函数的零点和方程的根经典练习题

合集下载

函数与方程-高考真题复习-高考复习

函数与方程-高考真题复习-高考复习

设m(x)=-x3+3xx2+a1x-a,x∈(0,1),1a>0x,
则m(0)=-a<0,m(1)=2>0⇒m(0)·m(1)<0,
又m(x)的图象在(0,1)上连续不断,
∴m(x)在(0,1)上有零点,
则h(x)在(0,1)上有零点.
因此,对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.
2.(2014山东,8,5分)已知函数f(x)=|x-2|+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k 的取值范围是 ( )
A.
0,
1 2
B.
1 2
,1
C.(1,2)
D.(2,+∞)
答案 B f(x)=
x 3
1, x,
x如图2,,作出y=f(x)的图象,其中A(2,1),则kOA= x 2.
同时要满足
y
(x
2)在2 , x>2时有两个不同的解,即x2-5x+8-b=0有两个大于2的不同实根,令
y b2 x2
h(x)=x2-5x+8-b,需
h(2) 0,

h
5 2
0,
2 b 解 0得, <b<2.
8
25 4
b
0,
7 4
综上所述,满足条件的b的取值范围是 <b<2,故7选D.
4
y 2 x,

Δ1
Δ2Байду номын сангаас
a2 a2
4a 8a
∴04,<a<8. 0,
情况二:

第06讲 利用导数研究函数的零点(方程的根) (精讲+精练)(学生版)

第06讲 利用导数研究函数的零点(方程的根) (精讲+精练)(学生版)

