行列式习题

行列式习题
行列式习题

[自测题Ⅰ]

一. 填空题。

1.若,0==ij n a D 则=

-=ij a D 。

2.已知,11

11203

=z y x

则=--1

1

426

12

324z y

x x 。

3.行列式

=0

650

30040430

2003

4.行列式=199

4210221

30113。

5.方程

027********

11113

2=x x x

的全部根是

二.选择题。 1.下列各项中,( )是4阶行列式的一项。

(A )42341321a a a a -; (B )42332111a a a a -; (C )44131231a a a a -; (D )41322114a a a a -。 2.5阶行列式的展开式中共有( )项。

(A )2

5; (B )5!; (C )10; (D )15。

3.行列式=600

300301395200199204

200103( )。

(A )1000 (B )-1000 (C )2000 (D )-2000 4. 设

,30

30

32

1

1n

a a a D

=

,0

02

1

2n

a a a D

=

其中021≠n a a a ,则( )。 (A )21D D =; (B )2131

D n

D =

; (C )213D D n =; (D )213D D n -=。

5. 齐次线性方程组???

??=-+=+-=-+0

302022321

321321x x x x x x x x x λ 只有零解,则λ应满足的条件是( )。

(A )0=λ (B )2=λ (C )1=λ (D )1≠λ

三.计算题。

1.设,216125642736251691

1116543=D 计算44434241A A A A +++。

2.已知,11

000100

011=z y x z y x 求z y x ,,。

3.计算,0

1

001

01

1

11210

n

a a a a D

= ).0(21≠n a a a 4.问λ取何值时,线性方程组???

??=-+=++=-0

22213321

32131x x x x x x x x λλ 有唯一解。

四.综合题。

1.证明 2=+++++++++y x x z z y q p p

r r

q b a a c c

b .z

y

x

r q p c b a 2.设n

n x c x c x c c x f ++++= 2210)(,若)(x f 有1+n 个不同的零点,证明)(x f 是零

多项式。

3.计算n 阶行列式

n

n n n n

n

n b a b a b a b a b a b a b a b a b a D +++++++++=

11111111121222121211

1 。

[自测题Ⅱ] 一.填空题。

1.已知函数x

x x x x x f 121

1

2)(---=,其中含有3x 的项是。

2.行列式

=1

11

11011011

0111。

3.方程03

2

1132

24

=---t t t 的实根是

4.设行列式2

23500702

2

2204

03--=

D ,则=+++44434241D D D D 。

5.若齐次线性方程组???

??=++=++=++0

00321

321321x x x x x x x x x λλ只有零解,则λ应满足

二.选择题。

1.设,00

00

03

21

==a a a D 其中321,,a a a 不全为零,那么D 是( )行列式。 (A ) 对角形; (B )上三角形; (C )下三角形; (D )以上都对。

2.行列式=a

b b b a b

b

b a ( )。

(A )3

)(b a -; (B )2

))(2(b a b a ++;

(C )2))(2(b a b a -+; (D )2))(2(b a b a +-。

3.若,033

3231

232221

13

1211

≠==m a a a a a a a a a D 则 =---=33

32

3131

23222121

13

121111

1254254254a a a a a a a a a a a a D ( )。 (A )m 40-; (B )m 40; (C )m 8-; (D )m 20。

4.设,3

475344535423333

22212223212)(---------------=x x x x x x x x x x x x x x x x x f 则方程0)(=x f 的根的个数为( )

。(A )1; (B )2; (C )3; (D )4。

5.若齐次线性方程组有非零解,则其系数行列式( )。

(A )必为0; (B )必不为0; (C )必为1; (D )可取任何值。

三.计算题。

1.设f d d d f c c c f

b b b f

a a a D 32

1

321322321

4=

,求第一列各元素的代数余子式之和41312111A A A A +++。 2.计算行列式332211

11

0011001100

1

b b b b b b D ------=

的值。

3.计算行列式2001

000000200000

200100

=

D 的值。 4.给定线性方程组???

??=++=++=++3321

23211321222222x

x x x x x x x x x x x λλλ,当λ取何值时,方程组有非零解?

四.综合题。

1.设γβα,,为互不相等的实数,证明 01

11

3

33

=γβαγβα

的充要条件是0=++γβα。 2.已知1632,2160,3696,5024都可被16整除。不经计算,证明

4

2

05

69630

612

2361可被16整除。

3.已知2

2b a ≠,证明方程组???

?????

