1-习题课行列式(精简版本)
线性代数 行列式 习题课

四、小结克拉默法则(未知数个数=方程个数)
1 x
0 x(1) n 1 0
1 x x 0
x
(1)n [( x 1)n x n ]
递推法 : 通过降阶法建立起行列式与其同形的较低阶 的行列式的关系式--------递推关系式,然后由递推关系式 求解其值。
例
范德蒙(Vandermonde)行列式
(1)
系数行列式记为D(略)
a11 a1, j 1 b1 a1, j 1 a1n Dj an1 an, j 1 bn an, j 1 ann
D j 是D中第j列元素换成
常数项所得.
A1】 a11 x1 a12 x a1n x n D b1 A 01 j 【定理1.4 (1) 的系数行列式 j 若线性方程组 2
1 x1
2 Dn x1 n 1 x1
1 x2
2 x2
2 xn ( xi x j ) n i j 1
1 xn
n 1 n 1 x2 xn
证明思路 :用递推法结合数学归纳法;祥见教材第18页。 说明 : 范德蒙(Vandermonde)行列式的结论是个重要 结论,以后可以直接运用之; 高阶行列式的计算有着比较强的技巧,需要大家 在练习中不断总结、积累经验。
线性代数
行列式 习题课
温故而知新:行列式的性质
性质1:行列式与它的转置行列式相等。 性质2:互换行列式的两行(列),行列式变号。 推论:如果行列式的两行(列)完全相等,此行列式为零。 性质3:行列式的某一行(列)中所有的元素都乘以同 一数k,等于用数k乘此行列式。 推论1:行列式中某一行(列)的所有元素的公因子可 以提到行列式符号的外边。 推论2:若行列式中某一行(列)的元素全为零,则此行 列式等于零。 性质4:若行列式中有两行(列)成比例,则此行列式等于零。 性质5:若行列式的某一行(列)的元素都是两数之和, 则 此行列式等于两个行列式之和。 性质6:把行列式的某一行 (列)的各元素乘以同一数, 然后加到另一行(列)对应的元素上去,行列式不变.
行列式习题课

第四讲 行列式习题课一.主要内容 1.本章知识结构1 全排列把n 个不同的元素排成一列,叫做这n 个元素的全排列(或排列). n 个不同的元素的所有排列的种数用n P 表示,且!n P n =。
2 逆序数在一个排列()n s t i i i i i 21中,若数s t i i >,则称这两个数组成一个逆序. 一个排列中所有逆序的总数称为此排列的逆序数.逆序数为奇数的排列称为奇排列,逆序数为偶数的排列称为偶排列. 3 对 换定义 在排列中,将任意两个元素对调,其余元素不动,称为一次对换.将相邻两个元素对调,叫做相邻对换.定理 一个排列中的任意两个元素对换,排列改变奇偶性.推论 奇排列调成标准排列的对换次数为奇数,偶排列调成标准排列的对换次数为偶数4 n 阶行列式的定义()np p p p p p tnnn n n nn n a a a a a a a a a a a a D 2121222211121121211∑-==.,,2,1;;,,2,12121的所有排列取和表示对为这个排列的逆序数的一个排列为自然数其中n t n p p p p p p n n∑.,21212121)1(的逆序数为行标排列其中亦可定义为阶行列式p p p t D D n nn p p p p p p ta aa nn∑-=5 n 阶行列式的性质.D D ,1)T =即式相等行列式与它的转置行列 .),()2行列式变号列互换行列式的两行.,)()3则此行列式等于零完全相同列如果行列式有两行. ,)()4乘此行列式等于用数一数中所有的元素都乘以同列行列式的某一行k k . )( )5面以提到行列式符号的外的所有元素的公因子可列行列式中某一行 ., )( )6则此行列式为零元素成比例列行列式中如果有两行., )( )7列式之和则此行列式等于两个行的元素都是两数之和行若行列式的某一列 ., )( , )( )8行列式的值不变对应的元素上去行然后加到另一列的各元素乘以同一数行把行列式的某一列6 行列式按行(列)展开 1) 余子式与代数余子式.,1 )1(的代数余子式叫做元素;记的余子式,记作阶行列式叫做元素列划去后,留下来的行和第所在的第阶行列式中,把元素在a A M A M a a ijijijji ijij ijij n j i n -+=-2)关于代数余子式的重要性质⎩⎨⎧≠==⎩⎨⎧≠===⎩⎨⎧≠===∑∑==.,0;,1.,0;,.,0;,11j i j i j i j i D D j i j i D D ij ijjk nk ik ij ki nk ki A a A a 当当其中 当当或当当δδδ8 克拉默法则如果线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++.,,22112222212111212111b x a x a x a b x a x a x a b x a x a x a n n nn n n n n n n 那么它有唯一解的系数行列式,0 ≠D.,,2,1,n j DD jj x ==., ,,2,11的行列式所得到,列换成常数项中第)是把系数行列式(其中2b b b n j j D n j D =二.典型例题1.计算排列的逆序数例1()()()()()., 132******** 并讨论奇偶性的逆序数求排列k k k k k k +--- 。
1-习题课

习题一2 习题一2(5)
按自然数从小到大为标准次序, 按自然数从小到大为标准次序,求下列各排列的 并判别奇偶性。 逆序数 ,并判别奇偶性。
(5) 1 3 L 2n -1) 2 4 L 2n) ( ( n( n − 1) 解:逆序数为 2
时为偶排列; 当 n = 4k ,4k + 1 时为偶排列; 时为奇排列. 当 n = 4k + 2,4k + 3 时为奇排列
t p 1q1
p 2q 2
…a p q ,
n n
其 中 t 是 行 标 排 列 p 1 p 2 … p n的 逆 序 数 与 列 标 排 列 q1q 2 L qn的 逆 序 数 之 和 .
说明 1、行列式是一种特定的算式,它是根据求解方 、行列式是一种特定的算式, 程个数和未知量个数相同的一次方程组的需要而 定义的; 定义的 2、 n 阶行列式是 n! 项的代数和 、 项的代数和; 3、 n 阶行列式的每项都是位于不同行、不同 、 阶行列式的每项都是位于不同行、 个元素的乘积; 列 n 个元素的乘积 4、 一阶行列式 a = a 不要与绝对值记号相混淆 、 不要与绝对值记号相混淆;
于是排列的逆序数为
t = 0 + 1 + 1 + 2 + 2 + L + (k − 1) + (k − 1) + k
[2(1 + k − 1)(k − 1)] + k =
=
= k2
2
+
为偶数时,排列为偶排列, 当 k 为偶数时,排列为偶排列, 为奇数时,排列为奇排列. 当 k 为奇数时,排列为奇排列.
4
对
换
定义 在排列中,将任意两个元素对调,其余元 在排列中,将任意两个元素对调, 素不动,称为一次对换.将相邻两个元素对调, 素不动,称为一次对换.将相邻两个元素对调, 叫做相邻对换. 叫做相邻对换. 定理 一个排列中的任意两个元素对换, 一个排列中的任意两个元素对换,排列改 变奇偶性. 变奇偶性. 奇排列调成标准排列的对换次数为奇数, 奇排列调成标准排列的对换次数为奇数, 偶排列调成标准排列的对换次数为偶数. 偶排列调成标准排列的对换次数为偶数.