第06讲利用导数研究函数的零点(方程的根)(精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:判断、证明或讨论函数零点的个数高频考点二:证明唯一零点问题高频考点三:根据零点情况求参数①利用最值(极值)研究函数零点问题②利用数形结合法研究函数的零点问题③构造函数研究函数零点问题第四部分:高考真题感悟第五部分:第06讲利用导数研究函数的零点(方程的根)(精练)1、函数的零点(1)函数零点的定义:对于函数()y f x=,把使()0f x=的实数x叫做函数()y f x=的零点.(2)三个等价关系方程0)(=xf有实数根⇔函数)(xfy=的图象与x轴有交点的横坐标⇔函数)(xfy=有零点.2、函数零点的判定如果函数()y f x=在区间[,]a b上的图象是连续不断的一条曲线,并且有()()0f a f b⋅<,那么函数()y f x=在区间(,)a b内有零点,即存在(,)c a b∈,使得()0f c=,这个c也就是()0f x=的根.我们把这一结论称为函数零点存在性定理.注意:单调性+存在零点=唯一零点1.(2022·全国·高二)已知函数()f x的定义域为[]15-,,部分对应值如下表:()f x的导函数()y f x='的图象如图所示,则下列关于函数()f x的命题:① 函数()y f x=是周期函数;② 函数()f x在[]02,是减函数;③ 如果当[]1,x t∈-时,()f x的最大值是2,那么t的最大值为4;④ 当12a<<时,函数()y f x a=-有4个零点.其中真命题的个数是A.4个B.3个C.2个D.1个2.(2022·甘肃·金昌市教育科学研究所高三阶段练习(文))已知函数()2e1xf x x a=+-()a R∈有两个极值点,则实数a的取值范围为()A.1,0e⎛⎫- ⎪⎝⎭B.2,0e⎛⎫- ⎪⎝⎭C.1,e⎛⎫-+∞⎪⎝⎭D.2,e⎛⎫-+∞⎪⎝⎭3.(2022·全国·高二)若函数()3239f x x x x m =--+仅有一个零点,则实数m 的取值范围是( )A .()5,-+∞B .(,27)(5,)-∞-⋃+∞C .(,27)-∞D .(,5)(27,)-∞-⋃+∞4.(2022·甘肃武威·模拟预测(文))函数()326f x x x m =-+有三个零点,则实数m 的取值范围是( )A .(﹣4,4)B .[﹣4,4]C .(﹣∞,﹣4]∪[4,+∞)D .(﹣∞,﹣4)∪(4,+∞)5.(2022·江苏淮安·高二期末)已知函数()e x f x =与()1g x x =+,则它们的图象交点个数为( )A .0B .1C .2D .不确定高频考点一:判断、证明或讨论函数零点(根)的个数1.(2022·全国·高二)设函数f (x )=13x -ln x ,则函数y =f (x )( )A .在区间1(,1)e,(1,e )内均有零点 B .在区间1(,1)e,(1,e )内均无零点C .在区间1(,1)e 内有零点,在区间(1,e )内无零点D .在区间1(,1)e 内无零点,在区间(1,e )内有零点2.(2022·全国·高三专题练习(文))已知函数()()12xx e f x e=-+,其中e 为自然对数的底数, 2.7182818e =……,则()f x 的零点个数为( ) A .0B .1C .2D .33.(2022·全国·高三专题练习(理))函数()()1ln 03f x x x x =->的零点个数为( )A .0B .1C .2D .34.(2022·全国·高二课时练习)求函数3()231f x x x =-+零点的个数为( ) A .1B .2C .3D .45.(2022·江苏淮安·高二期末)已知函数()e x f x =与()1g x x =+,则它们的图象交点个数为( )A .0B .1C .2D .不确定6.(2022·江苏苏州·模拟预测)方程3269100x x x -+-=的实根个数是______ .7.(2022·全国·高三专题练习)函数()1x f x e x =-+的零点个数是__________.8.(2022·广东佛山·高二阶段练习)已知函数()()1ln 2af x x a x x=+---,其中R a ∈. (1)若()f x 存在唯一极值点,且极值为0,求a 的值; (2)若2e a <,讨论()f x 在区间2[1,e ]上的零点个数.9.(2022·新疆·乌苏市第一中学高二阶段练习(文))给定函数()()1e xf x x =+.(1)判断函数()f x 的单调性,并求出()f x 的极值; (2)求出方程()()f x a a R =∈的解的个数.高频考点二:证明唯一零点(根)问题1.(2022·山西省长治市第二中学校高二阶段练习)已知函数321()(1)3=-++f x x a x x .(1)若1a =,求()f x 的单调区间及相应区间上的单调性; (2)证明:()f x 只有一个零点.2.(2022·陕西渭南·高二期末(文))已知函数()ln x axf x x+=,R a ∈. (1)若0a =,求()f x 的最大值;(2)若01a <<,求证:()f x 有且只有一个零点.3.(2022·广西玉林·模拟预测(文))已知函数217()ln 4,()2ln 22f x x x xg x x x =-=++. (1)求函数()f x 的最小值;(2)证明:函数()()()h x f x g x =+仅有一个零点.高频考点三:根据零点(根)情况求参数①利用最值(极值)研究函数零点(根)问题1.(2022·重庆市万州第二高级中学高二阶段练习)已知函数32()34f x x ax bx =+++在1x =-时有极值0. (1)求函数()f x 的解析式;(2)记()()21g x f x k =-+,若函数()g x 有三个零点,求实数k 的取值范围.2.(2022·山东师范大学附中高二阶段练习)已知函数()21xx x f x e+-=. (1)求函数()f x 的单调区间;(2)若函数()y f x a =-(a 为常数)有3个不同的零点,求实数a 的取值范围.3.(2022·宁夏六盘山高级中学高二阶段练习(理))已知函数3()91f x ax x =-+,0a >. (1)若3a =,求函数()f x 的极值;(2)若函数()f x 恰有三个零点,求实数a 的取值范围.4.(2022·北京丰台·一模)已知函数()f x = (1)当1a =时,求曲线()y f x =的斜率为1的切线方程; (2)若函数2()()3ag x f x =-恰有两个不同的零点,求a 的取值范围.5.(2022·广西桂林·二模(理))已知函数()()()211e 2xf x x ax a R =--∈ (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求实数a 的取值范围.②利用数形结合法研究函数的零点(根)问题1.(2022·宁夏·银川二中高二期末(理))已知函数ln ()xf x x= (1)填写函数()f x 的相关性质;2.(2022·四川·阆中中学高二阶段练习(文))设函数3()65f x x x x R =-+∈,. (1)求函数()f x 的单调区间;(2)若关于x 的方程()f x a =有三个不等实根,求实数a 的取值范围.3.(2022·全国·信阳高中高三阶段练习(理))已知函数()2e xf x a x =-(R a ∈,e 为自然对数的底数).(1)若()0f x =有两个不相等的实数根,求a 的取值范围;4.(2022·四川·雅安中学高二阶段练习(文))已知函数()322f x x ax bx =++-在2x =-时取得极值,且在点()()1,1f --处的切线的斜率为3- . (1)求()f x 的解析式;(2)若函数()y f x λ=-有三个零点,求实数λ的取值范围.5.(2022·全国·模拟预测(理))已知函数()()2x x f x e ae a =+∈R(1)讨论()f x 的单调性;(2)设()()21x g x a x e x =-+,若方程()()g x f x =有三个不同的解,求a 的取值范围.6.(2022·四川绵阳·二模(文))已知函数()2()ln 1R f x x ax a =+-∈(1)当2a =时,求函数()f x 的单调区间;(2)若函数()f x 有且只有一个零点,求实数a 的取值范围.③构造函数研究函数零点(根)问题1.(2022·江苏宿迁·高二期末)已知函数()e xf x =(e 为自然对数的底数),()sing x a x =(,22x ππ⎡⎤∈-⎢⎥⎣⎦),a R ∈.(1)若直线:l y kx =与函数()f x ,()g x 的图象都相切,求a 的值; (2)若方程()()f x g x =有两个不同的实数解,求a 的取值范围.2.(2022·重庆南开中学高二期末)已知函数()()2ln ,f x x x g x x ax b ==++.(1)若()f x 与()g x 在1x =处有相同的切线,求实数,a b 的取值;(2)若2b =时,方程()()f x g x =在()1,+∞上有两个不同的根,求实数a 的取值范围.3.(2022·四川·成都七中高三阶段练习(理))已知函数()(1)f x a x =-,()e (1)x g x bx =-,R a ∈. (1)当2b =时,函数()()y f x g x =-有两个零点,求a 的取值范围; (2)当b a =时,不等式()()f x g x >有且仅有两个整数解,求a 的取值范围.4.(2022·全国·高三阶段练习)已知函数()()11ln e f x a x x=+++,()()e x g x x a a =++∈R .(1)试讨论函数()f x 的单调性;(2)若当1≥x 时,关于x 的方程()()f x g x =有且只有一个实数解,求实数a 的取值范围.5.(2022·河南·三模(理))已知函数()()ln 1f x x =+,()e 1xg x =-.(1)判断函数()()()h x f x g x =-的零点个数;6.(2022·江苏南京·高三开学考试)已知函数()(1)x f x e a x =+-,()sin cos g x ax x x =++ (1)求函数()f x 的最值;(2)令()()()h x f x g x =-,求函数()h x 在区间(,)4π-+∞上的零点个数,并说明理由.1.(2021·全国·高考真题(理))已知0a >且1a ≠,函数()(0)a x x f x x a=>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围.2.(2021·全国·高考真题)已知函数2()(1)x f x x e ax b =--+. (1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 只有一个零点 ①21,222e a b a <≤>;②10,22a b a <<≤.3.(2021·浙江·高考真题)设a ,b 为实数,且1a >,函数()2R ()x f x a bx e x =-+∈(1)求函数()f x 的单调区间;(2)若对任意22b e >,函数()f x 有两个不同的零点,求a 的取值范围;(3)当a e =时,证明:对任意4b e >,函数()f x 有两个不同的零点()1221,,x x x x >,满足2212ln 2b b ex x e b>+.(注: 2.71828e =⋅⋅⋅是自然对数的底数)一、单选题1.(2022·江苏·南京师大附中高三开学考试)已知a ∈R ,则函数()()32113f x x a x x =-++零点的个数为( )A .1B .2C .3D .与a 有关2.(2022·浙江省浦江中学高二阶段练习)已知函数()22x f x xe x x m =---在()0,∞+上有零点,则m 的取值范围是( )A .)21ln 2,-+∞⎡⎣B .)2ln 21,--+∞⎡⎣C .)2ln 2,-+∞⎡⎣D .21ln 2,2-+∞⎡⎫⎪⎢⎣⎭3.(2022·全国·高二)函数32()2f x x x x =-++-的零点个数及分布情况为( ) A .一个零点,在1,3⎛⎫-∞- ⎪⎝⎭内B .二个零点,分别在1,3⎛⎫-∞- ⎪⎝⎭,()0,∞+内C .三个零点,分别在1,3⎛⎫-∞- ⎪⎝⎭,1,03⎛⎫- ⎪⎝⎭,()1,+∞内D .三个零点,分别在1,3⎛⎫-∞- ⎪⎝⎭,()0,1,()1,+∞内4.(2022·全国·高二)直线y a =与函数33y x x =-的图象有三个不同的交点,则实数a 的取值范围为( ) A .(2,2)-B .[2,2]-C .[2,)+∞D .(,2]-∞-5.(2022·全国·高二)已知函数20()210x e x f x x x x -⎧≤=⎨--+>⎩,若函数()()g x f x kx =-有两个零点,则实数k 等于(e 为自然对数的底数)( ) A .e -B .1-C .2D .2e6.(2022·河南·襄城高中高二阶段练习(理))已知函数()2ln f x x =,()322g x x ex ax =-+,其中e 为自然对数的底数,若方程()()f x g x =存在两个不同的实根,则a 的取值范围为( ) A .2,e ⎛⎫-∞ ⎪⎝⎭B .22,e e ⎛⎫-∞+ ⎪⎝⎭C .()2,e -∞D .22,e e ⎛⎫-∞- ⎪⎝⎭7.(2022·江西·高三阶段练习(理))已知函数22()2(2)e (1)e x x f x a a x x =+-++有三个不同的零点123,,x x x ,且1230x x x <<<,则3122312222e e e x x x x x x ⎛⎫⎛⎫⎛⎫--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为( )A .3B .6C .9D .368.(2022·全国·高三专题练习)已知方程|ln |2x kx =+在区间()50,e 上恰有3个不等实数根,则实数k 的取值范围是( ) A .5331,e e ⎛⎫ ⎪⎝⎭B .5331,e e ⎡⎫⎪⎢⎣⎭C .4221,e e ⎛⎫ ⎪⎝⎭D .4221,e e ⎡⎫⎪⎢⎣⎭二、填空题9.(2022·河南焦作·二模(理))函数1()e ln 1x f x a x -=--在(0,)+∞上有两个零点,则实数a 的取值范围是_______. 10.(2022·贵州遵义·高三开学考试(文))已知函数()3112,21ln ,2x m x f x x x m x ⎧--<⎪⎪=⎨⎪-≥⎪⎩恰有3个零点,则m 的取值范围是________.11.(2022·浙江·镇海中学高二期末)已知不等式21e 0x x a +-≥有且只有两个整数解,则实数a 的范围为___________.12.(2022·全国·高二)已知函数3211()(2)1()32xf x ax ax e x a R =---+∈在区间1,22⎛⎫ ⎪⎝⎭上有3个不同的极值点,则实数a的取值范围是__________. 三、解答题13.(2022·河南·栾川县第一高级中学高二阶段练习(理))已知()2()e ()x f x x a a =+∈R .(1)若2是函数()f x 的极值点,求a 的值,并判断2是()f x 的极大值点还是极小值点; (2)若关于x 的方程()2ln e x f x x =在1,22⎡⎤⎢⎥⎣⎦上有两个不同的实数根,求实数a 的取值范围.参考数据:ln 20.693≈14.(2022·陕西宝鸡·二模(文))已知函数()1e x f x ax =--,a ∈R . (1)讨论函数()f x 的单调性;(2)若方程()ln f x x x =在(1,e)上有实根,求实数a 的取值范围.15.(2022·河南·沈丘县第一高级中学高二期末(文))已知函数()ln f x x =. (1)当[)1,x ∞∈+时,证明:函数()f x 的图象恒在函数()322132=-g x x x 的图象的下方; (2)讨论方程()0f x kx +=的根的个数.16.(2022·吉林·长春外国语学校高二阶段练习)若函数()32113f x x ax bx =++-,当2x =时,函数()f x 有极值13-.(1)求函数的解析式;(2)若关于x 的方程()f x k =有三个解,求实数k 的取值范围.17.(2022·浙江浙江·二模)已知函数2()ln (2)f x x a x a =+<. (1)若2a =-,求函数()f x 的极小值点;(2)当2(]0,x ∈时,讨论函数()f x 的图象与函数(2)22y a x a =+--的图象公共点的个数,并证明你的结论.。