?????=+=+=+=+=+=+-++-1

1111121

12211122

21n n n n n n n n ax bx ax bx ax bx bx ax bx

ax bx ax 有唯一解,并求其解。

[答案与提示]

[自测题Ⅰ]

一.填空题。

1.0; 2。1; 3。2; 4。25; 5。1,2,3 二.选择题。

1.A ; 2。B ; 3。C ; 4。C ; 5。D 。 三.计算题。

1.0444342414424432342224121=+++=+++A A A A A a A a A a A a 。 2.将左边行列式按最后一行展开得:

1

0011010001y x y

x z y x z +-= 1

10101x x

y x y z x z +

+ =12

2

2

+---x y z 则 02

2

2

=++z y x 所以 0===z y x 。

3.行列式的第1+i 列乘以)1(1

≥-

i a i 加到第1列上去,得 原式=

n n

i i

n

n

i i

a a a a a a a a a a

2110211

0)1

(0

00000

01111∑

==-=-。 4.2≠λ且5-≠λ。 四.综合题。

1.由行列式性质易证。

2.设)1,,2,1(+==n i a x i 时,0)(=x f 。则有

??

?

????=+++=+++=+++++.0,

0,0111022101110n n n n n

n n n a c a c c a c a c c a c a c c

把上述方程看成以n c c c ,,,10 为未知数的齐次线性方程组,其系数行列式恰为范德蒙德行列式,因)1,,2,1(+=n i a i 各不相同,故0≠D ,方程组仅有零解010====n c c c ,即0)(≡x f 。

3.原式=

?0

010010

012

1

n

a a a =0

00000

1

1121

n

b b b

???--,0),)((1212b b a a 22

?=n n 。

[自测题Ⅱ]

一.填空题。

1.3

2x -; 2。-3; 3。6; 4。-28; 5。1≠λ。

二.选择题。

1.D ; 2。C ; 3。C ; 4。B ; 5。A 。 三.计算题。

1.(1)当0=f 时,显然)4,3,2,1(01==i A i ,所以041312111=+++A A A A 。

(2)当0≠f 时,第4列元素与第1列对应元素的代数余子式乘积之和等于零,有

041312111=+++fA fA fA fA ,即0)(41312111=+++A A A A f ,

所以041312111=+++A A A A 。

2.将此行列式的第1行加到第2行,再将第2行加到第3行,然后将第3行加到第4行得

11

0001000

10001321=b b b 3.按任一行(列)展开,值为2001!。 4.1-=λ或5。 四.综合题。 1.展开行列式

))()()((1

113

33γβαβγαγαβγβαγβα++---=, 因γβα,,互不相等,故βγαγαβ---,,不为零,从而行列式为零的充要条件是

0=++γβα。

2.参见第三部分典型例题中的例4。

3.由第三部分典型例题中的例10,方程组的系数行列式的值0)(22

≠-n

b a ,所以方程

组有唯一解。由第1个方程和第n 2个方程有???=+=+11

2121n n ax bx bx ax 解得??

???+=

+=b a x b a x n 1121,同理由第

2个方程和第12-n 个方程,由第3个方程和第22-n 个方程,如此类推到由第n 个方程和

第1+n 个方程可解得b a x x b a x x n n n +==+==+-1,,11122 。 所以该方程组有唯一解)2,,1,,,2,1(1

n n n i b

a x i +=+=

上海市2019届高三数学一轮复习典型题专项训练:复数与行列式

上海市2019届高三数学一轮复习典型题专项训练 复数与行列式 一、复数 1、(2018上海高考)已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 2、(2017上海高考)已知复数z 满足3 0z z +=,则||z = 3、(2016上海高考)设i i Z 23+= ,期中i 为虚数单位,则Im z =__________________ 4、(宝山区2018高三上期末)若i z i 23-+= (其中i 为虚数单位),则Imz = . 5、(崇明区2018高三上期末(一模))若复数z 满足iz=1+i (i 为虚数单位),则z= . 6、(奉贤区2018高三上期末)复数 i +12 的虚部是________. 7、(静安区2018高三二模)若复数z 满足(1)2z i i -=(i 是虚数单位),则||z = 8、(普陀区2018高三二模)已知i 为虚数单位,若复数2(i)i a +为正实数,则实数a 的值为……………………………( ) )A (2 ()B 1 ()C 0 ()D 1- 9、(青浦区2018高三二模)若复数z 满足2315i z -=+(i 是虚数单位),则=z _____________. 10、(青浦区2018高三上期末)已知复数i 2i z =+(i 为虚数单位),则z z ?= . 11、(松江、闵行区2018高三二模)设m ∈R ,若复数(1i)(1i)m ++在复平面内对应的点位于实轴 上,则m = . 12、(松江区2018高三上期末)若i -2是关于x 的方程02 =++q px x 的一个根(其中i 为虚数单位,R q p ∈,),则q 的值为 A. 5- B. 5 C. 3- D. 3 13、(杨浦区2018高三上期末)在复平面内,复数2i z i -= 对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 14、(浦东新区2018高三二模)已知方程210x px -+=的两虚根为1x 、2x ,若12||1x x -=,则实数p 的值为( ) A. 3± B. 5± C. 3,5 D. 3±,5± 15、(浦东新区2018高三二模)在复数运算中下列三个式子是正确的:(1)1212||||||z z z z +≤+;(2)1212||||||z z z z ?=?;(3)123123()()z z z z z z ??=??,相应的在向量运算中,下列式子:(1)