行列式习题课

2 1 3 3 3
3 3 1 4 4
n 1 n 1 n 1 1 n
n n n n 1
6(2)
2 2 2
原行列式
解:
c1 c2 cn
1 2 3 n 1 n 1 1 3 n 1 n
1
r2 r1 r3 r1 rn r1
概念
a11 a21
a12 a1n a22 a2 n
p1 p2 pn
(1)t a1 p1 a2 p2 anpn
an1 an 2 ann
1.行列式与它的转置行列式相等; 2.互换行列式的两行(列),行列式变号;
性质
3.某行(列)有公因子可以提到行列式符号外面; 4.若行列式中某一行(列)的所有元素均为两元素之和,则行 列式可写成两个行列式的和; 5.行列式某行(列)的K倍后加到另一行(列)上,行列式不变。
《线性代数》
返回
下页
结束
r3+(-1)r2
D 1 1
r2+(-1)r3
1 1 1 2 1 0 1
c1+(-1)c3
1
1 1 0
1 0
《线性代数》
1 1 1 1 1 0 0 1 0 0 0 1 0
返回 下页 结束
1 1 1 0 0 (1 ) 0
《线性代数》 返回 下页 结束
1
1 2 2 2
1 2 3 3
1 2 3 n
1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1
例4 计算行列式
1 D1 1
行列式——习题课讲解

性 推论:某行(列)有公因子可提到行列式的外面 质 4. 若有两行(列)成比例,则行列式等于0
5. 若某一行(列)所有元素均为两元素之和,则行
列式可拆成两个行列式。
6. 某行(列)的k倍加到另一行(列),行列式不变。
展
行展开
n
D i j
aki Akj
k 1
0
i j
开
列展开
n
解: 因行列式的项由不同行不同列的元素乘积构成。 即: a11a23a3i a4j,其中i、j只能是2,4的取值。 所以有两项:那么列标排列的逆序数为: t(1324)=1, t(1342)=2 所以,含有因子a11a23的两项为: -a11a23a32 a44, a11a23a34 a42
1 1 0 2
1 1 0 2
r1r2 0 1 1 2 r4 1r3 0 1 1 2
0
0
2 4
0
0
2 4
0 0 2 2
00 02
4
12 3 4
n
11 2 3
n 1
1x12
n2
例6:计算n阶行列式 D 1 x x 1
n3
1x x x
2
1x x x
1
例3:已知四阶行列式D的第2行元素分别为: -1, 0,2 ,4 第4行元素的余子式依次为:2, 4, a, 4 求a=?
解:由已知得:A41=-2,A42=4, A43=-a, A44=4 由行列式某行元素与另一行元素的代数余子式乘 积之和为零,可知:
2 1 41 2 0 1 42 4 2 1 43 a 4 1 44 4 0
解:令i=4,j=8,得排列为: 2 1 4 3 7 6 8 9 5 因为t( 214376895)=0+1+0+1+0+1+0+0+4=7 所以214376895为奇排列,与题意矛盾。
《线性代数》第一章行列式精选习题及解答

(C)0, 2
(D)0,1
解 按 三 阶 行 列 式 的 对 角 线 法 则 得 D1 = (λ + 1)(λ − 1)2 , D2 = 0 . 若 D1 = D2 , 则
(λ + 1)(λ −1)2 = 0 ,于是 λ = 1,−1,故正确答案为(B).
例 1.5
方程组 ⎪⎨⎧λx1x1++λxx22
故逆序数为 1;于是这个排列的逆序数为 t=0+0+2+4+1=7,故正确答案为(B).
例 1.2 下列排列中( )是偶排列.
(A)54312 (B)51432
(C) 45312
(D) 654321
解 按照例 1 的方法计算知:排列 54312 的逆序数为 9;排列 51432 的逆序数为 7;排列
例17分析如果行列式的各行列数的和相同时一般首先采用的是将各列行加到第一列行提取第一列行的公因子简称列行加法这个行列式的特点是各列4个数的和为10于是各行加到第一行得10101010分析此类确定系数的题目首先是利用行列式的定义进行计算
第一章 行列式
1.1 目的要求
1.会求 n 元排列的逆序数; 2.会用对角线法则计算 2 阶和 3 阶行列式; 3.深入领会行列式的定义; 4.掌握行列式的性质,并且会正确使用行列式的有关性质化简、计算行列式; 5.灵活掌握行列式按(列)展开; 6.理解代数余字式的定义及性质; 7.会用克拉默法则判定线性方程组解的存在性、唯一性及求出方程组的解.
