几种插值法的应用和比较

合集下载

数据插补的方法

数据插补的方法

数据插补的方法一、引言数据插补是一种常见的数据处理方法,用于填补缺失值或补全不完整的数据序列。

在实际应用中,由于各种原因(如传感器故障、网络异常等),数据可能会出现缺失或不完整的情况,这时候就需要使用数据插补方法来处理这些问题。

本文将介绍几种常见的数据插补方法,并对其优缺点进行分析和比较。

二、常见的数据插补方法1. 线性插值法线性插值法是最简单、最基础的数据插补方法之一。

它假设缺失值在两个已知数据点之间,且在这两个点之间变化是线性的。

具体地,设已知两个点 $(x_1, y_1), (x_2, y_2)$,则对于 $x_1 \leq x \leqx_2$ 的任意 $x$,可以通过以下公式计算其对应的 $y$ 值:$$y = y_1 + \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$线性插值法简单易懂,计算速度快,但它假设变化是线性的,在某些情况下可能会产生较大误差。

2. 拉格朗日插值法拉格朗日插值法是一种多项式插值方法,它通过已知数据点构造一个多项式函数,再用该函数计算缺失值。

具体地,设已知 $n+1$ 个点$(x_0, y_0), (x_1, y_1), \cdots, (x_n, y_n)$,则可以构造一个 $n$ 次多项式函数:$$L(x) = \sum_{i=0}^n y_i \prod_{j=0,j\neq i}^n \frac{x - x_j}{x_i - x_j}$$对于任意 $x$,都可以用 $L(x)$ 计算其对应的 $y$ 值。

拉格朗日插值法可以精确地拟合已知数据点,但当数据量较大时计算复杂度较高,并且容易产生龙格现象(即在插值区间两端出现震荡的现象)。

3. 样条插值法样条插值法是一种分段多项式插值方法,它将整个插值区间划分为若干小区间,在每个小区间内构造一个低次数的多项式函数。

具体地,在每个小区间内,设已知两个点 $(x_i, y_i), (x_{i+1}, y_{i+1})$,则可以构造一个三次样条函数:$$S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$要求 $S_i(x)$ 在 $[x_i, x_{i+1}]$ 上满足以下条件:- 在插值点处,$S_i(x_i) = y_i$,$S_{i}(x_{i+1})=y_{i+1}$;- 在插值点处,$S'_i(x_{i})=S'_{i-1}(x_{i})$,即两个相邻区间的导数相等;- 在插值点处,$S''_i(x_{i})=S''_{i-1}(x_{i})$,即两个相邻区间的二阶导数相等。