行列式经典例题及计算方法

行列式的例题 1.已知方程 01125208 42111111154115 21211111154113 21111113 23232=+ + -x x x x x x x x x ,求x 。 解:由行列式的加法性质,原方程可化为 32321 12520842111111154118 4211111x x x x x x + 3 232 2781941321111112793184 211111x x x x x x = = =(2-1)(3-1)(3-2)(x-1)(x-2)(x-3)=0 得x=1或x=2或x=3。 2.计算:(化三角形法) 3.拆行列法 42031 2852 51873 121D =

行列式的计算 (四)升级法(加边法) 112122 1212 ,0 n n n n n n a b a a a a b a D b b b a a a b ++= ≠+ 1 21121221 21 1000n n n n n n n a a a a b a a D a a b a a a a b ++=++ 解:1) 1 21121 1 00(2,31)10010 0n i n a a a b r r i n b b --=+-- 121 (1).n i n i i a b b b b ==+∑ 111 11100 (1,21)00 n i n i i i i n a a a b c b c i n b b =+++ =+∑ 行列式的计算 (二)箭形行列式 0121112 2,0,1,2,3. n n i n n a b b b c a D a i n c a c a +=≠= 解:把所有的第列的倍加到(1,,)i n = i i c a -1i +第1列,得: 11201()n i i n n i i b c D a a a a a +==-∑

行列式经典例题

大学-----行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

(完整版)线性代数行列式第一章练习题答案

《线性代数》(工)单元练习题 一、填空题 1、设矩阵A 为4阶方阵,且|A |=5,则|A*|=__125____,|2A |=__80___,|1-A |= 1/5 2、若方程组?? ? ??=+=+=+a bz cy b az cx ay bx 0 有唯一解,则abc ≠ 0 3、把行列式的某一列的元素乘以同一数后加到另一列的对应元素上,行列式 0 . 4、当a 为 1 or 2 时,方程组??? ??=++=++=++0 40203221321321x a x x ax x x x x x 有非零解. 5、设=-+----=31211142,4 101322 13A A A D 则 .0 二、单项选择题 1.设) (则=---===33 3231312322212113 1211113332312322 211312 11324324324,1a a a a a a a a a a a a D a a a a a a a a a D B (A)0 ; (B)―12 ; (C )12 ; (D )1 2.设齐次线性方程组??? ??=+-=++=+02020z y kx z ky x z kx 有非零解,则k = ( A ) (A )2 (B )0 (C )-1 (D )-2 3.设A=7 925138 02-,则代数余子式 =12A ( B ) (A) 31- (B) 31 (C) 0 (D) 11- 4.已知四阶行列式D 中第三列元素依次为-1,2,0,1,它们的余子式依次分别为5,3,-7,4, 则D= ( A ) (A ) -15 (B ) 15 (C ) 0 (D ) 1 三、计算行列式

行列式练习题及答案资料

一、填空题 1.设自然数从小到大为标准次序,则排列1 3 … )12(-n 2 4 … )2(n 的逆序数为 ,排列1 3 … )12(-n )2(n )22(-n …2的逆序数为 . 2.在6阶行列式中,651456314223a a a a a a 这项的符号为 . 3.所有n 元排列中,奇排列的个数共 个. 二、选择题 1.由定义计算行列式n n 0 0000010 020 001000Λ ΛΛΛΛΛΛ ΛΛΛ -= ( ). (A )!n (B )!)1(2 ) 1(n n n -- (C )!) 1(2) 2)(1(n n n --- (D )!)1()1(n n n -- 2.在函数x x x x x x f 2 1 1 232 3 21 01)(= 中,3x 的系数是( ). (A )1 (B )-1 (C )2 (D )3 3.四阶行列式的展开式中含有因子32a 的项,共有( )个. (A )4; (B )2; (C )6; (D )8. 三、请按下列不同要求准确写出n 阶行列式)det(ij a D =定义式: 1. 各项以行标为标准顺序排列; 2. 各项以列标为标准顺序排列; 3. 各项行列标均以任意顺序排列. 四、若n 阶行列式中,等于零的元素个数大于n n -2,则此行列式的值等于多少?说明理由.