(2) A34 + A35 = ( ), (3) A51 + A52 + A53 + A54 + A55 = ( ).
分析 此类题目一般不宜算出表达式里每一项的值,而是注意观察要求的表达式的结构,
线性代数-行列式(完整版)

01
对于二元一次方程组,可以直接应用克拉默法则求解
未知数。
02
对于三元一次方程组,需要先判断系数矩阵的行列式
是否为零,若不为零,则可以使用克拉默法则求解。
03
对于更高元次的线性方程组,克拉默法则同样适用,
但计算量会随着元次的增加而急剧增大。
矩阵可逆性判别方法
01
一个方阵可逆的充分必要条件是其行列式不等于零。
行列式基本性质
行列式中如果有两行(或两列)元素成比例,则此行列式等于零。
若行列式的某一行(或某一列)的元素都是两数之和,例如第i行的元素都是两数之 和:$a_{ij}=b_{ij}+c_{ij}$,则此行列式等于两个行列式之和,这两个行列式的第i行 分别为$b_{ij}$和$c_{ij}$,其余各行与原行列式的相应的行相同。
对于一个n阶方阵A,其行列式记作|A|或det(A), 是一个数值。
行列式的值可以通过对矩阵元素进行特定的运算 得到,该运算满足一定的性质。
行列式基本性质
行列式与它的转置行列式相等。
交换行列式的两行(或两列),行列式变号。 行列式的某一行(或某一列)中所有的元素都乘以同一数k,等于用数k乘 此行列式。
克拉默法则介绍
克拉默法则(Cramer's Rule)是线性 代数中一个关于求解线性方程组的定理。
该法则适用于具有相同数量方程的方程组, 且系数矩阵的行列式不为零的情况。
克拉默法则通过计算系数矩阵的行 列式以及将系数矩阵的某一列替换 为常数项列后得到的新矩阵的行列 式,来求解方程组的解。
克拉默法则在方程组求解中应用
应用领域
范德蒙德行列式在多项式插值、数值分析等领域有广 泛应用。
范德蒙德行列式在多项式拟合中应用
1-习题课

D ,当i j; a ki Aki D ij k 1 0,当i j .
n
或 D ,当i j; a ik A jk D ij k 1 0,当i j . 1,当i j; 其中 ij 0,当i j .
定理
ቤተ መጻሕፍቲ ባይዱ
如果上述齐次线性方程组有非零解,则
它的系数行列式必为零.
小结 计算行列式的方法比较灵活,同一行列式可 以有多种计算方法;有的行列式计算需要几种方 法综合应用.在计算时,首先要仔细考察行列式 在构造上的特点,利用行列式的性质对它进行变 换后,再考察它是否能用常用的几种方法.
n
3 克拉默法则
a 11 x 1 a 12 x 2 a 1n x n b1 , a 21 x 1 a 22 x 2 a 2 n x n b 2 , 如果线性方程组 a n1 x 1 a n 2 x 2 a nn x n b n . 的系数行列式 D 0, 那么它有唯一解 Dj , j 1,2, , n. xj D 其中 D(j 1,2, , n)是把系数行列式 D中第j列 j 换成常数项b1 , b2, b n 所得到的行列式.
定理 如果上述线性方程组无解或有两个不同的
解,则它的系数行列式必为零.
定理
如果齐次线性方程组
a 11 x 1 a 12 x 2 a 1n x n 0, a 21 x 1 a 22 x 2 a 2 n x n 0, a n1 x 1 a n 2 x 2 a nn x n 0. 的系数行列式D 0, 那么它没有非零解.