高中数学课时分层作业二十三方程的根与函数的零点含解析必修1

高中数学课时分层作业二十三方程的根与函数的零点含解析必修1

课时分层作业二十三方程的根与函数的零点(30分钟60分)一、选择题(每小题5分,共30分)1。

已知函数f(x)=若f(f(0))=4a,则实数a等于()A。

B. C.2D。

9【解析】选C。

由题知f(0)=2,f(2)=4+2a,由4+2a=4a,解得a=2。

2.设函数f(x)=,若f(m)=3,则实数m的值为()A。

—2 B。

8 C.1 D.2【解析】选D。

因为当0<x〈2时,log2x<1,所以由f(m)=3得m ≥2,所以m2-1=3,解得m=2。

3.函数y=f(x)在区间[1,4]上的图象是连续不断的曲线,且f(1)·f(4)〈0,则函数y=f(x)()A。

在(1, 4)内至少有一个零点B.在(1,4)内至多有一个零点C。

在(1,4)内有且只有一个零点D.在(1, 4)内不一定有零点【解析】选A。

由已知y=f(x)的图象在区间[1,4]上是连续不断的曲线,且f(1)·f(4)〈0,故在(1,4)内至少有一零点.4。

函数f(x)=—x3—3x+5的零点所在的大致区间是()A.(-2,0)B。

(0,1) C.(1,2)D。

(2,3)【解析】选C。

因为函数f(x)=—x3-3x+5是单调递减函数,又因为f(1)=—13—3×1+5=1>0,f(2)=—23-3×2+5=-9〈0,所以函数f(x)的零点必在区间(1,2)上,故必存在零点的区间是(1,2).5.已知x0是函数f(x)=2x+的一个零点.若x1∈(1,x0),x2∈(x0,+∞),则有()A.f(x1)〈0,f(x2)<0B.f(x1)〈0,f(x2)>0C.f(x1)〉0,f(x2)<0D.f(x1)>0,f(x2)〉0【解析】选B。

因为x〉1时,y=2x,y=都是增函数,所以f(x)=2x+在(1,+∞)上是增函数,所以有且只有一个零点x0,根据零点存在性定理及函数增减性知,f(x1)<0,f(x2)〉0。

(必修第一册)函数的零点与方程的解(同步练习)(含解析)

(必修第一册)函数的零点与方程的解(同步练习)(含解析)