一、填空题 1.若D=._____324324324,133 32 3131 232221211312111113332 31 232221131211=---==a a a a a a a a a a a a D a a a a a a a a a 则 2.方程 2 2 913 2 5 1 3 232213211x x --=0的根为___________ . 二、计算题 1. 817116045153016 9144 3 1 2 ----- 2.d c b a 100 1100 11001--- 3.a b b b a b b b a D n Λ ΛΛΛΛΛΛ=

第一章行列式练习题目及答案

第一章 行列式 一、单项选择题 1.=0 001001001001000( ). (A) 0 (B)1- (C) 1 (D) 2 2. =0 001100000100100( ). (A) 0 (B)1- (C) 1 (D) 2 3. 若2 1 33 32 31 232221 131211 ==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 4.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 5. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 6. 若5 734111113263478 ----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 7. 若2 23 5 00 1 011110403 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0

8. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题 1. 行列式=0 100111010100111. 2.行列式 = -0 10000200 0010 n n . 3.行列式 =--0 01) 1(2211)1(111 n n n n a a a a a a . 4.如果M a a a a a a a a a D ==3332 31 232221131211 ,则=---=32 323331 2222232112121311133333 3a a a a a a a a a a a a D . 5.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为 . 6.行列式 = --+---+---111 1 111111111111 x x x x . 7.n 阶行列式=+++λλλ 111 1 11111 . 8.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3, 2, 1,则该行列式的值为 .

行列式习题答案

行列式习题答案

2 线性代数练习题 第一章 行 列 式 系 专业 班 姓名 学号 第一节 n 阶 行 列 式 一.选择题 1.若行列式x 5 22 31521- = 0,则 = x [ C ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组? ? ?=+=+4 733 22 1 21 x x x x ,则方程组的解),(2 1 x x = [ C ] (A )(13,5) (B )(13-,5) (C )(13, 5 -) (D )(5,13--) 3 . 方 程 09 3 142112 =x x 根的个数是 [ C ] (A )0 (B )1 (C )2 (D )3

3 4.下列构成六阶行列式展开式的各项中,取“+”的有 [ A ] (A )665144322315 a a a a a a (B )6553443226 11a a a a a a (C ) 34 6542165321a a a a a a (D ) 26 654413 3251a a a a a a 5.若55 443211) 541() 1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的 值及该项的符号为[ B ] (A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负 6.下列n (n >2)阶行列式的值必为零的是 [ BD ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1 2 21 --k k 0 ≠的充分必要条件是 3,1 k k ≠≠- 2.排列36715284的逆序数是 13 3.已知排列397461t s r 为奇排列,则r = 2,8,5 s

行列式习题课

第四讲 行列式习题课 一.主要内容 1.本章知识结构 1 全排列 把n 个不同的元素排成一列,叫做这n 个元素的全排列(或排列). n 个不同的元素的所有排列的种数用n P 表示,且!n P n =。 2 逆序数 在一个排列()n s t i i i i i 21中,若数s t i i >,则称这两个数组成一个逆序. 一个排列中所有逆序的总数称为此排列的逆序数. 逆序数为奇数的排列称为奇排列,逆序数为偶数的排列称为偶排列. 3 对 换 定义 在排列中,将任意两个元素对调,其余元素不动,称为一次对换.将相邻两个元素对调,叫做相邻对换. 定理 一个排列中的任意两个元素对换,排列改变奇偶性. 推论 奇排列调成标准排列的对换次数为奇数,偶排列调成标准排列的对换次数为偶数 4 n 阶行列式的定义 ()n p p p p p p t nn n n n n n n a a a a a a a a a a a a D 2121222211121121211∑-== . ,,2,1; ;,,2,12121的所有排列取和表示对为这个排列的逆序数的一个排列为自然数其中n t n p p p p p p n n ∑ .,212 1 2121)1(的逆序数为行标排列其中亦可定义为阶行列式p p p t D D n n n p p p p p p t a a a n n ∑-= 5 n 阶行列式的性质 .D D ,1)T =即式相等行列式与它的转置行列 .),()2行列式变号列互换行列式的两行

