根是______ .35. (2023·湖南省岳阳市)已知关于x的一元二次方程x2+2mx+m2―m+2=0有两个不相等的实数根,且x1+x2+x1⋅x2=2,则实数m=______ .36. (2023·湖北省随州市)已知关于x的一元二次方程x2―3x+1=0的两个实数根分别为x1和x2,则x1+x2―x1x2的值为______ .37. (2023·湖南省邵阳市)某校截止到2022年底,校园绿化面积为1000平方米.为美化环境,该校计划2024年底绿化面积达到1440平方米.利用方程想想,设这两年绿化面积的年平均增长率为x,则依题意列方程为______ .38. (2023·四川省达州市)已知x1,x2是方程2x2+kx―2=0的两个实数根,且(x1―2)(x2―2)=10,则k的值______ .39. (2023·重庆市)为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程______ .40. (2023·重庆市)某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个,设七、八两个月提供就业岗位数量的月平均增长率为x,根据题意,可列方程为______ .41. (2023·上海市)如果关于x的方程x2―4x+2c=0有实数根,那么实数c的取值范围是______ .三、解答题42. (2023·上海市)解方程:(x―2)2―4(x―2)=12.43. (2023·江苏省泰州市)某公司的化工产品成本为30元/千克.销售部门规定:一次性销售1000千克以内时,以50元/千克的价格销售;一次性销售不低于1000千克时,每增加1千克降价0.01元.考虑到降价对利润的影响,一次性销售不低于1750千克时,均以某一固定价格销售.一次性销售利润y(元)与一次性销售量x(千克)的函数关系如图所示.(1)当一次性销售800千克时利润为多少元?(2)求一次性销售量在1000~1750kg之间时的最大利润;(3)当一次性销售多少千克时利润为22100元?44. (2023·辽宁省)电商平台销售某款儿童组装玩具,进价为每件100元,在销售过程中发现,每周的销售量y(件)与每件玩具售价x(元)之间满足一次函数关系(其中100≤x≤160,且x为整数),当每件玩具售价为120元时,每周的销量为80件;当每件玩具售价为140元时,每周的销量为40件.(1)求y与x之间的函数关系式;(2)当每件玩具售价为多少元时,电商平台每周销售这款玩具所获的利润最大?最大周利润是多少元?45. (2023·江苏省无锡市)(1)解方程:2x2+x―2=0;(2)解不等式组:x+3>―2x2x―5<1.46. (2023·内蒙古自治区通辽市)阅读材料:材料1:关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根x1x2和系数a,b,c,有如下关系:x1+x2=―ba ,x1x2=ca.材料2:已知一元二次方程x2―x―1=0的两个实数根分别为m,n,求m2n+mn2的值.解:∵m,n是一元二次方程x2―x―1=0的两个实数根,∴m+n=1,mn=―1.则m2n+mn2=mn(m+n)=―1×1=―1.根据上述材料,结合你所学的知识,完成下列问题:(1)应用:一元二次方程2x2+3x―1=0的两个实数根为x1,x2,则x1+x2=______ ,x1x2 =______ .(2)类比:已知一元二次方程2x2+3x―1=0的两个实数根为m,n,求m2+n2的值;(3)提升:已知实数s,t满足2s2+3s―1=0,2t2+3t―1=0且s≠t,求1s ―1t的值.47. (2023·山东省东营市)如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.48. (2023·浙江省杭州市)设一元二次方程x2+bx+c=0.在下面的四组条件中选择其中一组b,c的值,使这个方程有两个不相等的实数根,并解这个方程.①b=2,c=1;②b=3,c=1;③b=3,c=―1;④b=2,c=2.注:如果选择多组条件分别作答,按第一个解答计分.49. (2023·湖南省郴州市)随旅游旺季的到来,某景区游客人数逐月增加,2月份游客人数为1.6万人,4月份游客人数为2.5万人.(1)求这两个月中该景区游客人数的月平均增长率;(2)预计5月份该景区游客人数会继续增长,但增长率不会超过前两个月的月平均增长率.已知该景区5月1日至5月21日已接待游客2.125万人,则5月份后10天日均接待游客人数最多是多少万人?参考答案1.C2.A3.A4.A5.C6.C7.A8.B9.B10.D11.C12.A13.C14.B15.B16.A17.D18.C19.C20.―221.k<922.―423.―424.a>―425.―426.20%27.3228.9429.430.a<131.k≤―3432.a>―133.―2334.535.336.237.1000(1+x)2=144038.739.301(1+x)2=50040.1501(1+x)2=181541.c≤242.解:(x―2)2―4(x―2)=12,(x―2)2―4(x―2)―12=0,(x―2―6)(x―2+2)=0,x(x―8)=0,x=0或x―8=0,∴x1=0,x2=8.43.