4.5.1函数的零点与方程的解一、单选题1.以下函数在区间(0,12)上必有零点的是( ) A .y =12xB .y =143x -C .y =ln (x +45)D .y =2x +12.若曲线224,43,x x ay x x x a ⎧->=⎨-+≤⎩与x 轴有且只有2个交点,则实数a 的取值范围是( )A .12a ≤≤B .3a ≥C .12a ≤≤或3a ≥D .12a ≤<或3a ≥3.函数lg ,010()16,102x x f x x x ⎧<≤⎪=⎨-+>⎪⎩,若f (a )=f (b )=f (c )且a ,b ,c 互不相等,则abc 的取值范围是( )A .(1,10)B .(10,12)C .(5,6)D .(20,24)4.设f (x )=0.8x -1,g (x )=ln x ,则函数h (x )=f (x )-g (x )存在的零点一定位于下列哪个区间( ) A .(0,1)B .(1,2)C .(2,e )D .(e ,3)5.定义在R 上的奇函数()f x 满足:当0x >时,()20212021log xf x x =+,则在R 上方程()0f x =的实根个数为( ) A .1B .3C .2D .2021二、多选题 6.在平面直角坐标系中,我们把横纵坐标相等的点称之为“完美点”,下列函数的图象中存在完美点的是( ) A .y =﹣2xB .y =x ﹣6C .y =3xD .y =x 2﹣3x +47.已知函数2()log (1)(0)=-->f x x m m 的两个零点为12,x x 12()x x <,则( ) A .122x x << B .12111x x += C .124x x <D.1223+≥+x x 8.已知函数2ln ,0,()=4,0.x x f x x x x >⎧⎨--≤⎩关于x 的方程()0f x t -=的实数解个数,下列说法正确的是( )A .当0t ≤时,方程有两个实数解B .当4t >时,方程无实数解C .当04t <<时,方程有三个实数解D .当4t =时,方程有两个实数解 三、填空题9.若函数f (x )=x 2-ax +1在区间1(,3)2上有零点,则实数a 的取值范围是________.10.已知函数()y f x =在区间[]16,上的图像是一段连续的曲线,且有如下的对应值表:设函数y f x =在区间16,上零点的个数为,则的最小值为________. 11.方程22x x +=的根为a ,方程2log 2x x +=的根为b ,则a b +=__________四、解答题12.已知函数()|1|||f x x x a =+-+.若方程()f x x =有三个不同的解,求实数a 的取值范围.13.已知函数1122()log (2)log f x x x =-+.(1)求函数()f x 的定义域; (2)求函数()f x 的零点.14.若函数()221,1log ,1x x f x x x ⎧-+≤=⎨>⎩.(1)在所给的坐标系内画出函数()f x 图像;(2)求方程()f x m =恰有三个不同实根时的实数m 的取值范围.参考答案1.C 【分析】根据题意,依次分析选项中函数在区间(0,12)上有没有零点,综合即可得答案. 【详解】根据题意,依次分析选项:对于A :,y =12x 0,12)单调递增,且y >0恒成立,在区间(0,12)上没有零点,不符对于B ,y =143x -x 0,12)单调递增,且有y >0恒成立,在区间(0,12)上没有零点,不符合题意;对于C ,y =ln (x +45),当x =15时,y =ln1=0,区间(0,12)上有零点,符合题意;对于D ,y =2x +1,在区间(0,12)单调递增,且y >0恒成立,在区间(0,12)上没有零点,不符合题意. 故选:C . 2.D 【分析】作出函数24x y =-与243y x x =-+的图象,对参数分类讨论,得出结论.【详解】作出函数24x y =-与243y xx =-+的图象,令240x y =-=,即2x =,故()2,0B ,令2430y x x =-+=,即1x =或3x =,故1,0A 或()3,0C ,当1a <时,只有B 一个零点;当12a ≤<时,有A ,B 两个零点;当23a ≤<时, 有A 一个零点;当3a ≥时,有A,C 两个零点;综上,实数a 的取值范围是:12a ≤<或3a ≥, 故选:D.【分析】先画出分段函数的图象,根据图象确定字母a 、b 、c 的取值范围,再利用函数解析式证明ab =1,最后数形结合写出其取值范围即可 【详解】解:函数lg ,010()16,102x x f x x x ⎧<≤⎪=⎨-+>⎪⎩的图象如图:∵f (a )=f (b )=f (c )且a ,b ,c 互不相等 ∵a ∵(0,1),b ∵(1,10),c ∵(10,12)∵由f (a )=f (b )得|lg a |=|lg b |,即﹣lg a =lg b ,即ab =1 ∵abc =c由函数图象得abc 的取值范围是(10,12) 故选:B .4.A 【分析】通过等价转化,把函数的零点转化为函数y =f (x )与y =g (x )图象交点的横坐标,然后画出函数的图象,通过图象即可判断出零点所在的区间. 【详解】函数h (x )=f (x )-g (x )的零点等价于方程f (x )-g (x )=0的根,即为函数y =f (x )与y =g (x )图象交点的横坐标, 画出函数y =f (x )与y =g (x )的图象,从图象可知它们仅有一个交点A ,且交点横坐标的范围为()0,1.故选:A.【分析】当0x >时,作出函数2021x y =,2021log y x =-的示意图,由图象交点个数得到方程根的个数,再根据奇函数图象的对称性以及(0)0f =,即可求出方程所有根的个数. 【详解】①当0x >时,令()0f x =,即20212021log xx =-,在同一坐标系中作出函数12021xy =,22021log y x =-的示意图,如下图:函数12021xy =为单调增函数,22021log y x =-为单调减函数,可知两个图象有且只有一个交点P ,横坐标记为0x . 即0x >时方程()0f x =有且只有一个实根0x , ②因为函数()f x 是定义在R 上的奇函数, 所以当0x <时,方程()0f x =也有一个实根0x -,③又∵()f x 是R 上的奇函数,(0)0f =,∵即0也是方程()0f x =的根, 综上所述,方程()0f x =有3个实根. 故选:B. 6.AC 【分析】横纵坐标相等的函数即y x =,与y x =有交点即存在完美点,依次计算即可. 【详解】横纵坐标相等的函数即y x =,与y x =有交点即存在完美点,对于A,2y x y x =⎧⎨=-⎩,解得00x y =⎧⎨=⎩,即存在完美点()0,0,对于B,6y x y x =⎧⎨=-⎩,无解,即不存在完美点,对于C,3y x y x =⎧⎪⎨=⎪⎩,解得x y ⎧=⎪⎨=⎪⎩x y ⎧=⎪⎨=⎪⎩,(对于D,234y x y x x =⎧⎨=-+⎩, 24x x x -+=,即2240x x -+=,解得2(2)44120∆=--⨯=-<,即不存在完美点, 故选:AC. 7.ABD 【分析】函数2()log (1)(0)=-->f x x m m 即为函数函数2log (1)y x =-,y m =,交点的横坐标,作出函数图像,根据图像,易判断A ;根据()12()0f x f x ==,化简整理即可判断B ; 结合基本不等式将和化为积的形式即可判断C ; 利用整体代换结合基本不等式即可判断D. 【详解】解:令2()log (1)0f x x m =--=,()1x >则2log (1)x m -=, 令2log (1)y x =-,y m =,则函数2()log (1)(0)=-->f x x m m 的两个零点为12,x x 12()x x <,即为函数2log (1)y x =-,y m =交点的横坐标,作图如下图所示:故1212x x <<<,故A 正确;根据题意得()12()0f x f x ==,即2122log (1)log (1)x x -=-, 因为1212x x <<<,所以2122log (1)0,log (1)0x x -<->, 故2122log (1)log (1)0x x -+-=,即212log (1)(1)0x x --=, 所以12(1)(1)1x x --=,即()12120x x x x -+=, 所以12111x x +=,故B 正确;因为12x x +≥,所以()121212x x x x x x -+≤-120x x -≥, 所以124x x ≥,当且仅当12x x =时取等号, 又因1212x x <<<,所以124x x >,故C 错误; ()21121212122112233x xx x x x x x x x ⎛⎫+++=+++ ≥⎪⎝⎭=当且仅当21122x x x x =,即21x 时,取等号,故D 正确. 故选:ABD. 8.CD 【分析】方程()0f x t -=即()f x t =,作出函数()f x 的简图,数形结合可得结果. 【详解】方程()0f x t -=即()f x t =,作出函数()f x 的简图,由图可知:当0t <时,函数()y f x =的图象与直线y t =有2个交点,即方程()0f x t -=有2个实数解;当0t =时,函数()y f x =的图象与直线y t =有3个交点,即方程()0f x t -=有3个实数解,故A 错误;当4t >时,函数()y f x =的图象与直线y t =有1个交点,即方程()0f x t -=有1个实数解,故B 错误; 当04t <<时,函数()y f x =的图象与直线y t =有3个交点,即方程()0f x t -=有3个实数解,故C 正确; 当4t =时,函数()y f x =的图象与直线y t =有2个交点,即方程()0f x t -=有2个实数解,故D 正确. 故选:CD.9.102,3⎡⎫⎪⎢⎣⎭【分析】通过参变分离,转化为1a x x =+在1(,3)2上有解,转化为求函数t =x +1x ,x ∵1(,3)2的值域. 【详解】由题意知方程ax =x 2+1在1(,3)2上有解,即1a x x =+在1(,3)2上有解.设t =x +1x ,x ∵1(,3)2,则t 的取值范围是102,3⎡⎫⎪⎢⎣⎭,所以实数a 的取值范围是102,3⎡⎫⎪⎢⎣⎭.故答案为:102,3⎡⎫⎪⎢⎣⎭.10.3 【分析】根据函数零点存在定理,判断函数值的符号,即可判断函数零点个数. 【详解】解:由题意,因为()()230f f <,()()450f f <,()()560f f <,所以根据函数零点存在性定理,在区间(2,3)和(4,5)及(5,6)内至少有一个零点,故函数()y f x =在区间[]16,上的零点至少有3个,即n 的最小值为3, 故答案为:3. 11.2 【分析】利用方程的根于函数图象的交点之间的关系,结合指数函数和对数函数互为反函数的关系,作出图象即可求解【详解】a 是方程22x x +=的根,就是2x y =和2y x =-图象交点的横坐标;b 是方程2log 2x x +=的根,就是2log y x =和2y x =-图象交点的横坐标;在同一坐标系中画出函数2x y =,2log y x =,2y x =-的图象,如图所示:由图可知,a 是2x y =和2y x =-图象交点A 的横坐标,b 是2log y x =和2y x =-图象交点B 的横坐标,因为2x y =与2log y x =互为反函数, 所以图象关于直线y x =对称, 故点A ,B 也关于直线y x =对称, 所以点A ,B 为(),A a b ,(),B b a , 而点A ,B 又在2y x =-上, 所以2b a =-,2a b =-, 即2a b +=, 所以2a b +=, 故答案为:2 12.10a -<<. 【分析】用分离参数法变形方程为1a x x x =-++,引入函数()1g x x x x =-++,作出函数()g x 的图象,由图象与直线y a =有三个交点可得结论. 【详解】方程()f x x =可化为1a x x x =-++,设()1g x x x x =-++,则1,0()1,101,1x x g x x x x x -≥⎧⎪=---≤<⎨⎪+<-⎩,函数图象如下:由图象知()y g x =的图象与直线y a =有三个交点时,10a -<<. 13.(1)(0,2);(2)1. 【分析】(1)根据真数大于0即可. (2)令()0f x =即可. 【详解】(1)由已知可得200x x ->⎧⎨>⎩,解得02,()x f x <<∴的定义域为(0,2).(2)()()()212log 20,2f x x x x =-+∈,,由()0f x =得221x x -+=,即2210x x -+=,解得1x =, ()f x ∴的零点是1.14.(1)图象见解析;(2)01m <<. 【分析】(1)结合二次函数的图象与性质,对数函数的图象与性质利用描点法作函数的图象,(2)观察()f x 图象,根据()y f x =的图象与y m =的图象有三个交点确定m 的范围.【详解】 (1)作图如下:11(2)方程()f x m =有3个解等价于函数()y f x =的图象与y m =的图象有三个交点, 观察图象可得01m <<.。