.,)()3则此行列式等于零完全相同列如果行列式有两行 . ,)()4乘此行列式等于用数一数中所有的元素都乘以同列行列式的某一行k k . )( )5面以提到行列式符号的外的所有元素的公因子可列行列式中某一行 ., )( )6则此行列式为零元素成比例列行列式中如果有两行 ., )( )7列式之和则此行列式等于两个行的元素都是两数之和行若行列式的某一列 . , )( , )( )8行列式的值不变对应的元素上去行然后加到另一列的各元素乘以同一数行把行列式的某一列6 行列式按行(列)展开 1) 余子式与代数余子式 . , 1 )1(的代数余子式叫做元素;记 的余子式,记作阶行列式叫做元素 列划去后,留下来的行和第所在的第阶行列式中,把元素在a A M A M a a ij ij ij j i ij ij ij ij n j i n -+=-2)关于代数余子式的重要性质 ?? ?≠==???≠===?? ?≠===∑∑==. ,0; ,1. ,0;,. ,0; ,11j i j i j i j i D D j i j i D D ij ij jk n k ik ij ki n k ki A a A a 当当其中 当当或 当当δδδ 8 克拉默法则 如果线性方程组 ????? ? ?=+++=+++=+++. , ,221 12222212111212111b x a x a x a b x a x a x a b x a x a x a n n nn n n n n n n 那么它有唯一解的系数行列式,0 ≠D .,,2,1,n j D D j j x == . , ,,2,11的行列式所得到,列换成常数项中第)是把系数行列式 (其中2b b b n j j D n j D = 二.典型例题 1.计算排列的逆序数 例1()()()()()., 132******** 并讨论奇偶性的逆序数求排列k k k k k k +--- 。 2.计算(证明)行列式 (1)用定义计算(证明) 例2 用行列式定义计算

行列式检验测试题(有规范标准答案)

第九讲 行列式单元测试题点评 一、填空题(每小题2分,满分20分) 1.全体3阶排列一共有 6 个,它们是123,132,213,231,312,321; 2. 奇排列经过奇数次对换变为偶排列,奇排列经过偶数次 对换变为奇排列; 3. 行列式D和它的转置行列式D'有关系式D D' =; 4. 交换一个行列式的两行(或两列),行列式的值改变符号; 5. 如果一个行列式有两行(或两列)的对应元素成比例,则这 个行列式等于零; 6. 一个行列式中某一行(列)所有元素的公因子可以提到 行列式符号的外边; 7. 把行列式的某一行(列)的元素乘以同一数后加到另一行(列) 的对应元素上,行列式的值不变; 8. 行列式的某一行(列)的元素与另一行(列)的对应元素的 代数余子式的乘积之和等于零; 9. 11121 222 1122 ; 00 n n nn nn a a a a a a a a a = L L K M M M M L

10.当 k=22 ±时,542k k k =。 二、判断题(每小题3分,满分24分) 1.1)(,)(31221±==k i i i i k i i i n n ΛΛππ则若 (∨) 的符号 的一般项则设n n j i j i j i nn n n n n a a a a a a a a a a a a D ΛΛ M M M M ΛΛ2211D ,.221 2222111211= .)1() (21n j j j Λπ-是 (×) 3. 若n(n>2)阶行列式D=0,则D 有两行(列)元素相同. (×) 4.若n 阶行列式D 恰有n 个元素非0,则D ≠0. (×) 5.对于线性方程组,只要方程个数等于未知数个数,就可以直接使用克莱姆法则求解。 (×) 6.若行列式D 的相同元素多于2n n -个,则D=0. (×) 7. 11 121313233321222312 222331 32 33 11 21 31 a a a a a a a a a a a a a a a a a a = (×) 8.n 阶行列式主对角线上元素乘积项带正号,副对角线上元素乘积项带负号。 (×) 三、单项选择题(每小题4分,满分20分) 1.位于n 级排列12111k k n i i i i i -+L L 中的数1与其余数形成的反序个数为( A )

