第二讲 (计量经济学) PPT课件
2024版计量经济学全册课件(完整)pptx

REPORTING
2024/1/28
23
EViews软件介绍及操作指南
EViews软件概述
EViews是一款功能强大的计量经济学 软件,提供数据处理、统计分析、模型
估计和预测等功能。
统计分析与检验
2024/1/28
详细讲解EViews中的统计分析工具, 包括描述性统计、假设检验、方差分
析等。
数据导入与预处理 介绍如何在EViews中导入数据,进行 数据清洗、转换和预处理等操作。
随着大数据时代的到来,机器学 习算法在数据挖掘、预测和分类 等方面展现出强大的能力,为计 量经济学提供了新的研究工具和 方法。
机器学习在计量经济 学中的应用领域
机器学习在计量经济学中的应用 领域广泛,如变量选择、模型选 择、非线性模型估计、高维数据 处理等。
机器学习在计量经济 学中的常用算法
机器学习在计量经济学中常用的 算法包括决策树、随机森林、支 持向量机(SVM)、神经网络等。 这些算法可以用于分类、回归、 聚类等任务,提高模型的预测精 度和解释力。
面板数据特点
同时具有时间序列和截面数据的特征,能够提供更多的信息、更多的变化、更少共 线性、更多的自由度和更高的估计效率。
2024/1/28
20
固定效应模型与随机效应模型
固定效应模型(Fixed Effects Model)
对于特定的个体而言,其截距项是固定的,不随时间变化而变化。
随机效应模型(Random Effects Mode…
经典线性回归模型
REPORTING
2024/1/28
7
一元线性回归模型
模型设定与参数估计
介绍一元线性回归模型的基本形式, 解释因变量、自变量和误差项的含义, 阐述最小二乘法(OLS)进行参数估 计的原理。
计量经济学课件PPT课件

非线性模型转换方法
多项式回归
通过引入自变量的高次项,将非线性关系转化为线性 关系进行处理。
变量变换
对自变量或因变量进行某种函数变换,以改善模型的 拟合效果。
非参数回归
不假定具体的函数形式,通过数据驱动的方式拟合非 线性关系。
实例分析:金融时间序列预测
数据准备
收集金融时间序列数据,如股票 价格、交易量等,并进行预处理。
模型选择依据
Hausman检验,LM检验等。
实例分析:经济增长收敛性问题研究
研究背景
探讨不同国家或地区间经济增长差异及其收 敛性。
模型构建
选择合适的面板数据模型,设定经济增长收 敛假设。
实证分析
收集相关数据,运用计量经济学软件进行回 归分析,检验收敛性假设是否成立。
结论与政策建议
根据实证结果得出结论,提出促进经济增长 收敛的政策建议。
机器学习算法与计量经济学模型结合
将机器学习算法与传统计量经济学模型相结合,形成更具解释性和预测能力的混合模型。
大数据背景下计量经济学挑战与机遇
01
大数据背景概述
数据量巨大、类型多样、处理速度快等 特点。
02
计量经济学面临的挑 战
数据质量、计算效率、模型可解释性等 问题。
03
计量经济学面临的机 遇
利用大数据技术挖掘更多信息,提高模 型预测精度和政策评估效果;同时推动 计量经济学理论和方法的发展创新。
Geary's C指数
与Moran's I指数类似,也是用于检验全局空间自相关。
LISA集聚图 用于检验局部空间自相关,可以直观展示空间集聚或异常 值区域。
空间滞后和空间误差模型选择
空间滞后模型(SLM)
第2章计量经济学回归分析的性质ppt课件

§2.4 数据
一、数据的分类 按照数据与时间的关系,可以分为: ❖ 时间序列数据(time series data) ❖ 横截面数据(cross-section data) ❖ 面板数据(panel data/ pooling data)
实例:我国地区的生产总值
二、数据的来源和质量
❖ 社会科学数据都是非实验所得,存在测量误 差,或出于疏漏或差错 ;
cov(Xt,Yt)
Var(Xt) Var(Yt)
样本相关系数r
rXYˆ
1 T1
(Xt X)(Yt Y)
1 T1
(Xt X)2
1 T1
(Yt Y)2
(Xt X)(Yt Y)
(Xt X)2 (Yt Y)2
性质: (1)r具有对称性 (2)r与原点和尺度都无关
400
200
0 0
X
10
20
30
40
50
完全相关
Y 2
1
X
0
10
20
30
40
50
高度相关
3.0
2.5
Y
2.0
1.5
1.0
0.5
2.0
2.5
3.0
3.5
弱相关
X
4.0
4.5
4
Y 2
0
-2
X -4
-4
-2
0
2
4
零相关
2、按变量个数
200 150 100
50 0 0
Y
X
50
100
150
200
250
非线性相关/负相关
Y 2
1
计量经济学讲义第二讲(共十讲)