高中数学方程的根与函数的零点练习题及答案

高中数学方程的根与函数的零点练习题及答案

高中数学方程的根与函数的零点练习题及答案高中数学方程的根与函数的零点练习题及答案一、选择题1.已知函数f(x)在区间[a,b]上单调,且f(a)f(b)0则方程f(x)=0在区间[a,b]上()A.至少有一实根 B.至多有一实根C.没有实根 D.必有唯一的实根[答案] D2.已知函数f(x)的图象是连续不断的,有如下的x、f(x)对应值表:x 1 2 3 4 5 6f(x) 123.56 21.45 -7.82 11.57 -53.76 -126.49函数f(x)在区间[1,6]上的零点至少有()A.2个 B.3个C.4个 D.5个[答案] B3.(2013~2014山东淄博一中高一期中试题)对于函数f(x)=x2+mx+n,若f(a)>0,f(b)>0,则f(x)在(a,b)上()A.一定有零点 B.可能有两个零点C.一定有没有零点 D.至少有一个零点[答案] B[解析] 若f(x)的'图象如图所示否定C、D若f(x)的图象与x轴无交点,满足f(a)0,f(b)0,则否定A,故选B.4.下列函数中,在[1,2]上有零点的是()A.f(x)=3x2-4x+5 B.f(x)=x3-5x-5C.f(x)=lnx-3x+6 D.f(x)=ex+3x-6[答案] D[解析] A:3x2-4x+5=0的判别式0,此方程无实数根,f(x)=3x2-4x+5在[1,2]上无零点.B:由f(x)=x3-5x-5=0得x3=5x+5.在同一坐标系中画出y=x3,x[1,2]与y=5x+5,x[1,2]的图象,如图1,两个图象没有交点.f(x)=0在[1,2]上无零点.C:由f(x)=0得lnx=3x-6,在同一坐标系中画出y=lnx与y=3x-6的图象,如图2所示,由图象知两个函数图象在[1,2]内没有交点,因而方程f(x)=0在[1,2]内没有零点.D:∵f(1)=e+31-6=e-30,f(2)=e20,f(1)f(2)0.f(x)在[1,2]内有零点.5.若函数f(x)=x2-ax+b的两个零点是2和3,则函数g(x)=bx2-ax-1的零点是()A.-1和16 B.1和-16C.12和13 D.-12和-13[答案] B[解析] 由于f(x)=x2-ax+b有两个零点2和3,a=5,b=6.g(x)=6x2-5x-1有两个零点1和-16.6.(2010福建理,4)函数f(x)=x2+2x-3,x0-2+lnx,x0的零点个数为()A.0 B.1C.2 D.3[答案] C[解析] 令x2+2x-3=0,x=-3或1;∵x0,x=-3;令-2+lnx=0,lnx=2,x=e20,故函数f(x)有两个零点.二、填空题7.已知函数f(x)=x+m的零点是2,则2m=________.[答案] 14[解析] ∵f(x)的零点是2,f(2)=0.2+m=0,解得m=-2.2m=2-2=14.8.函数f(x)=2x2-x-1,x0,3x-4,x>0的零点的个数为________.[答案] 2[解析] 当x0时,令2x2-x-1=0,解得x=-12(x=1舍去);当x>0时,令3x-4=0,解得x=log34,所以函数f(x)=2x2-x-1,x0,3x-4,x>0有2个零点.9.对于方程x3+x2-2x-1=0,有下列判断:①在(-2,-1)内有实数根;②在(-1,0)内有实数根;③在(1,2)内有实数根;④在(-,+)内没有实数根.其中正确的有________.(填序号)[答案] ①②③[解析] 设f(x)=x3+x2-2x-1,则f(-2)=-1<0,f(-1)=1>0,f(0)=-1<0,f(1)=-1<0,f(2)=7>0,则f(x)在(-2,-1),(-1,0),(1,2)内均有零点,即①②③正确.三、解答题10.已知函数f(x)=2x-x2,问方程f(x)=0在区间[-1,0]内是否有解,为什么?[解析] 因为f(-1)=2-1-(-1)2=-12<0,f(0)=20-02=1>0,而函数f(x)=2x-x2的图象是连续曲线,所以f(x)在区间[-1,0]内有零点,即方程f(x)=0在区间[-1,0]内有解.11.判断下列函数是否存在零点,如果存在,请求出.(1)f(x)=-8x2+7x+1;(2)f(x)=x2+x+2;(3)f(x)=x2+4x-12x-2;(4)f(x)=3x+1-7;(5)f(x)=log5(2x-3).[解析] (1)因为f(x)=-8x2+7x+1=-(8x+1)(x-1),令f(x)=0,解得x=-18或x=1,所以函数的零点为-18和1.(2)令x2+x+2=0,因为=12-412=-70,所以方程无实数根,所以f(x)=x2+x+2不存在零点.(3)因为f(x)=x2+4x-12x-2=x+6x-2x-2,令x+6x-2x-2=0,解得x=-6,所以函数的零点为-6.(4)令3x+1-7=0,解得x=log373,所以函数的零点为log373.(5)令log5(2x-3)=0,解得x=2,所以函数的零点为2.12.(2013~2014北京高一检测)已知二次函数y=(m+2)x2-(2m+4)x+(3m+3)有两个零点,一个大于1,一个小于1,求实数m 的取值范围.[解析] 设f(x)=(m+2)x2-(2m+4)x+(3m+3),如图,有两种情况.第一种情况,m+2>0,f1<0,解得-2<m<-12.第二种情况,m+2<0,f1>0,此不等式组无解.综上,m的取值范围是-2<m<-12.。

新人教A版必修1 3.1.1 方程的根与函数的零点

新人教A版必修1    3.1.1  方程的根与函数的零点

)
解析:易知 f(x)在其定义域上为增函数. 3 ∵f(6)=lg 6- <0, 2 9 f(7)=lg 7- <0, 7 9 f(8)=lg 8- <0, 8 f(9)=lg 9-1<0, 9 f(10)=lg 10- >0, 10 ∴f(9)· f(10)<0,∴零点在区间(9,10)内.
答案:D
+1=0 -2x+1
Δ= 0
(1,0)
x2=1
方程
对应 判别 方程 函数 式 的根
函数的图象
图象与x轴 交点坐标 无交点
x2- f(x)=
2x+
x2-
Δ= 无实
3=0 2x+3 2x-4 f(x)=
-8
数根
x= 2
(2,0)
=0
2x-4
问题2:方程的根与对应函数的图象有何关系? 提示:方程的根是使函数值等于零的自变量值, 也就是函数图象与x轴交点的横坐标.
函数零点的存在性定理
如果函数y=f(x)在区间[a,b]上的图象是 连续不断 的 f(b)<0 ,那么,函数y=f(x)在区间 一条曲线,并且有 f(a)·
(a,b)内有零点,即存在c∈(a,b),使得 f(c)=0 ,这个c 也就是方程f(x)=0的根.
1.函数的零点是一个实数,当自变量取该值 时,其函数值等于零. 2.根据函数零点的定义可知,函数f(x)的零
[精解详析]
(1)∵f(x)=-x2-2x+3
=-(x+3)(x-1),
∴方程-x2-2x+3=0的两根分别是-3和1. 故函数的零点是-3,1. (2)∵f(x)=x4-1=(x2+1)(x+1)(x-1), ∴方程x4-1=0的实数根是-1或1.

方程的根与函数的零点(最终版)

方程的根与函数的零点(最终版)

10
8
6
函数图象
方程的根
7
x2 2x 36 0
5
f
(x)
x2
4
2x
3
3
2
1
4
-3
2
-1
1
2
1
2
8
6
3 -3
4 -4
y5
x1 3
x2 1
2x 1 0
f ( x) 5 2x 1
4
3
2
4
6
1
8
10
4
2 15
0
1
2
3
4
2 10
4
x0
函数图象与x轴 的交点坐标
(-3, 0) (1, 0)
(0, 0)
例二、已知函数 y f (x) 是R上的连续函数,观
察下表,判断函数在哪些区间内一定存在零点, 并简述理由。
x123456789
f(x) 0.2 0.4 -0.4 -0.3 1 6 8 -3 -1
例三、试判断函数 f (x) ex x 4是否有零点, 若有,有几个?
解:因为 f (1) e 3 0 且 f (2) e2 2 0 所以函数在区间(1, 2) 存在零点;
零点:对于函数 y f (x),我们把使 f (x)=0的 实数x叫做函数 y f (x)的零点。
代数方面:零点就是方程 f (x)=0 的实根 图形方面:零点就是函数 y f (x) 的图象
与x轴交点的横坐标
判断方程 f (x) 0 是否有实根 判断函数 y f (x) 的图象与x轴是否有交点
判断函数 y f (x) 是否有零点
1
f (x) x2 x 6

函数的零点与方程的解(经典导学案及练习答案详解)

函数的零点与方程的解(经典导学案及练习答案详解)