行列式-矩阵练习题

行列式 矩阵练习题 一、单项选择题 1. 设行列式D=a 522315 21-=0,则a =( B ). A. 2 B. 3 C. -2 D. -3 2. 设A 是k ×l 矩阵,B 是m ×n 矩阵,如果AC T B 有意义,则矩阵C 的为( B ). A. k ×m B. k ×n C. m ×l D. l ×m 3. 设A 、B 均为n 阶矩阵,下列各式恒成立的是( B ). A. AB=BA B. (AB)T =B T A T C. (A+B)2=A 2+2AB+B 2 D. (A+B)(A-B)=A 2-B 2 4. A 为n 阶方阵,下面各项正确的是( C ). A. |-A|=-|A| B. 若|A|≠0,则AX=0有非零解 C. 若A 2=A,则A=E D. 若秩(A)k B. 秩(A)≥k C. 秩(A)=k D. 秩(A)≤k 6. 设A 、B 为同阶方阵,则下面各项正确的是( A ). A. 若|AB|=0, 则|A|=0或|B|=0 B. 若AB=0, 则A=0或B=0 C. A 2-B 2=(A-B)(A+B) D. 若A 、B 均可逆,则(AB)-1=A -1B -1 7. 当k 满足( A )时,?????=+=++=++0 z 2y -kx 0z ky 2x 0z ky kx 只有零解. A. k=2或k=-2 B. k ≠2 C. k ≠-2 D. k ≠2且k ≠-2 8. 设A 为n 阶可逆阵,则下列( B )恒成立. A.(2A)-1=2A -1 B. (2A -1)T =(2A T )-1 C. [(A -1)-1]T =[(A T )-1]-1 D. [(A T )T ]-1=[(A -1)-1]T 二、填空题

行列式典型例题

第二讲 行列式综合训练 第一部分 例2.1 计算行列式,其中对角线上元素都是a ,未写出的元素都是零. n D = 1 1 a a 解 这道题可以用多种方法进行求解,充分应用了行列式的各种性质. 方法1 利用性质,将行列式化为上三角行列式. n D 11c n c a -?= 101 a a a a - =11()n a a a -- =n a -2n a - 方法2 仍然是利用性质,将行列式化为上三角行列式. n D n 1 r r -= 111 a a a --1n c c += 1 1 1 a a a +-=n a -2 n a - 方法3 利用展开定理,将行列式化成对角行列式. n D 1c 展开 =1 n a a a -+1 1 001 (1) 0n n a a +-- 而 1 1 001 (1) 0n n a a +--最后列展开 = 21 (1)n +-2 n a a -=2 n a -- n D =1n a a -?-2n a -=n a -2n a - 方法4 利用公式 A O O B =A B . 将最后一行逐行换到第2行,共换了2n -次;将最后一列逐列换到第2列,也共换了2n -次.

n D =2(2) (1)n --11a a a = 11a a 2 n a a -=n a -2 n a - 方法5 利用公式 A O O B =A B . 例2.2 计算n 阶行列式: 1121221 2 n n n n n a b a a a a b a D a a a b ++= + (120n b b b ≠) 解 采用升阶(或加边)法.该行列式的各行含有共同的元素12,,,n a a a ,可在保持 原行列式值不变的情况下,增加一行一列,适当选择所增行(或列)的元素,使得下一步化简后出现大量的零元素. 12112122 1 2 1000 n n n n n n a a a a b a a D a a b a a a a b +=++升阶 213111 n r r r r r r +---= 12121100 1001 n n a a a b b b --- 11 12,,1 j j c c b j n -+ =+= 1 1121 1 12100000000 n n a a a a a b b b b b + ++ =1 12 1 (1)n n n a a b b b b b + ++ 这个题的特殊情形是 12121 2 n n n n a x a a a a x a D a a a x ++= +=1 1 ()n n i i x x a -=+∑ 可作为公式记下来. 例2.3 计算n 阶行列式: 12111 1111 1 1n n a a D a ++= +

行列式典型例题

第二讲 行列式综合训练 第一部分 例2.1 计算行列式,其中对角线上元素都是a ,未写出的元素都是零. n D = 11 a a O 解 这道题可以用多种方法进行求解,充分应用了行列式的各种性质. 方法1 利用性质,将行列式化为上三角行列式. n D 11c n c a -?= 101 a a a a - L O =11()n a a a -- =n a -2n a - 方法2 仍然是利用性质,将行列式化为上三角行列式. n D n 1 r r -= 111 a a a --O 1n c c += 1 1 1 a a a +-O =n a -2 n a - 方法3 利用展开定理,将行列式化成对角行列式. n D 1c 展开 =1 n a a a -O +1 1 001 0(1) 0n n a a +--L O O 而 1 1 01 0(1) 0n n a a +--L O O 最后列展开 =21 (1)n +-2 n a a -O =2 n a -- n D =1n a a -?-2n a -=n a -2n a - 方法4 利用公式 A O O B =A B . 将最后一行逐行换到第2行,共换了2n -次;将最后一列逐列换到第2列,也共换了2n -次.