几种插值法的对比研究1

几种插值法的对比研究1

几种插值法的对比研究1插值法是一种常用的数据处理方法,特别在数字信号处理和数值计算中广泛应用。

在实际应用中,选择合适的插值方法对数据的良好处理有着重要的作用。

本文将对几种常用的插值方法进行对比研究。

1. 线性插值法线性插值法是最简单也是最常用的插值方法。

它假设函数在两个已知点之间是一条直线,根据该直线与自变量的位置,即可得到插值的函数值。

线性插值法的计算简便,适用于各种连续变化的函数,但是对曲率较大的函数,有时可能会出现较大的误差。

2. 多项式插值法多项式插值法是一种高效的插值方法。

它通过已知的数据点和插值点,构造一个多项式函数。

这个多项式函数与所需求函数一样,在插值点处取相同的函数值。

多项式插值法插值精度较高,但对于高次多项式的构造和计算,不仅容易出现数值不稳定的问题,而且计算量也比较大,往往在实际应用中给计算机带来较大的负担。

样条插值法是一种优秀的插值方法。

样条插值法将整个插值区间划分为若干小区间,每个小区间内部通过一个样条函数连接在一起。

样条函数既可以满足插值的要求,又可以保持函数在区间内的连续性。

这样可以产生较好的插值效果。

相对于线性插值和多项式插值,样条插值法的误差一般较小,满足一定的平滑性要求,而且计算相对简单。

在实际应用中广泛使用。

4. 径向基函数插值法径向基函数插值法是一种数值稳定性较高的方法。

它利用径向基函数的性质,即可以逼近各种连续的函数,将一个函数表示为各个径向基函数的线性组合,建立待插值函数与径向基函数之间的关系。

当插值点趋近于数据点时,径向基函数插值法可以达到较高的精度。

径向基函数插值法的计算方法较为复杂,需要选取合适的径向基函数和其它参数,定位问题更加困难,但是计算结果却更为准确。

综合各种插值方法的优缺点,我们可以根据不同的实际需求选择不同的插值方法。

在插值研究中,需要注意插值方法的数值稳定性、计算效率、精度和平滑性等各个方面的综合考虑,以达到最优的插值效果。

各种插值法的对比研究

各种插值法的对比研究

各种插值法的对比研究插值法是指通过已知数据点来估计两个数据点之间的未知数值。

在实际生活和科学研究中,经常会遇到需要插值的情况,例如气象预测、金融分析、图像处理等。

本文将对比介绍几种常见的插值方法,包括线性插值、多项式插值、样条插值和逆距离加权插值。

1.线性插值:线性插值是最简单的插值方法,假设两个数据点之间的值变化是线性的。

根据已知数据点的坐标和对应的值,通过线性方程推断两个数据点之间的值。

优点是计算简单快速,但缺点是对数据变化较快的情况下估计效果较差。

2.多项式插值:多项式插值假设两个数据点之间的值变化是一个多项式函数。

通过已知数据点的坐标和对应的值,使用多项式拟合方法求解多项式函数的系数,再根据该多项式求解两个数据点之间的值。

多项式插值可以准确拟合已知数据点,但在插值点较多时容易出现振荡现象,且对数据点分布敏感。

3.样条插值:样条插值是一种平滑的插值方法,通过构建分段连续的多项式函数来逼近整个数据集。

根据已知数据点的坐标和对应的值,通过求解一组多项式函数的系数,使得在相邻区间之间函数值连续,导数连续。

样条插值可以减少振荡现象,对于插值点密集的情况能更好地逼近原始数据。

4.逆距离加权插值:逆距离加权插值是一种基于距离的加权插值方法,根据已知数据点与插值点之间的距离,对每个已知数据点进行加权平均得到插值点的值。

该方法认为距离较近的数据点对插值结果的影响更大。

逆距离加权插值简单易用,对数据点的分布不敏感,但对于距离较远的数据点容易受到较大的干扰。

在实际应用中,选择合适的插值方法需要根据数据的特点和要求来决定。

若数据变化较简单、平滑,可以选择线性插值或多项式插值;若数据变化复杂,存在振荡现象,可以选择样条插值;若数据点分布较稀疏,可以选择逆距离加权插值。

此外,还有一些其他的插值方法,如Kriging插值、径向基函数插值等,它们根据不同的假设和模型进行插值,具有一定的特点和适用范围。

综上所述,对于选择合适的插值方法,需要根据具体问题和数据特点来综合考虑,结合不同方法的优缺点进行比较研究,以得到更准确和可靠的插值结果。

几种插值法简介

几种插值法简介

举例来看:可以认为某水文要素T 随时间t 的变化是连续的,某一个测点的水文要素T 可以看作时间的函数T=f(t),这样在实际水文观测中,对测得的(n+1)个有序值进行插值计算来获取任意时间上的要素值。

①平均值法:若求T i 和T i+1之间任一点T ,则直接取T 为T i 和T i+1的平均值。

插值公式为:T=T i +T i+12②拉格朗日(Lagrange )插值法:若求T i 和T i+1之间任一点T ,则可用T i-1、T 1、T i+1三个点来求得,也可用T i 、T i+1、T i+2这三个点来求得。