§2.9函数的零点与方程的解学习目标1.理解函数的零点与方程的解的联系.2.理解函数零点存在定理,并能简单应用.3.了解用二分法求方程的近似解.知识梳理1.函数的零点与方程的解(1)函数零点的概念对于一般函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.(2)函数零点与方程实数解的关系方程f(x)=0有实数解⇔函数y=f(x)有零点⇔函数y=f(x)的图象与x轴有公共点.(3)函数零点存在定理如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.2.二分法对于在区间[a,b]上图象连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数的零点就是函数的图象与x轴的交点.(×)(2)连续函数y=f(x)在区间(a,b)内有零点,则f(a)·f(b)<0.(×)(3)函数y=f(x)为R上的单调函数,则f(x)有且仅有一个零点.(×)(4)二次函数y=ax2+bx+c(a≠0),若b2-4ac<0,则f(x)无零点.(√)教材改编题1.(多选)已知函数f(x)的图象是连续不断的,且有如下对应值表:x 1234567f(x)-4-2142-1-3在下列区间中,函数f(x)必有零点的区间为()A.(1,2) B.(2,3) C.(5,6) D.(5,7)答案 BCD解析 由所给的函数值表知, f (1)f (2)>0,f (2)f (3)<0,f (5)f (6)<0, f (5)f (7)<0,∴f (x )在区间(2,3),(5,6),(5,7)内各至少有一个零点.2.已知函数f (x )=⎩⎪⎨⎪⎧x 2+x -2,x ≤0,-1+ln x ,x >0,则f (x )的零点为________.答案 -2,e解析 ⎩⎪⎨⎪⎧ x ≤0,x 2+x -2=0或⎩⎪⎨⎪⎧x >0,-1+ln x =0,解得x =-2或x =e.3.方程2x +x =k 在(1,2)内有解,则实数k 的取值范围是________. 答案 (3,6)解析 设f (x )=2x +x , ∴f (x )在(1,2)上单调递增, 又f (1)=3,f (2)=6, ∴3<k <6.题型一 函数零点所在区间的判定例1 (1)(多选)(2022·菏泽质检)函数f (x )=e x -x -2在下列哪个区间内必有零点( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)答案 AD解析 f (-2)=1e 2>0,f (-1)=1e -1<0,f (0)=-1<0,f (1)=e -3<0, f (2)=e 2-4>0,因为f (-2)·f (-1)<0,f (1)·f (2)<0, 所以f (x )在(-2,-1)和(1,2)内存在零点.(2)若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )·(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内 答案 A解析 函数y =f (x )是开口向上的二次函数,最多有两个零点,由于a <b <c ,则a -b <0,a -c <0,b -c <0,因此f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.所以f (a )f (b )<0,f (b )f (c )<0,即f (x )在区间(a ,b )和区间(b ,c )内各有一个零点. 教师备选(2022·湖南雅礼中学月考)设函数f (x )=13x -ln x ,则函数y =f (x )( )A .在区间⎝⎛⎭⎫1e ,1,(1,e)内均有零点 B .在区间⎝⎛⎭⎫1e ,1,(1,e)内均无零点C .在区间⎝⎛⎭⎫1e ,1内有零点,在区间(1,e)内无零点D .在区间⎝⎛⎭⎫1e ,1内无零点,在区间(1,e)内有零点 答案 D解析 f (x )的定义域为{x |x >0}, f ′(x )=13-1x =x -33x,令f ′(x )>0⇒x >3,f ′(x )<0⇒0<x <3,∴f (x )在(0,3)上单调递减,在(3,+∞)上单调递增, 又f ⎝⎛⎭⎫1e =13e +1>0,f (1)=13>0, ∴f (x )在⎝⎛⎭⎫1e ,1内无零点.又f (e)=e3-1<0,∴f (x )在(1,e)内有零点.思维升华 确定函数零点所在区间的常用方法(1)利用函数零点存在定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(2)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断. 跟踪训练1 (1)(2022·太原模拟)利用二分法求方程log 3x =3-x 的近似解,可以取的一个区间是( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)答案 C解析 设f (x )=log 3x -3+x , 当x →0时,f (x )→-∞,f (1)=-2, 又∵f (2)=log 32-1<0, f (3)=log 33-3+3=1>0, 故f (2)·f (3)<0,故方程log 3x =3-x 在区间(2,3)上有解,即利用二分法求方程log 3x =3-x 的近似解,可以取的一个区间是(2,3).(2)已知2<a <3<b <4,函数y =log a x 与y =-x +b 的交点为(x 0,y 0),且x 0∈(n ,n +1),n ∈N *,则n =________. 答案 2解析 依题意x 0为方程log a x =-x +b 的解, 即为函数f (x )=log a x +x -b 的零点, ∵2<a <3<b <4,∴f (x )在(0,+∞)上单调递增, 又f (2)=log a 2+2-b <0, f (3)=log a 3+3-b >0, ∴x 0∈(2,3),即n =2. 题型二 函数零点个数的判定例2 (1)(2022·绍兴模拟)若函数y =f (x )(x ∈R )满足f (x +1)=-f (x ),且x ∈[-1,1]时,f (x )=1-x 2,已知函数g (x )=⎩⎪⎨⎪⎧|lg x |,x >0,e x ,x <0,则函数h (x )=f (x )-g (x )在区间[-6,6]内的零点个数为( )A .14B .13C .12D .11 答案 C解析 因为f (x +1)=-f (x ),所以函数y =f (x )(x ∈R )是周期为2函数, 因为x ∈[-1,1]时,f (x )=1-x 2,所以作出它的图象,则y =f (x )的图象如图所示.(注意拓展它的区间)再作出函数g (x )=⎩⎪⎨⎪⎧|lg x |,x >0,e x ,x <0的图象,容易得出交点为12个.(2)函数f (x )=36-x 2·cos x 的零点个数为______. 答案 6解析 令36-x 2≥0,解得-6≤x ≤6, ∴f (x )的定义域为[-6,6].令f (x )=0得36-x 2=0或cos x =0, 由36-x 2=0得x =±6, 由cos x =0得x =π2+k π,k ∈Z ,又x ∈[-6,6],∴x 为-3π2,-π2,π2,3π2.故f (x )共有6个零点. 教师备选函数f (x )=2x |log 2x |-1的零点个数为( ) A .0 B .1 C .2 D .4 答案 C解析 令f (x )=0,得|log 2x |=⎝⎛⎭⎫12x ,分别作出y =|log 2x |与y =⎝⎛⎭⎫12x 的图象(图略), 由图可知,y =|log 2x |与y =⎝⎛⎭⎫12x的图象有两个交点,即原函数有2个零点. 思维升华 求解函数零点个数的基本方法(1)直接法:令f (x )=0,方程有多少个解,则f (x )有多少个零点; (2)定理法:利用定理时往往还要结合函数的单调性、奇偶性等;(3)图象法:一般是把函数拆分为两个简单函数,依据两函数图象的交点个数得出函数的零点个数.跟踪训练2 (1)函数f (x )是R 上最小正周期为2的周期函数,当0≤x <2时f (x )=x 2-x ,则函数y =f (x )的图象在区间[-3,3]上与x 轴的交点个数为( ) A .6 B .7 C .8 D .9 答案 B解析 令f (x )=x 2-x =0,所以x =0或x =1,所以f (0)=0,f (1)=0, 因为函数的最小正周期为2, 所以f (2)=0,f (3)=0,f (-2)=0,f (-1)=0,f (-3)=0.所以函数y =f (x )的图象在区间[-3,3]上与x 轴的交点个数为7.(2)(2022·泉州模拟)设定义域为R 的函数f (x )=⎩⎪⎨⎪⎧|lg x |,x >0,-x 2-2x ,x ≤0,则关于x 的函数y =2f 2(x )-3f (x )+1的零点的个数为( ) A .3 B .7 C .5 D .6 答案 B解析 根据题意,令2f 2(x )-3f (x )+1=0, 得f (x )=1或f (x )=12.作出f (x )的简图:由图象可得当f (x )=1和f (x )=12时,分别有3个和4个交点,故关于x 的函数y =2f 2(x )-3f (x )+1的零点的个数为 7. 题型三 函数零点的应用命题点1 根据函数零点个数求参数例3 (2022·武汉模拟)已知函数f (x )=⎩⎪⎨⎪⎧|x 2+2x |,x ≤0,1x ,x >0,若关于x 的方程f (x )-a (x +3)=0有四个不同的实根,则实数a 的取值范围是( ) A .