解:(1)根据题意,当x=800时,y=800×(50―30)=800×20=16000,∴当一次性销售800千克时利润为16000元;(2)设一次性销售量在1000~1750kg之间时,销售价格为50―30―0.01(x―1000)=―0.01x+30,∴y=x(―0.01x+30)=―0.01x2+30x=―0.01(x2―3000)=―0.01(x―1500)2+22500,∵―0.01<0,1000≤x≤1750,∴当x=1500时,y有最大值,最大值为22500,∴一次性销售量在1000~1750kg之间时的最大利润为22500元;(3)由(2)知,当x=1750时,y=―0.01(1750―1500)2+22500=16250<22100,∴当一次性销售量在1000~1750kg之间时,利润为22100元,∴―0.01(x ―1500)2+22500=22100,解得x 1=1700,x 2=1300,∴当一次性销售为1300或1700千克时利润为22100元.44.解:(1)设y 与x 之间的函数关系式为y =kx +b ,∵当每件玩具售价为120元时,每周的销量为80件;当每件玩具售价为140元时,每周的销量为40件,∴120k +b =80140k +b =40,解得k =―2b =320,即y 与x 之间的函数关系式为y =―2x +320;(2)设利润为w 元,由题意可得:w =(x ―100)(―2x +320)=―2(x ―130)2+1800,∴当x =130时,w 取得最大值,此时w =1800,答:当每件玩具售价为130元时,电商平台每周销售这款玩具所获的利润最大,最大周利润是1800元.45.解:(1)2x 2+x ―2=0,∵a =2,b =1,c =―2,∴b 2―4ac =12+4×2×(―2)=17,∴x =―b ±b 2―4ac 2a =―1±174,∴x 1=―1+ 174,x 2=―1― 174;(2)x +3>―2x①2x ―5<1②,解不等式①得x >―1,解不等式②得:x <3,∴不等式组的解集为:―1<x <3.46.―32 ―1247.解:(1)设矩形ABCD 的边AB =xm ,则边BC =70―2x +2=(72―2x)m .根据题意,得x(72―2x)=640,化简,得x 2―36x +320=0解得x 1=16x 2=20,当x =16时,72―2x =72―32=40;当x=20时,72―2x=72―40=32.答:当羊圈的长为40m,宽为16m或长为32m,宽为20m时,能围成一个面积为644m2的羊圈;(2)答:不能,理由:由题意,得x(72―2x)=650,化简,得x4―366+322=0,Δ=(―36)2―4×335=―4<0,∴一元二次方程没有实数根.∴羊圈的面积不能达到650m2.48.解:∵使这个方程有两个不相等的实数根,∴b2―4ac>0,即b2>4c,∴①②③均可,选①解方程,则这个方程为:x2+2x+1=0,∴(x+1)2=0,∴x1=x2=―1.49.解:(1)设这两个月中该景区游客人数的月平均增长率为x,由题意可得:1.6(1+x)2=2.5,(不合题意舍去),解得:x=25%,x=―94答:这两个月中该景区游客人数的月平均增长率为25%;(2)设5月份后10天日均接待游客人数是a万人,由题意可得:2.125+10a≤2.5(1+25%),解得:a≤0.1,答:5月份后10天日均接待游客人数最多是0.1万人.。
中考数学专题题库∶一元二次方程组的综合题附详细答案

中考数学专题题库∶一元二次方程组的综合题附详细答案一、一元二次方程 1.解下列方程:(1)x 2﹣3x=1. (2)12(y+2)2﹣6=0. 【答案】(1)12313313,22x x +-==;(2)12223,223y y =-+=-- 【解析】试题分析:(1)利用公式法求解即可; (2)利用直接开方法解即可;试题解析:解:(1)将原方程化为一般式,得x 2﹣3x ﹣1=0, ∵b 2﹣4ac=13>0 ∴.∴12313313,22x x +-==.(2)(y+2)2=12, ∴或,∴12223,223y y =-+=--2.已知关于x 的一元二次方程()222130x k x k --+-=有两个实数根.()1求k 的取值范围;()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.【答案】(1)134k ≤;(2)2k =-. 【解析】 【分析】()1根据方程有实数根得出()()22[2k 1]41k 38k 50=---⨯⨯-=-+≥V ,解之可得. ()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍. 【详解】解:()1Q 关于x 的一元二次方程()222130x k x k --+-=有两个实数根,0∴≥V ,即()()22[21]4134130k k k ---⨯⨯-=-+≥,解得134k ≤. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,()222222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+, 221223x x +=Q ,224723k k ∴-+=,解得4k =,或2k =-,134k ≤Q , 4k ∴=舍去, 2k ∴=-. 