克拉默法则的理论价值
定理 如果线性方程组
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例7 设abcd=1,计算
解(分拆法)将D拆成两个行列式之和,即
a2 b2 D c2 d2 c d a b 1 a 1 b 1 c 1 d 1 a2 1 1 b2 1 1 c2 1 1 d2 1 a b c d 1 a 1 b 1 c 1 d 1 1 1 1
1 a2 1 2 b 2 b D 1 c2 2 c 1 2 d 2 d a2
故 D ( xi x j )[( x1 x2 ) x3 x4 ( x3 x4 ) x1 x2 ].
4i j 1
例12 设线性方程组
x1 a1 x2 x1 a2 x2 x1 a3 x2 x1 an x2 a12 x3 a1n 1 xn
2
1 a a2 =(ab bc ac ) 1 b b 2 (ab bc ac)(b a)(c a)(c b). 1 c c2
又因a>b>c>0,所以D<0.
例7 设α、β、γ是方程x3+px+q = 0的根,计算
D .
解 由于
D
x 1
解(析因子法)因为当x=1时,Dn的前两行相同,从 而Dn=0,所以x-1为Dn的因子.同理x-2,x-3,…, x-( n-1)均为Dn的因子,且各公因子互素(无公因子), 所以Dn能被(x-1)(x-2)(x-3)…(x-n+1)整除,又注意到 Dn的展开式中最高次项xn-1的系数为1,从而 Dn= (x-1)(x-2)(x-3)…(x-n+1).
例2
0 a12
a12 0
a13 a23 0
a1n a2 n a3n 0
(n为奇数)
Dn a13 a23
a1n a2 n a3n
0
10 例3 设四阶行列式
a1 D b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
p p p p ,
则其第1列元素的代数余子式之和A11+A21+A31+A41=_____. 0
1 ( ) 1 , 1
由根与系数的关系可知,α+β+γ=0,故D = 0.
(2)简单的n阶行列式的计算
例8 计算n阶行列式
1 1 Dn 1 1 2 x 1 2 2 3 3 3 n n n .
x 1
0 x
例6 计算4阶行列式(加边法)
1+x D 1 1 1 1 1 x 1 1 1 1 1+y 1 1 1 1 1 y ,
解 显然当x=0或y=0时,D=0,当x≠0和y ≠ 0时,利 用展开定理,
1 D 0 0 0 1 1 1 1 1 1 1-x 1 1 1 1 1 1+y 1 1 1 1 1-y 1 1 1 0 0 0 1 0 0 y 1 0 0 0 0 1+x -1 x -1 0 -1 0
2 x4 3 x4 4 x4
1 y y2 y3 y4
将上式按最后一列展开,则f(y)为y的一个4次多项式, 且一次项y的系数为-D,于是可以通过考察多项式f(y)来求D
f ( y ) ( xi x j ) (y xk )
4i j 1 k 1
4
= ( xi x j )[(y x1 )( y x2 )( y x3 )( y x4 )]
a b c d
1 a 1 b 1 c 1 d
1 1 . 1 1
a 1 b 1 abcd c 1 d 1
1 2 a 1 b2 1 c2 1 d2
1 a 1 b (1)3 1 c 1 d
a 1 b 1 c 1 d 1
1 2 a 1 b2 1 c2 1 d2
1 a 1 b 0. 1 c 1 d
a1 x 0 0
a2 an 0 x 0 0 0 x
(箭形行列式)
1
i 2, , n 1 1 1
n
1
j 1
aj x
a1 x 0 0
a2 an
0 0 0
n a j n x 1 0 0 j 1 x
x 0
4i j 1
= ( xi x j )[( y 2 ( x1 x2 ) y x1 x2 ][ y 2 ( x3 x4 ) y x3 x4 ].
4i j 1
从上式易知,多项式f(y)的一次项系数为
4i j 1
( xi x j )[( x1 x2 ) x3 x4 ( x3 x4 ) x1 x2 ]
所以, Dn-αDn-1=βn 再由对称性, Dn-βDn-1=αn 当α≠β时,将上两式的两边分别乘以β、α ,然后相减得 n1 n1 Dn . 当α= β时,对Dn-αDn-1=αn使用递推法 Dn =αn+ αDn-1=αn+α[αn-1+ αDn-2] =2αn+ α2Dn-2=…=(n-2)αn+ αn-2D2 =(n-2)αn+ αn-2 3α2=(n+1)αn.