n D =2(2) (1)n --11a a a O = 11a a 2 n a a -O =n a -2 n a - 方法5 利用公式 A O O B =A B . 例2.2 计算n 阶行列式: 1121221 2 n n n n n a b a a a a b a D a a a b ++= +L L M M M L (120n b b b ≠L ) 解 采用升阶(或加边)法.该行列式的各行含有共同的元素12,,,n a a a L ,可在保持 原行列式值不变的情况下,增加一行一列,适当选择所增行(或列)的元素,使得下一步化简后出现大量的零元素. 121121 221 2 1000 n n n n n n a a a a b a a D a a b a a a a b +=++L L L M M M M L 升阶 213111 n r r r r r r +---= L 12121100100100n n a a a b b b ---L L L M M M M L 11 12,,1 j j c c b j n -+ =+= L 111211 1 2100 00000 n n a a a a a b b b b b + ++L L L L M M M M L =1121(1)n n n a a b b b b b + ++L L 这个题的特殊情形是 12121 2 n n n n a x a a a a x a D a a a x ++= +L L M M M L =1 1 ()n n i i x x a -=+∑ 可作为公式记下来. 例2.3 计算n 阶行列式:

线性代数行列式经典例题

线性代数行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

综合练习一-矩阵、行列式-习题+答案

第一、二章阶段练习答案 1、设三阶行列式1)det(==ij a D ,则=++231322122111A a A a A a 0 。 2、设三阶行列式3 88 838 1 43-=D ,则元素13a 的代数余子式=13A 40 。 3、如果11 2101 3=c b a ,则 =---1 1 1 4253 33c b a 1 。 4、行列式=-1 11 1 021********* 7 。 5、行列式 =2300120000340 023 1 。 6、行列式 =3 3 3 3 22225432543254321111 12 。 7、方程组?? ? ??=-+=-+=-+434212633352z y x z y x z y x 的解)2,1,1(),,(--=z y x 。 8、设多项式x x x x x x x x f 123011 3215)(=,则多项式的次数为 4 。 9、四阶行列式 2 23 5 7 022220403 --的第四行各元素代数余子式之和的值为 0 。 10、设方程?? ? ??=+-=-+=++0200z y x z y x z y x λλ有非零解,则=λ 4或 1 。

11、若??? ? ??-=???? ??-0921209612y x ,则=x 2 ,=y 6 。 12、设A 为三阶方阵,且2 1 =A ,则=--*12)3(A A 16/27 。 13、设???? ??--=7865A ,???? ??--=8616B ,则=-B A 32???? ??--1034158。 14、设???? ??-=???? ??12643152X ,则=X ???? ? ?-80232。 15、已知????? ??--=121011322A ,则=-1A ???? ? ??-----461351341。 16、解矩阵方程 X B AX =+,其中????? ??---=101111010A ,????? ??--=350211B ,=X ??? ?? ??--110213。 17、已知方阵A 、B 满足E AB A =-2 ,其中????? ??--=100110111A ,则=B ????? ??000000120。 18、设B A 、均为三阶方阵,已知B A AB +=2,其中???? ? ??=202040202B , 证明E A -可逆,且1)(--E A =????? ??001010100。 19、设????? ??=????? ??????? ??987654321100010101100001010A ,则=A ??? ? ? ??287221254。 20、设B A 、为n 阶对称矩阵,且A 和AB E +均可逆, 证明A AB E 1)(-+为对称矩阵。

矩阵典型习题解析

2 矩阵 矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙!于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单! 知识要点解析 2.1.1 矩阵的概念 1.矩阵的定义 由m×n 个数),,2,1;,,2,1(n j m i a ij ==组成的m 行n 列的矩形数表 ?? ?? ? ? ? ??=mn m m n n a a a a a a a a a A 2 1 22221 11211 称为m×n 矩阵,记为n m ij a A ?=)( 2.特殊矩阵 (1)方阵:行数与列数相等的矩阵; (2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下) 三角阵; (3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵; (5)单位矩阵:主对角线上元素全是1的对角阵,记为E ; (6)零矩阵:元素全为零的矩阵。 3.矩阵的相等 设mn ij mn ij b B a A )(; )(==