【点睛】本题考查了一元二次方程2ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0V >,方程有两个不相等的实数根;当0=V ,方程有两个相等的实数根;当0<V ,方程没有实数根.以及根与系数的关系.3.解方程:2332302121x x x x ⎛⎫⎛⎫--= ⎪ ⎪--⎝⎭⎝⎭.【答案】x=15或x=1 【解析】 【分析】设321xy x =-,则原方程变形为y 2-2y-3=0, 解这个一元二次方程求y ,再求x . 【详解】解:设321xy x =-,则原方程变形为y 2-2y-3=0. 解这个方程,得y 1=-1,y 2=3,∴3121x x =--或3321xx =-. 解得x=15或x=1. 经检验:x=15或x=1都是原方程的解. ∴原方程的解是x=15或x=1. 【点睛】考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.4.图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC和△DEF,其中∠B=90°,∠A=45°,BC=,∠F=90°,∠EDF=30°, EF=2.将△DEF 的斜边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)请回答李晨的问题:若CD=10,则AD= ;(2)如图2,李晨同学连接FC,编制了如下问题,请你回答:①∠FCD的最大度数为;②当FC∥AB时,AD= ;③当以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边时,AD= ;④△FCD的面积s的取值范围是 .【答案】(1)2;(2)① 60°;②;③;④.【解析】试题分析:(1)根据等腰直角三角形的性质,求出AC的长,即可得到AD的长.(2)①当点E与点C重合时,∠FCD的角度最大,据此求解即可.②过点F作FH⊥AC于点H,应用等腰直角三角形的判定和性质,含30度角直角三角形的性质求解即可.③过点F作FH⊥AC于点H,AD=x,应用含30度角直角三角形的性质把FC用x来表示,根据勾股定理列式求解.④设AD=x,把△FCD的面积s表示为x的函数,根据x的取值范围来确定s的取值范围.试题解析:(1)∵∠B=90°,∠A=45°,BC=,∴AC=12.∵CD=10,∴AD=2.(2)①∵∠F=90°,∠EDF=30°,∴∠DEF=60°.∵当点E与点C重合时,∠FCD的角度最大,∴∠FCD的最大度数=∠DEF="60°."② 如图,过点F作FH⊥AC于点H,∵∠EDF=30°, EF=2,∴DF=. ∴DH=3,FH=.∵FC∥AB,∠A=45°,∴∠FCH="45°." ∴HC=. ∴DC=DH+HC=.∵AC=12,∴AD=.③如图,过点F作FH⊥AC于点H,设AD=x,由②知DH=3,FH=,则HC=.在Rt△CFH中,根据勾股定理,得.∵以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边,∴,即,解得.④设AD=x,易知,即.而,当时,;当时,.∴△FCD的面积s的取值范围是.考点:1.面动平移问题;2.等腰直角三角形的判定和性质;3.平行的性质;4.含30度角直角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.5.由图看出,用水量在m吨之内,水费按每吨1.7元收取,超过m吨,需要加收.6.已知为正整数,二次方程的两根为,求下式的值:【答案】【解析】由韦达定理,有,.于是,对正整数,有原式=7.观察下列一组方程:20x x -=①;2320x x -+=②;2560x x -+=③;27120x x -+=④;⋯它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.()1若2560x kx ++=也是“连根一元二次方程”,写出k 的值,并解这个一元二次方程; ()2请写出第n 个方程和它的根.【答案】(1)x 1=7,x 2=8.(2)x 1=n -1,x 2=n . 【解析】 【分析】(1)根据十字相乘的方法和“连根一元二次方程”的定义,找到56是7与8的乘积,确定k 值即可解题,(2)找到规律,十字相乘的方法即可求解. 【详解】解:(1)由题意可得k =-15,则原方程为x 2-15x +56=0,则(x -7)·(x -8)=0,解得x 1=7,x 2=8.(2)第n 个方程为x 2-(2n -1)x +n(n -1)=0,(x -n)(x -n +1)=0,解得x 1=n -1,x 2=n. 【点睛】本题考查了用因式分解法求解一元二次方程,与十字相乘联系密切,连根一元二次方程是特殊的十字相乘,中等难度,会用十字相乘解题是解题关键.8.已知关于x 的一元二次方程()2204mmx m x -++=. (1)当m 取什么值时,方程有两个不相等的实数根;(2)当4m =时,求方程的解.【答案】(1)当1m >-且0m ≠时,方程有两个不相等的实数根;(2)1354x +=,2354x =. 