1 -1 0 x
0 y
1 1 0 x 0 0 0 0
1 0 0 0
1 0 y
1 0
2 2 x y . 0
0 0 -x 0
0
0 -y
这种计算方法叫做加边法,此方法适用于主对角线两 侧元素都相同的行列式.在第二步计算的行列式是个字行 列式,其计算方法如上.
5 、分拆法:将D拆成两个行列式之和
4、加边法(升阶法)
加边法(又称升阶法)是在原行列式中增加一行一列,且 保持原行列式不变的方法。 例5 计算n阶行列式
x a1 a1 a1 a1
a2 a2 a2
Dn an
an an an
x a2
Dn
解:
x an
1 a1 Dn 0 0
1
r i r1
a1 a1
a2 a2
Dn a1 a2 2
an n
an n
a1 0 0
a2 an
2 an
0 n
1 Dn 1
a12 n 1Dn1
……
n ai 12 n 1 i 1 i
第一章 行列式习题课
主要内容 典型例题 测试题
典
型
例
题
一、计算(证明)行列式
二、克拉默法则
1.利用行列式定义(按照行展开)直接计算
例1
0 0 Dn 0
0 1 0 2 0 0
n 1 0 0 0 0 0 n
n ( n 1) 2
(1)
n!
2.利用行列式的性质计算
利用分拆变换计算行列式称为分拆法,此法比较适合 分拆后所得行列式易于计算或可以抵消,分拆法往往需要 一定的技巧.
例 8:
a1 1
a2 a2
an an
an an
Dn
解:
a1 a1
a2 2
an n
1
0 0 a2 a2 an an a2 2
解 将 Dn 按第1行展开
a 0 0 0 0 a 0 0
0 a 0 0 0 0 a 0 0 0 0 a 1 0 0 0
Dn a 0 0 a 0 (1) n 1 0 0 0 a
a n (1)n1 (1)n a n2 a n a n 2
x1 = 1, x = 0, 2 故方程组的解为 x3 = 0, xn = 0.
小结: 行列式的概念是基础, 行列式的性质是关键, 行列式的计算是重点,
用行列式解方程组是目的.
Байду номын сангаас 2
利用范德蒙行列式计算
利用范德蒙行列式计算行列式,应根据范德 蒙行列式的特点,将所给行列式化为范德蒙行列 式,然后根据范德蒙行列式计算出结果。
2 n 1 a2 x3 a2 xn 2 n 1 a3 x3 a3 xn
1, 1, 1, 1,
2 n 1 an x3 an xn
其中ai ≠ aj( i ≠ j , i,j=1,2,…,n),求线性方程组的解. 解 由于系数行列式D, D1, D2,…, Dn 分别为 1 a1 a12 a1n 1 1 a1 a12 a1n 1 2 n 1 2 n 1 1 a2 a2 a2 1 a2 a2 a2 2 n 1 2 n 1 D = , 1 a a a D 1 a3 a3 , a3 1 3 3 3 2 n 1 2 n 1 1 a a a 1 an an an n n n
例10 计算行列式
1 D x12 x x
3 1 4 1
1
2 x2
1
2 x3
1
2 x4
x x
3 2 4 2
x x
3 3 4 3
x x
3 4 4 4
.
解(公式法)作辅助函数
1 x1 f ( y ) x12 x13 x14 1 x2
2 x2 3 x2 4 x2
1 x3
2 x3 3 x3 4 x3
1 x4
解 因为当p=0时,有A11=0, A21=0, A31=0, A41=0.因 而A11+A21+A31+A41= 0. p ≠ 0时,由pA11+pA21+pA31+pA41 = 0,即p(A11+A21+A31+A41)= 0,得A11+A21+A31+A41= 0.