(-∞,4-23) B .(4+23,+∞) C .[0,4-23] D .(0,4-23)答案 D解析 画出f (x )的函数图象,设y =a (x +3),该直线恒过点(-3,0), 结合函数图象,若y =a (x +3)与y =-x 2-2x 相切,联立得x 2+(a +2)x +3a =0, Δ=(a +2)2-12a =0, 得a =4-23(a =4+23舍), 若f (x )=a (x +3)有四个不同的实数根, 则0<a <4-2 3.命题点2 根据函数零点范围求参数例4 (2022·北京顺义区模拟)已知函数f (x )=3x -1+axx .若存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围是( ) A.⎝⎛⎭⎫-∞,43 B.⎝⎛⎭⎫0,43 C .(-∞,0) D.⎝⎛⎭⎫43,+∞ 答案 B解析 由f (x )=3x -1+ax x =0,可得a =3x -1x,令g (x )=3x -1x ,其中x ∈(-∞,-1),由于存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围即为函数g (x )在(-∞,-1)上的值域.由于函数y =3x ,y =-1x 在区间(-∞,-1)上均单调递增,所以函数g (x )在(-∞,-1)上单调递增.当x ∈(-∞,-1)时, g (x )=3x -1x <3-1+1=43,又g (x )=3x -1x>0,所以函数g (x )在(-∞,-1)上的值域为⎝⎛⎭⎫0,43. 因此实数a 的取值范围是⎝⎛⎭⎫0,43. 教师备选1.函数f (x )=xx +2-kx 2有两个零点,则实数k 的值为________.答案 -1解析 由f (x )=xx +2-kx 2=x ⎝⎛⎭⎫1x +2-kx ,函数f (x )=x x +2-kx 2有两个零点,即函数y =1x +2-kx 只有一个零点x 0,且x 0≠0.即方程1x +2-kx =0有且只有一个非零实根.显然k ≠0,即1k=x 2+2x 有且只有一个非零实根.即二次函数y =x 2+2x 的图象与直线y =1k 有且只有一个交点(横坐标不为零).作出二次函数y =x 2+2x 的图象,如图.因为1k ≠0,由图可知,当1k>-1时,函数y =x 2+2x 的图象与直线y =1k 有两个交点,不满足条件.当1k=-1,即k =-1时满足条件. 当1k <-1时,函数y =x 2+2x 的图象与直线y =1k无交点,不满足条件. 2.若函数f (x )=(m -2)x 2+mx +2m +1的两个零点分别在区间(-1,0)和区间(1,2)内,则m 的取值范围是________. 答案 ⎝⎛⎭⎫14,12解析 依题意,结合函数f (x )的图象分析可知,m 需满足⎩⎪⎨⎪⎧m ≠2,f (-1)·f (0)<0,f (1)·f (2)<0,即⎩⎪⎨⎪⎧m ≠2,(m -2-m +2m +1)(2m +1)<0,(m -2+m +2m +1)·[4(m -2)+2m +2m +1]<0, 解得14<m <12.思维升华 已知函数有零点求参数值或取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围. (2)分离参数法:将参数分离,转化成求函数值域的问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.跟踪训练3 (1)(多选)设函数f (x )=⎩⎪⎨⎪⎧|ln x |,x >0,e x (x +1),x ≤0.若函数g (x )=f (x )-b 有三个零点,则实数b 可取的值可能是( ) A .0 B.13 C.12 D .1答案 BCD解析 函数g (x )=f (x )-b 有三个零点等价于函数y =f (x )的图象与直线y =b 有三个不同的交点, 当x ≤0时,f (x )=(x +1)e x , 则f ′(x )=e x +(x +1)e x =(x +2)e x ,所以f (x )在(-∞,-2)上单调递减,在(-2,0]上单调递增,且f (-2)=-1e 2,f (0)=1,x →-∞时,f (x )→0,从而可得f (x )的图象如图所示,通过图象可知,若函数y =f (x )的图象与直线y =b 有三个不同的交点,则b ∈(0,1]. (2)已知函数f (x )=log 2(x +1)-1x +m 在区间(1,3]上有零点,则m 的取值范围为( )A.⎝⎛⎭⎫-53,0 B.⎝⎛⎭⎫-∞,-53∪(0,+∞) C.⎝⎛⎦⎤-∞,-53∪(0,+∞) D.⎣⎡⎭⎫-53,0 答案 D解析 由于函数y =log 2(x +1),y =m -1x 在区间(1,3]上单调递增,所以函数f (x )在(1,3]上单调递增,由于函数f (x )=log 2(x +1)-1x+m 在区间(1,3]上有零点,则⎩⎪⎨⎪⎧f (1)<0,f (3)≥0,即⎩⎪⎨⎪⎧m <0,m +53≥0,解得-53≤m <0.因此,实数m 的取值范围是⎣⎡⎭⎫-53,0.课时精练1.函数f (x )=x 3-⎝⎛⎭⎫12x -2的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)答案 B解析 由题意知,f (x )=x 3-⎝⎛⎭⎫12x -2,f (0)=-4,f (1)=-1,f (2)=7,因为f (x )在R 上连续且在R 上单调递增,所以f (1)·f (2)<0,f (x )在(1,2)内有唯一零点.2.设函数f (x )=4x 3+x -8,用二分法求方程4x 3+x -8=0近似解的过程中,计算得到f (1)<0,f (3)>0,则方程的近似解落在区间( )A.⎝⎛⎭⎫1,32 B.⎝⎛⎭⎫32,2 C.⎝⎛⎭⎫2,52 D.⎝⎛⎭⎫52,3 答案 A解析 取x 1=2,因为f (2)=4×8+2-8=26>0,所以方程近似解x 0∈(1,2),取x 2=32, 因为f ⎝⎛⎭⎫32=4×278+32-8=7>0, 所以方程近似解x 0∈⎝⎛⎭⎫1,32. 3.(2022·武汉质检)若函数f (x )=x 2-ax +1在区间⎝⎛⎭⎫12,3上有零点,则实数a 的取值范围是( )A .(2,+∞)B .[2,+∞) C.⎣⎡⎭⎫2,52 D.⎣⎡⎭⎫2,103 答案 D解析 由题意知方程ax =x 2+1在⎝⎛⎭⎫12,3上有实数解,即a =x +1x 在⎝⎛⎭⎫12,3上有解, 设t =x +1x,x ∈⎝⎛⎭⎫12,3, 则t 的取值范围是⎣⎡⎭⎫2,103. 所以实数a 的取值范围是⎣⎡⎭⎫2,103. 4.若函数f (x )=⎩⎪⎨⎪⎧log 4(x -1),x >1,-3x -m ,x ≤1存在2个零点,则实数m 的取值范围为( ) A .[-3,0)B .[-1,0)C .[0,1)D .[-3,+∞)答案 A 解析 因为函数f (x )在(1,+∞)上单调递增,且f (2)=0,即f (x )在(1,+∞)上有一个零点,函数f (x )=⎩⎪⎨⎪⎧log 4(x -1),x >1,-3x -m ,x ≤1存在2个零点, 当且仅当f (x )在(-∞,1]上有一个零点,x ≤1时,f (x )=0⇔m =-3x ,即函数y =-3x 在(-∞,1]上的图象与直线y =m 有一个公共点,而y =-3x 在(-∞,1]上单调递减,且有-3≤-3x <0,则当-3≤m <0时,直线y =m 和函数y =-3x (x ≤1)的图象有一个公共点.5.(2022·重庆质检)已知函数f (x )=⎝⎛⎭⎫13x -log 2x ,设0<a <b <c ,且满足f (a )·f (b )·f (c )<0,若实数x 0是方程f (x )=0的一个解,那么下列不等式中不可能成立的是( )A .x 0<aB .x 0>cC .x 0<cD .x 0>b答案 B解析 f (x )=⎝⎛⎭⎫13x -log 2x 在(0,+∞)上单调递减,由f (a )·f (b )·f (c )<0, 得f (a )<0,f (b )<0,f (c )<0或f (a )>0,f (b )>0,f (c )<0.∴x 0<a 或b <x 0<c ,故x 0>c 不成立.6.(2022·北京西城区模拟)若偶函数f (x )(x ∈R )满足f (x +2)=f (x )且x ∈[0,1]时,f (x )=x ,则方程f (x )=log 3|x |的根的个数是( )A .2B .3C .4D .多于4答案 C解析 f (x )=log 3|x |的解的个数,等价于y =f (x )的图象与函数y =log 3|x |的图象的交点个数,因为函数f (x )满足f (x +2)=f (x ),所以周期T =2,当x ∈[0,1]时,f (x )=x ,且f (x )为偶函数,在同一平面直角坐标系中画出函数y =f (x )的图象与函数y =log 3|x |的图象,如图所示.显然函数y =f (x )的图象与函数y =log 3|x |的图象有4个交点.7.(多选)函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 的交点个数可能是( )A .1B .2C .4D .6答案 ABC解析 由题意知,f (x )=sin x +2|sin x |,x ∈[0,2π],f (x )=⎩⎪⎨⎪⎧3sin x ,x ∈[0,π],-sin x ,x ∈(π,2π], 在坐标系中画出函数f (x )的图象如图所示.