【解析】 【分析】(1)方程有两个不相等的实数根,>0∆,代入求m 取值范围即可,注意二次项系数≠0;(2)将4m =代入原方程,求解即可. 【详解】(1)由题意得:24b ac ∆=- =()22404mm m +->g g,解得1m >-. 因为0m ≠,即当1m >-且0m ≠时,方程有两个不相等的实数根.(2)把4m =带入得24610x x -+=,解得1x =,2x =. 【点睛】本题考查一元二次方程根的情况以及求解,熟练掌握根的判别式以及一元二次方程求解是加大本题的关键.9.已知关于x 的一元二次方程x 2+(k +1)x +214k =0 有两个不相等的实数根. (1)求k 的取值范围;(2)当k 取最小整数时,求此时方程的解. 【答案】(1)k >﹣12;(2)x 1=0,x 2=﹣1. 【解析】 【分析】(1)由题意得△=(k +1)2﹣4×14k 2>0,解不等式即可求得答案; (2)根据k 取最小整数,得到k =0,列方程即可得到结论. 【详解】(1)∵关于x 的一元二次方程x 2+(k +1)x +214k =0 有两个不相等的实数根, ∴△=(k +1)2﹣4×14k 2>0, ∴k >﹣12; (2)∵k 取最小整数, ∴k =0,∴原方程可化为x 2+x =0, ∴x 1=0,x 2=﹣1. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.校园空地上有一面墙,长度为20m ,用长为32m 的篱笆和这面墙围成一个矩形花圃,如图所示.(1)能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.(2)若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.【答案】(1)长为18米、宽为7米或长为14米、宽为9米;(2)若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.【解析】【分析】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,再根据矩形面积公式列方程求解即可得到答案.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.【详解】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,根据题意得:x(32﹣2x)=126,解得:x1=7,x2=9,∴32﹣2x=18或32﹣2x=14,∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,根据题意得:y(36﹣2y)=170,整理得:y2﹣18y+85=0.∵△=(﹣18)2﹣4×1×85=﹣16<0,∴该方程无解,∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.11.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?【答案】裁掉的正方形的边长为2dm,底面积为12dm2.【解析】试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2.12.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n 有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是、.请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第5个点阵中有个圆圈;第n个点阵中有个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.【答案】60个,6n个;(1)61;3n2﹣3n+1,(2)小圆圈的个数会等于271,它是第10个点阵.【解析】分析:根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n个;(1)第2个图中2为一块,分为3块,余1,第2个图中3为一块,分为6块,余1;按此规律得:第5个点阵中5为一块,分为12块,余1,得第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,(2)代入271,列方程,方程有解则存在这样的点阵.详解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,故答案为:60个,6n个;(1)如图所示:第1个点阵中有:1个,第2个点阵中有:2×3+1=7个,第3个点阵中有:3×6+1=17个,第4个点阵中有:4×9+1=37个,第5个点阵中有:5×12+1=60个,…第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,故答案为:60,3n2﹣3n+1;(2)3n2﹣3n+1=271,n2﹣n﹣90=0,(n﹣10)(n+9)=0,n1=10,n2=﹣9(舍),∴小圆圈的个数会等于271,它是第10个点阵.点睛:本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.13.