第二讲 普通最小二乘估计量 一、基本概念:估计量与估计值对总体参数的一种估计法则就是估计量。
例如,为了估计总体均值为u ,我们可以抽取一个容量为N 的样本,令Y i 为第i 次观测值,则u 的一个很自然的估计量就是ˆiY uY N==∑。
A 、B 两同学都利用了这种估计方法,但手中所掌握的样本分别是12(,,...,)A A AN y y y 与12(,,...,)B B B N y y y 。
A 、B 两同学分别计算出估计值ˆAiA y uN=∑与ˆBiB y uN=∑。
因此,在上例中,估计量ˆu是随机的,而ˆˆ,A B u u 是该随机变量可能的取值。
估计量所服从的分布称为抽样分布。
如果真实模型是:01y x ββε=++,其中01,ββ是待估计的参数,而相应的OLS 估计量就是:1012()ˆˆˆ;()iiix x yy x x x βββ-==--∑∑ 我们现在的任务就是,基于一些重要的假定,来考察上述OLS 估计量所具有的一些性质。
二、高斯-马尔科夫假定●假定一:真实模型是:01y x ββε=++。
有三种情况属于对该假定的违背:(1)遗漏了相关的解释变量或者增加了无关的解释变量;(2)y 与x 间的关系是非线性的;(3)01,ββ并不是常数。
●假定二:在重复抽样中,12(,,...,)N x x x 被预先固定下来,即12(,,...,)N x x x 是非随机的(进一步的阐释见附录),显然,如果解释变量含有随机的测量误差,那么该假定被违背。
还存其他的违背该假定的情况。
笔记:12(,,...,)N x x x 是随机的情况更一般化,此时,高斯-马尔科夫假定二被更改为:对任意,i j ,i x 与j ε不相关,此即所谓的解释变量具有严格外生性。
显然,当12(,,...,)N x x x 非随机时,i x 与j ε必定不相关,这是因为j ε是随机的。
●假定三:误差项期望值为0,即()0,1,2i E i N ε==。
计量经济学02-课件_35

为了能够在模型中反映这些因素的影响,并提高模型的精度,需要将 它们人为地“量化”,这种“量化”通常是通过引入“虚拟变量”来完成的。
这种用两个相异数字来表示对被解释变量有重要影响而自身又 没有观测数值的一类变量,称为虚拟变量(dummy variables)。
虚拟变量也称为哑变量或定性变量。
虚拟变量的特点是:
为描述虚拟变量交互作用对被解释变量的效应,在(8-9)式中以加法形式引入 两个虚拟解释变量的乘积,即
Yi=α0+α1D1i+α2D2i+α3(D1iD2i)+βXi +μi
(8-10)
(1)基础类型:不发展油菜籽生产,也不发展养蜂生产时农副产品生产平均总收益
E(Yi|Xi,D1=0,D2=0)= α0+βXi
改革开放以后 改革开放以前
X 图8-4 改革开放前后储蓄函数示意图
3.临界指标的虚拟变量的引入
在经济发生转折时,可通过建立临界指标的虚拟变量模型来反映。
例如:
进口消费品数量Y主要取决于国民收入X的多少,中国在改革开放前后, Y对X的回归关系明显不同。
这时,可以t*=1979为转折期,以1979年的国民收入Xt*为临界值, 设如下虚拟变量:
大学及其以上: E(Yi|Xi,D1i=0,D2i=1)=(β0+β3 )+β1Xi
假定3 2 0 ,且 0 0 ,则其几何意义如图8-2所示。
图8-2 不同教育程度人员保健支出示意图
还可将多个虚拟变量引入模型中以考察多种“定性”因素的影响。
例如:
Yi = 0 + 1Xi + 2Di + i
Dt= 0 改革开放以前 显然在式(8-5)中,同时使用加法和乘法两种方式引入了虚拟变量。
计量经济学课件2