前三点内插公式为:T=(t-t i )(t-t i+1)(t i-1-t i )(t i-1-t i+1) T i-1+(t-t i-1)(t-t i+1)(t-t i-1)(t-t i+1) T i +(t-t i )(t-t i-1)(t i+1-t i )(t i+1-t i-1) T i+1后三点内插公式为:T=(t-t i+1)(t-t i+2)(t i -t i+1)(t i -t i+2) T i +(t-t i )(t-t i+2)(ti-t i )(t i -t i+2) T i+1+(t-t i )(t-t i+1)(t i+2-t i )(t i+2-t i+1) T i+2为提高插值结果可靠性,可将前后3点内插值再进一步平均。

③阿基玛(Akima )插值法:对函数T=f(t)的n+1个有序型值中任意两点T i 和T i+1满足:f(t i )=T i df dt |t-ti =k i f’(t i+1)=T’i df dt|t-ti+1=k i+1 式中k i ,k i+1为曲线f(t)在这两点的斜率,而每点的斜率和周围4个点有关,插值公式为:T=P 0+P 1(t-t i )+P 2(t-t i )2+P 3(t-t i )3,来对T i 和T i+1之间的一点T 进行内差。

插值方法比较范文

插值方法比较范文

插值方法比较范文插值方法是数值计算中常用的一种数值逼近技术,用于通过已知数据点之间的关系来估计未知数据点的值。

在插值过程中,根据不同的插值方法,可以得到不同的近似函数,从而得到不同的结果。

常见的插值方法包括拉格朗日插值、牛顿插值、埃尔米特插值和样条插值等。

下面将对这些插值方法进行比较,包括优缺点。

首先是拉格朗日插值法,它是通过使用已知数据点的函数值来构建一个多项式,再利用这个多项式来估算未知数据点的函数值。

拉格朗日插值法的优点是简单易懂、计算简便,而且在已知数据点分布较为均匀的情况下效果较好。

然而,拉格朗日插值法的缺点是对于较多数据点的情况,构建的多项式会非常复杂,容易导致插值结果的振荡。

此外,拉格朗日插值法对于增加或减少一个数据点都需要重新计算,不够灵活。

其次是牛顿插值法,它也是通过已知数据点的函数值来构建一个多项式,但是与拉格朗日插值法不同,牛顿插值法利用差商的概念来简化多项式的计算。

牛顿插值法的优点是可以递推计算差商,避免了重复计算,因此对于增加或减少一个数据点时比较方便。

此外,牛顿插值法的插值多项式在已知数据点分布较为稀疏的情况下效果较好。

缺点是对于较多数据点的情况,插值多项式同样会变得复杂,容易导致插值结果的振荡。

再者是埃尔米特插值法,它是拉格朗日插值法的一种改进方法。

埃尔米特插值法不仅利用已知数据点的函数值,还利用已知数据点的导数值来构建插值函数,从而提高了插值的精度。

埃尔米特插值法的优点是可以通过已知数据点的导数值来更好地拟合函数的特点,从而得到更准确的插值结果。

缺点是在计算过程中需要求解一系列线性方程组,计算量较大。

最后是样条插值法,它是常用的插值方法之一、样条插值法通过将插值区间划分为若干小区间,在每个小区间上构建一个低次多项式,通过满足一定的光滑性条件来保证插值函数的平滑性。