为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?【答案】共有35名同学参加了研学游活动.【解析】试题分析:由该班实际共支付给旅行社3150元,可以判断出参加的人数在30人以上,等量关系为:(100﹣在30人基础上降低的人数×2)×参加人数=3150,得到相关解后根据人均活动费用不得低于80元作答即可.试题解析:∵100×30=3000<3150,∴该班参加研学游活动的学生数超过30人.设九(1)班共有x人去旅游,则人均费用为[100﹣2(x﹣30)]元,由题意得:x[100﹣2(x﹣30)]=3150,整理得x2﹣80x+1575=0,解得x1=35,x2=45,当x=35时,人均旅游费用为100﹣2(35﹣30)=90>80,符合题意.当x=45时,人均旅游费用为100﹣2(45﹣30)=70<80,不符合题意,应舍去. 答:该班共有35名同学参加了研学旅游活动. 考点:一元二次方程的应用.14.自2018年1月10日零时起,高铁开通,某旅行社为吸引广大市民组团去仙都旅游,推出了如下收费标准:如果人数不超过10人,人均旅游费用为200元,如果人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150元.()1如果某单位组织12人参加仙都旅游,那么需支付旅行社旅游费用________元; () 2现某单位组织员工去仙都旅游,共支付给该旅行社旅游费用2625元,那么该单位有多少名员工参加旅游? 【答案】(1)2280;(2)15 【解析】 【分析】对于(1)根据人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150来求解;对于(2)设这次旅游可以安排x 人参加,而由10×200=2000<2625,可以得出人数大于10人,则根据x 列出方程:(10+x )(200-5x )=2625,求出x ,然后根据人均旅游费用降低5元,但人均旅游费用不得低于150来求出x 的范围,最后得出x 的值. 【详解】 (1)2280()2因为1020020002625⨯=<.因此参加人比10人多, 设在10人基础上再增加x 人,由题意得:()()1020052625x x +-=. 解得 15x = 225x =, ∵2005150x -≥, ∴010x <≤,经检验 15x =是方程的解且符合题意,225x =(舍去).1010515x +=+=答:该单位共有15名员工参加旅游. 【点睛】本题主要考查一元二次方程的应用和一元一次不等式的应用,根据题意作出判断,列出一元二次方程,求解方程,舍去不符合题意的解,从而得出结果.15.利民商店经销甲、乙两种商品.现有如下信息 信息1:甲乙两种商品的进货单价和为11;信息2:甲商品的零售单价比其进货单价多2元,乙商品的零售单价比其进货单价的2倍少4元:信息3:按零售单价购买甲商品3件和乙商品2件共付37元.()1甲、乙两种商品的进货单价各是多少?()2据统计该商店平均每天卖出甲商品500件,经调查发现,甲商品零售单价每降0.1元,这样甲商品每天可多销售100件,为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降a 元,在不考虑其他因素的条件下,当a 定为多少时,才能使商店每天销售甲种商品获取利润为1500元?【答案】(1)甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件(2)当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元【解析】【分析】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据给定的三个信息,可得出关于x ,y 的二元一次方程组,解之即可得出结论;()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据总利润=单件利润⨯销售数量,即可得出关于a 的一元二次方程,解之即可得出结论.【详解】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据题意得:()()113x 222y 437x y +=⎧++-=⎨⎩, 解得:{56x y ==.答:甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件. ()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据题意得:()()250010001500a a -+=,整理得:22310a a -+=,解得:10.5a =,21a =.答:当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2找准等量关系,正确列出一元二次方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程要点一:一元二次方程的定义 一、选择题1、(2009·长沙中考)已知关于x 的方程260x kx --=的一个根为3x =,则实数k 的值为( ) A .1B .1-C .2D .2-2、(2009·日照中考)若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为 ( ).