若 ),,2,1;,,2,1(n j m i b a ij ij ===,则称A 与B 相等,记为A=B 。 2.1.2 矩阵的运算 1.加法 (1)定义:设mn ij mn ij b B A A )(,)(==,则mn ij ij b a B A C )(+=+= (2)运算规律 ① A+B=B+A ; ②(A+B )+C =A +(B+C ) ③ A+O=A ④ A +(-A )=0, –A 是A 的负矩阵 2.数与矩阵的乘法 (1)定义:设,)(mn ij a A =k 为常数,则mn ij ka kA )(= (2)运算规律 ① K (A+B ) =KA+KB , ② (K+L )A =KA+LA , ③ (KL ) A = K (LA ) 3.矩阵的乘法 (1)定义:设.)(,)(np ij mn ij b B a A ==则 ,)(mp ij C C AB ==其中∑== n k kj ik ij b a C 1 (2)运算规律 ①)()(BC A C AB =;②AC AB C B A +=+)( ③CA BA A C B +=+)( (3)方阵的幂 ①定义:A n ij a )(=,则K k A A A = ②运算规律:n m n m A A A +=?;mn n m A A =)( (4)矩阵乘法与幂运算与数的运算不同之处。 ①BA AB ≠ ②;00,0===B A AB 或不能推出 ③k k k B A AB ?≠)( 4.矩阵的转置

线性代数总结材料汇总情况+经典例题

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则

7、n阶(n≥2)德蒙德行列式 数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式:

(1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解 (2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。 2 矩阵 (一)矩阵的运算 1、矩阵乘法注意事项: (1)矩阵乘法要求前列后行一致; (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)

高代-行列式测试题

高等代数 《行列式》测 验 一 填空题(2'612'?=) 1. 六阶行列式的展开式共有( )项. (A )120 (B )60 (C) 720 (D) 240 2. 排列1 2345a a a a a 的逆序数为a ,则排列5 4321a a a a a 的逆序数为( ). (A) a - (B) 10a - (C) 10a - (D) 2 a -或a +2 3. 0001002003004 =( ). (A) 24 (B) -24 (C) 0 (D) 12 4. 已知11 121311111212132122232121222223313233313132323341 42 43 4141 42 42 43 , ,a a a b a a b a a a a b a a b a m n a a a b a a b a a a a b a a b a == 则行列式 11121311122122232122313233313241 4243 4142a a a b b a a a b b a a a b b a a a b b ++= ++( ). (A) m n + (B) n m - (C) m n - (D) () m n -+ 5. 已知2 31421,1 1 1 D =- i j A 为D 的元素ij a 的代数余子式,则( ). (A) 1112130 A A A ++= (B) 1121310 A A A ++= (C) (A),(B)都成立 (D) (A),(B)都不成立

6. 0001 00002000 10 n n =- ( ). (A) 1 (1) !n n +- (B) (1) 2 (1) !n n n -- (C) (1) 2 (1) !n n n +- (D)!n 二 填空题(2'816'?=) 1. 2011阶反对称行列式的值为 . 2. 13234425k l a a a a a 为五阶行列式ij D a =中带负号的项,则k = , l = . 3. 排列(1)321n n - 的逆序数为 , 13(21)24(2) n n - 的逆序 数为 . 4. 线性方程组 1212040 x x x x λλ+=?? +=?有唯一解,则λ满足 . 5. 若n 阶行列式D 中等于0的元素个数大于2 n n -,则D = . 6. 2 1 1203101311 112 x x ----的展开式中2 x 的系数为 . 7. 1 1111234149161 8 27 64 = . 8. 已知四阶行列式D 的第3行元素为3,3,1,1--, 其对应的余子式的值 为1,2,5,4, 则行列式D = .

线性代数习题册行列式-习题详解.doc

行列式的概念 一、选择题 1. 下列选项中错误的是 ( ) a b c d (B) a b d b (A) d a b ; c d c ; c a a 3c b 3d a b a b a b (C) c d c ; (D) c d c . d d 答案: D 2.行列式 D n 不为零,利用行列式的性质对 D n 进行变换后,行 列式的值( ). (A) 保持不变; (B) 可以变成任何值; (C) 保持不为零; (D) 保持相同的正负号. 答案: C 二、填空题 1. log a b 1 =. 1 log b a 解析: log a b 1 log a b log b a 1 1 1 0 . 1 log b a cos sin 2. 3 6 =. sin cos 3 6 cos sin 解析: 3 6 cos cos sin sin cos0 sin cos 3 6 3 6 2 3 6 2x 1 3 3. 函数 f (x) x x 1 中, x 3 的系数为 ; 2 1 x 2x 1 1 g( x) x x x 中, x 3 的系数为. 1 2 x 答案: -2 ; -2.

阶行列式 D n中的n最小值是. 答案: 1. 1 2 3 5.三阶行列式0 2 4 中第2行第1列元素的代数余子式 3 1 1 等于. 答案: 5. 6.若 2x 8 0 ,则x= . 1 2 答案: 2. 7. 在n 阶行列式 D a ij 中,当 i

相关文档
最新文档