建议:尽管目前已出版的有关Stata的学习资料有很多,但是最好 的学习资料还是Stata的帮助文件中Stata的PDF手册,这个手册对于每 个Stata命令有着非常详细的解释说明。
第一章 绪论
1.1 引言
1.1.1 计量经济学简介
计量经济学是经济学的一个分支学科,诞生于 20 世纪 30 年代,是以揭示经 济活动中客观存在的数量关系为内容的分支学科。
关于计量经济学的定义,已经形成了共识。 弗里希(Ragnar Frisch,1933)指出:“经验表明,统计学、经济理论和数学 这三者对于真正了解现代经济生活的数量关系来说,都是必要的,但本身并非是充分 条件。三者结合起来,就是力量,这种结合便构成了计量经济学。” 萨缪尔森(P.A.Samuelson,1954)认为:“计量经济学可以定义为实际经济现 象的数量分析。这种分析基于理论与观测的并行发展,而理论与观测又是通过适当的 推断方法得以联系。” 戈登伯格(S.Goldberger,1964)给出的定义是:“计量经济学可以定义为这样 的社会科学:它把经济理论、数学和统计推断作为工具,应用于经济现象的分析。” 总之一句话,即计量经济学是经济理论、统计学和数学的结合。根据计量经济学定义 ,计量经济学的核心问题就是如何实现经济理论、数学和统计学的科学的结合。
(3)模型参数的估计:参数估计是计量经济学的核心内容,选 择适当的方法估计模型是一个纯技术过程,也涉及到软件的应用等 内容。
(4)模型检验:模型的检验包含多方面的内容,通常有经济意 义检验、统计检验、计量经济学检验和模型预测检验。
计量经济学讲义(PPT 34页)

这是一个由趋势·循环变动要素构成的序列,从原 序列中减去这一序列,就得到了季节·不规则要素序列
SIt yt MAt
(2.2.14)
再对季节·不规则要素序列 SI 进行移动平均(例如三 项或五项加权移动平均)就可以把不规则变动剔除,从 而得到季节变动要素 S,从原序列 Y 减去S,就得到了
季节调整后的序列 Y~
28.01.2020
22
简写为
其中
MAt 112i66wi yti
0.5, w i 1.0 ,
i 6 i 6
28.01.2020
23
下面是简单的季节调整过程,如果用加法模型表示,有
Y T C I S 由(2.2.8)式可以得到
(2.2.9)
计量经济学
王林辉 教授 博士生导师
28.01.2020
1
28.01.2020
2
第二章 经济时间序列的季节
调整、分解与平滑
季节性变动的发生,不仅是由于气候的直接影响, 而且社会制度及风俗习惯也会引起季节变动。经济统 计中的月度和季度数据或大或小都含有季节变动因素, 以月份或季度作为时间观测单位的经济时间序列,通 常出现以12个月或4个季度为周期的周期性变化,这 种周期变化是由于季节因素的影响造成的,在经济分 析中称为季节性波动。
28.01.2020
6
经济时间序列分解模型,依据时间序列的四个构成要素在模型中的相互
关系,可以表现为多种不同的形式,但就一般而言,基本的分解模型只
有两类:即加法模型和乘法模型。
一、加法模型
加法模型的一般形式为
Y=T+C+S+I
(2.3.1)
式中T、C、S 和 I 均表现为绝对量。
《计量经济学》ppt课件(2024)

02
最小二乘估计量的 性质
包括线性、无偏性、有效性等, 这些性质保证了估计量的优良特 性。
03
最小二乘法的计算
通过求解正规方程组或使用专门 的软件,可以得到参数的估计值 。
2024/1/29
9
经典线性回归模型假设条件及检验
1 2
经典线性回归模型的假设条件
包括线性关系、误差项独立同分布、无多重共线 性等,这些假设是模型有效的基础。
发展历程
从20世纪初的萌芽阶段,到20世 纪中叶的快速发展,再到21世纪 的广泛应用和不断创新。
4
计量经济学研Βιβλιοθήκη 对象与任务研究对象主要研究经济现象的数量关系,包括 经济变量之间的关系、经济系统的运 行规律等。
任务
揭示经济现象背后的数量规律,为经 济政策制定和评估提供科学依据,推 动经济学的理论创新和实践应用。
应用
非参数估计方法广泛应用于各种实际问题中,如金融市场的波动率估计、生物医学中的生存分析、环境科学中的 气候变化预测等。其优点在于灵活性高,能够适应各种复杂的数据分布,但同时也存在计算量大、对样本量要求 较高等问题。
2024/1/29
20
半参数估计方法原理及应用
原理
半参数估计方法结合了参数和非参数估 计方法的优点,既对总体分布做出一定 的假设,又利用样本数据进行推断。其 核心思想是通过引入一些辅助信息或约 束条件,降低模型的复杂度,提高估计 的精度和稳定性。
25
面板数据模型参数估计与检验
2024/1/29
参数估计方法
最小二乘法(OLS)、广义最小二乘法(GLS) 、极大似然估计(MLE)等。
参数检验
t检验、F检验、LM检验等,用于检验参数的显著 性。