(A )1 (B )2 (C )-1 (D )-23、(2008·宁德中考)如果x =4是一元二次方程223a x x =-的一个根,则常数a 的值是( )A .2B .-2C .±2D .±44、(2008·烟台中考)已知方程20x bx a ++=有一个根是(0)a a -≠,则下列代数式的值恒为常数的是( ) A .ab B .abC .a b +D .a b - 5、(2008·东营中考)若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于( ) A .1 B .2 C .1或2 D .06、(2007·兰州中考)下列方程中是一元二次方程的是( ) (A)210x +=(B)21y x +=(C)210x += (D)211x x+=7、(2007·武汉中考)如果2是一元二次方程2x c =的一个根,那么常数c 是( ) (A)2 (B)2- (C)4 (D)4-二、填空题8、(2009·庆阳中考)若关于x 的方程2210x x k ++-=的一个根是0,则k = .9、(2009·哈尔滨中考)如果2是一元二次方程x 2+bx +2=0的一个根,那么常数b 的值为 .10、(2009·赤峰中考)已知关于x 的方程x 2-3x+2k=0的一个根是1,则k= 11、(2009·崇左中考)一元二次方程230x mx ++=的一个根为1-,则另一个根为 .12、(2007·荆州中考)若0x =是方程22(2)3280m x x m m -+++-=的解,则m = .要点二、一元二次方程的解法 一、选择题1、(2009·庆阳中考)方程240x -=的根是( ) A .2x =B .2x =-C .1222x x ==-,D .4x =2、(2009·河南中考)方程2x =x 的解是( ).(A )x =1 (B )x =0 (C) x 1=1 x 2=0 (D) x 1=﹣1 x 2=03、(2009·太原中考)用配方法解方程2250x x --=时,原方程应变形为( )A .()216x +=B .()216x -=C .()229x +=D .()229x -=4、(2009·南充中考)方程(3)(1)3x x x -+=-的解是( ) A .0x =B .3x =C .3x =或1x =-D .3x =或0x =5、(2010·桂林中考)一元二次方程2340x x +-=的解是 ( ). A .11x =,24x =- B .11x =-,24x = C .11x =-,24x =- D .11x =,24x = 二、填空题6、(2009•温州中考)方程(x -1)2=4的解是7、(2009·山西中考)请你写出一个有一根为1的一元二次方程: . 8、(2008 ·莆田中考)方程2230x x +-=的根是_________________.9、(2007·淮安中考)写出一个两实数根符号相反的一元二次方程: . 三、解答题10、(2009·武汉中考)解方程:2310x x --=.11、(2009•新疆中考)解方程:2(3)4(3)0x x x -+-=12、(2009·兰州中考)用配方法解一元二次方程:2213x x +=13、(2007·兰州中考)阅读材料:为解方程222(1)5(1)40x x ---+=,我们可以将21x - 看作一个整体,然后设21x y -=,那么原方程可化为2540y y -+=……①,解得11y =,24y =,当1y =时,211x -=,22x ∴=,x ∴=4y =时,214x -=,25x ∴=,x ∴=程的解为1x2x =3x =4x =.解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用________法达到了解方程的目的,体现了转化的数学思想; (2)请利用以上知识解方程4260x x --=.要点三、一元二次方程根的判别式及根与系数的关系 一、选择题1、(2010·玉溪中考)一元二次方程x2-5x+6=0 的两根分别是x 1,x 2,则x 1+x 2等于( )A. 5B. 6C. -5D. -62、(2009·济南中考)若12x x ,是一元二次方程2560x x -+=的两个根,则12x x +的值是( ).A .1B .5C .5-D .63、 (2009·眉山中考)若方程2310x x --=的两根为1x 、2x ,则1211x x +的值为(). A .3B .-3C .13D .13-4、(2009•成都中考)若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k的取值范围是( )A .1k >-B . 1k >-且0k ≠C .1k <D . 1k <且0k ≠ 5、(2009·潍坊中考)关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( ) A .6B .7C .8D .96、(2009·包头中考)关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( ) A .1 B .12 C .13 D .25二、填空题7、(2010·荆门中考)如果方程ax 2+2x +1=0有两个不等实根,则实数a 的取值范围是___ ___.8、(2009·泰安中考)关于x 的一元二次方程02)12(22=-+++-k x k x 有实数根,则k 的取值范围是 。