由其图象知,直线y =k 与y =f (x )的图象交点个数可能为0,1,2,3,4.8.(多选)(2022·南京模拟)在数学中,布劳威尔不动点定理可应用到有限维空间,并是构成一般不动点定理的基石,它得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer),简单的讲就是对于满足一定条件的连续函数f (x ),存在一个点x 0,使得f (x 0)=x 0,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是( )A .f (x )=2x +xB .g (x )=x 2-x -3C .f (x )=12x +1D .f (x )=|log 2x |-1答案 BCD解析 选项A ,若f (x 0)=x 0,则02x =0,该方程无解,故A 中函数不是“不动点”函数;选项B ,若g (x 0)=x 0,则x 20-2x 0-3=0,解得x 0=3或x 0=-1,故B 中函数是“不动点”函数;选项C ,若f (x 0)=x 0,则120x +1=x 0,可得x 20-3x 0+1=0,且x 0≥1,解得x 0=3+52,故C 中函数是“不动点”函数; 选项D ,若f (x 0)=x 0,则|log 2x 0|-1=x 0,即|log 2x 0|=x 0+1,作出y =|log 2x |与y =x +1的函数图象,如图,由图可知,方程|log 2x |=x +1有实数根x 0,即|log 2x 0|=x 0+1,故D 中函数是“不动点”函数.9.若函数f (x )=x 3+ax 2+bx +c 是奇函数,且有三个不同的零点,写出一个符合条件的函数:f (x )=________.答案 x 3-x (答案不唯一)解析 f (x )=x 3+ax 2+bx +c 为奇函数,故a =c =0,f (x )=x 3+bx =x (x 2+b )有三个不同零点,∴b <0,∴f (x )=x 3-x 满足题意.10.函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥0,-x 2-2x +1,x <0,若函数y =f (x )-m 有三个不同的零点,则实数m 的取值范围是________.答案 (1,2)解析 画出函数y =f (x )与y =m 的图象,如图所示,注意当x =-1时,f (-1)=-1+2+1=2,f (0)=1,∵函数y =f (x )-m 有三个不同的零点,∴函数y =f (x )与y =m 的图象有3个交点,由图象可得m 的取值范围为1<m <2.11.(2022·枣庄模拟)已知函数f (x )=|ln x |,若函数g (x )=f (x )-ax 在区间(0,e 2]上有三个零点,则实数a 的取值范围是______________.答案 ⎣⎡⎭⎫2e 2,1e 解析 ∵函数g (x )=f (x )-ax 在区间(0,e 2]上有三个零点,∴y =f (x )的图象与直线y =ax 在区间(0,e 2]上有三个交点,由函数y =f (x )与y =ax 的图象可知,k 1=2-0e 2-0=2e2, f (x )=ln x (x >1),f ′(x )=1x, 设切点坐标为(t ,ln t ),则ln t -0t -0=1t , 解得t =e.∴k 2=1e. 则直线y =ax 的斜率a ∈⎣⎡⎭⎫2e 2,1e .12.(2022·济南质检)若x 1是方程x e x =1的解,x 2是方程x ln x =1的解,则x 1x 2=________. 答案 1解析 x 1,x 2分别是函数y =e x ,函数y =ln x 与函数y =1x的图象的交点A ,B 的横坐标,所以A ⎝⎛⎭⎫x 1,1x 1,B ⎝⎛⎭⎫x 2,1x 2两点关于y =x 对称,因此x 1x 2=1.13.已知函数f (x )=2x +x -1,g (x )=log 2x +x -1,h (x )=x 3+x -1的零点分别为a ,b ,c ,则a ,b ,c 的大小为( )A .c >b >aB .b >c >aC .c >a >bD .a >c >b答案 B解析 令f (x )=0,则2x +x -1=0,得x =0,即a =0,令g (x )=0,则log 2x +x -1=0,得x =1,即b =1,因为函数h (x )=x 3+x -1在R 上为增函数,且h (0)=-1<0,h (1)=1>0,所以h (x )在区间(0,1)上存在唯一零点c ,且c ∈(0,1),综上,b >c >a .14.(2022·厦门模拟)已知函数f (x )=⎩⎪⎨⎪⎧ x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))的所有零点之和为________.答案 12 解析 当x ≤0时,x +1=0,x =-1,由f (x )=-1,可得x +1=-1或log 2x =-1,∴x =-2或x =12;当x >0时,log 2x =0,x =1,由f (x )=1,可得x +1=1或log 2x =1,∴x =0或x =2;∴函数y =f (f (x ))的所有零点为-2,12,0,2,∴所有零点的和为-2+12+0+2=12.15.若关于x 的方程|x |x +4=kx 2有四个不同的实数解,则k 的取值范围为() A .(0,1) B.⎝⎛⎭⎫14,1C.⎝⎛⎭⎫14,+∞ D .(1,+∞)答案 C解析 因为|x |x +4=kx 2有四个实数解,显然,x =0是方程的一个解,下面只考虑x ≠0时有三个实数解即可.若x >0,原方程等价于1=kx (x +4),显然k ≠0,则1k =x (x +4).要使该方程有解,必须k >0,则1k +4=(x +2)2,此时x >0,方程有且必有一解;所以当x <0时必须有两解,当x <0时,原方程等价于-1=kx (x +4),即-1k=x (x +4)(x <0且x ≠-4),要使该方程有两解, 必须-4<-1k<0, 所以k >14. 所以实数k 的取值范围为⎝⎛⎭⎫14,+∞. 16.已知M ={α|f (α)=0},N ={β|g (β)=0},若存在α∈M ,β∈N ,使得|α-β|<n ,则称函数f (x )与g (x )互为“n 度零点函数”.若f (x )=32-x -1与g (x )=x 2-a e x 互为“1度零点函数”,则实数a 的取值范围为________.答案 ⎝⎛⎦⎤1e ,4e 2解析 由题意可知f (2)=0,且f (x )在R 上单调递减,所以函数f (x )只有一个零点2,由|2-β|<1,得1<β<3,所以函数g (x )=x 2-a e x 在区间(1,3)上存在零点.由g (x )=x 2-a e x =0,得a =x 2e x . 令h (x )=x 2e x ,则h ′(x )=2x -x 2e x =x (2-x )e x,所以h (x )在区间(1,2)上单调递增,在区间(2,3)上单调递减,且h (1)=1e ,h (2)=4e 2,h (3)=9e 3>1e,要使函数g (x )在区间(1,3)上存在零点,只需a ∈⎝⎛⎦⎤1e ,4e 2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的零点和方程的根经典练习题
1.函数2()41f x x x =--+的零点为( )
A
、12-+ B
、12-- C
、12
-± D 、不存在 2、函数32()32f x x x x =-+的零点个数为( )
A 、0
B 、1
C 、2
D 、3
3、函数()ln 26f x x x =+-的零点一定位于区间( ).
A. (1, 2)
B. (2 , 3)
C. (3, 4)
D. (4, 5)
4、已知[x ]表示不超过实数x 的最大整数,g (x )=[x ]为取整函数,x 0是函数f (x )=ln x -2x
的零点,则g (x 0)等于________
5、若定义在R 上的偶函数f(x)满足f(x +2)=f(x),且当x ∈[0,1]时,f(x)=x ,则函数y =f(x)-log 3|x|的零点个数是
6、定义在R 上的奇函数()f x ,当0x ≥时,2log (1)(01)()|3|1(1)x x f x x x +≤<⎧=⎨--≥⎩,则函数1()()2
g x f x =-的所有零点之和为_____ 7、若方程0x a x a --=有两个实数解,则a 的取值范围是
8、已知函数f(x)=32,2(1),2x x x x ⎧≥⎪⎨⎪-<⎩
若关于x 的方程f(x)=k 有两个不同的实根,则实数k 的
取值范围是________.
9、已知f (x +1)=-f (x ),且f (x )是偶函数,当x ∈[0,1]时,f (x )=x 2.若在区间[-1,3]内,函数g (x )=f (x )-kx -k 有4个零点,则实数k 的取值范围为________.
10、设定义域为R 的函数⎩⎨⎧
--=x x x x f 2lg )(2)0()0(≤>x x ,若关于x 的函数 +=)(22x f y 1)(2+x bf 有8个不同的零点,则实数b 的取值范围是____________.
11、求证方程231
x x x -=
+在(0,1)内必有一个实数根.
12、已知关于x 的方程x 2+2mx +2m +3=0的两个不等实根都在区间(0,2)内,求实数m 的取值范围.。

相关文档
最新文档