9、(2008·呼和浩特中考)关于x 的一元二次方程2(1)10m x mx --+=有两个不相等的实数根,则m 的取值范围是 .10、(2008·枣庄中考)已知x 1、x 2是方程x 2-3x -2=0的两个实根,则(x 1-2) (x 2-2)= .11、(2007·无锡中考)设一元二次方程2640x x -+=的两个实数根分别为1x 和2x ,则12x x += ,x 1·x 2 .12、(2007·咸宁中考)关于x 的一元二次方程x 2+x +k =0有两个实数根,则k的取值范围是________________。
三、解答题13、(2010·珠海中考)已知x 1=-1是方程052=-+mx x 的一个根,求m 的值及方程的另一根x 2。
14、(2009•鄂州中考)关于x 的方程04)2(2=+++kx k kx 有两个不相等的实数根. (1)求k 的取值范围。
(2)是否存在实数k ,使方程的两个实数根的倒数和等于0?若存在,求出k 的值;若不存在,说明理由15、(2008·中山中考)已知关于x 的方程2(2)210x m x m +++-=. (1)求证方程有两个不相等的实数根.(2)当m 为何值时,方程的两根互为相反数?并求出此时方程的解.16、(2008•长沙中考)当m 为何值时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根?此时这两个实数根是多少?要点四、列一元二次方程解应用题 一、选择题1、(2010年兰州)上海世博会的某纪念品原价168元,连续两次降价a %后售价为128元. 下列所列方程中正确的是( )A .128)% 1(1682=+aB .128)% 1(1682=-a C .128)% 21(168=-a D .128)% 1(1682=-a2、(2009·恩施州中考)某种衬衣的价格经过连续两次降价后,由每件150元降至96元,平均每次降价的百分率是( ) A. 20% B. 27% C. 28% D. 32%3、(2009·襄樊中考)为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为210m 提高到212.1m ,若每年的年增长率相同,则年增长率为( ).A .9%B .10%C .11%D .12%4、(2009·江西中考)为了让江西的山更绿、水更清,2008年省委、省政府提出了确保到2010年实现全省 森林覆盖率达到63%的目标,已知2008年我省森林覆盖率为60.05%,设从2008年起我省森林覆盖率的年平均增长率为x ,则可列方程( ).A .()60.051263%x +=B .()60.051263x +=C .()260.05163%x +=D .()260.05163x +=5、(2009·青海中考)在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ).A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --=6、(2009·庆阳中考)如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为( ).A .1米B .1.5米C .2米D .2.5米二、填空题7、(2010·台州中考)某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 __ .8、(2009·哈尔滨中考)4支排球队进行单循环比赛(参加比赛的每两支球队之间都要进行一场比赛),则总的比赛场数为场.9、(2008·临沂中考)某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,则该厂四、五月份的月平均增长率为________.10、(2007·兰州中考)兰州市政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价,由每盒72元调至56元.若每次平均降价的百分率为x,由题意可列方程为________.三、解答题11、(2009·广东中考)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?12、(2009·黄石中考)如图,利用一面墙,用80米长的篱笆围成一个矩形场地(1)怎样围才能使矩形场地的面积为750平方米?(2)能否使所围的矩形场地面积为810平方米,为什么?13、(2008·庆阳中考)如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了多少元钱?14、(2008•南通中考)某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.(1)求A市投资“改水工程”的年平均增长率;(2)从2008年到2010年,A市三年共投资“改水工程”多少万元?。