样条插值法的优点是插值函数的平滑性较好,能够解决拉格朗日插值法和牛顿插值法的振荡问题。

缺点是在计算过程中需要求解大规模的线性方程组,计算量较大。

几种插值法的应用和比较

几种插值法的应用和比较

插值法的应用与比较信科1302 万贤浩 132710381格朗日插值法在数值分析中,拉格朗日插值法是以法国十八世纪数学家约瑟夫·路易斯·拉格朗日命名的一种多项式插值方法.许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解.如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值.这样的多项式称为拉格朗日(插值)多项式.数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数.拉格朗日插值法最早被英国数学家爱德华·华林于1779年发现,不久后由莱昂哈德·欧拉再次发现.1795年,拉格朗日在其著作《师范学校数学基础教程》中发表了这个插值方法,从此他的名字就和这个方法联系在一起.1.1拉格朗日插值多项式图1已知平面上四个点:(−9, 5), (−4, 2), (−1, −2), (7, 9),拉格朗日多项式:)(x L (黑色)穿过所有点.而每个基本多项式:)(00x l y ,)(11x l y , )(22x l y 以及)(x l y ςς各穿过对应的一点,并在其它的三个点的x 值上取零.对于给定的若1+n 个点),(00y x ,),(11y x ,………),(n n y x ,对应于它们的次数不超过n 的拉格朗日多项式L 只有一个.如果计入次数更高的多项式,则有无穷个,因为所有与L 相差))((10x x x x --λ……)(n x x -的多项式都满足条件.对某个多项式函数,已知有给定的1+k 个取值点:),(00y x ,……,),(k k y x ,其中i x 对应着自变量的位置,而i y 对应着函数在这个位置的取值.假设任意两个不同的i x 都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为:)()(0x l y x L j kj j ∑==,其中每个)(x l j 为拉格朗日基本多项式(或称插值基函数),其表达式为:)()()()()()()()()(111100,0k j k j j j j j j j kj i i ij i j x x x x x x x x x x x x x x x x x x x x x l --------=--=++--≠=∏ , 拉格朗日基本多项式()x l i 的特点是在j x 上取值为1,在其它的点i x ,j i ≠ 上取值为0. 例:设有某个多项式函数f ,已知它在三个点上的取值为:• 10)4(=f , • 25.5)5(=f , •1)6(=f ,要求)18(f 的值.首先写出每个拉格朗日基本多项式:())64)(54()6)(5(0----=x x x l ;())65)(45()6)(4(1----=x x x l ;())56)(46()5)(4(2----=x x x l ;然后应用拉格朗日插值法,就可以得到p 的表达式(p 为函数f 的插值函数):)()6()()5()()4()(210x l f x l f x l f x p ++=)56)(46()5)(4(1)65)(45()6)(4(25.5)64)(54()6)(5(10----⨯+----⨯+----⨯=x x x x x x)13628(412+-=x x ,此时数值18就可以求出所需之值:11)18()18(-==p f .1.2插值多项式的存在性与唯一性存在性对于给定的1+k 个点:),(),,(00k k y x y x 拉格朗日插值法的思路是找到一个在一点j x 取值为1,而在其他点取值都是0的多项式)(x l j .这样,多项式)(x l y j j 在点j x 取值为j y , 而在其他点取值都是0.而多项式()∑==kj jj x ly x L 0)(就可以满足∑==++++==ki j j j i y y x l y x L 0000)()( ,在其它点取值为0的多项式容易找到,例如:)())(()(110k j j x x x x x x x x ----+- ,它在点j x 取值为:)()()(10k j j j i x x x x x x ---+ .由于已经假定i x 两两互不相同,因此上面的取值不等于0.于是,将多项式除以这个取值,就得到一个满足“在j x 取值为1,而在其他点取值都是0的多项式”:)()()()()()()()(111100k j k j j j j j j j i j j x x x x x x x x x x x x x x x x x x xx l --------=--=++--∏, 这就是拉格朗日基本多项式. 唯一性次数不超过k 的拉格朗日多项式至多只有一个,因为对任意两个次数不超过k 的拉格朗日多项式:1p 和2p ,它们的差21p p -在所有1+k 个点上取值都是0,因此必然是多项式)())((10k x x x x x x --- 的倍数.因此,如果这个差21p p -不等于0,次数就一定不小于1+k .但是21p p -是两个次数不超过k 的多项式之差,它的次数也不超过k ,所以021=-p p 也就是说21p p =.这样就证明了唯一性.1.3性质拉格朗日插值法中用到的拉格朗日基本多项式n l l l ,,,10 (由某一组n x x x <<< 10 确定)可以看做是由次数不超过n 的多项式所组成的线性空间:[]X n K 的一组基底.首先,如果存在一组系数:n λλλ,,,10 使得,01100=+++=n n l l l P λλλ ,那么,一方面多项式p 是满足n n x P x P x P λλλ===)(,,)(,)(1100 的拉格朗日插值多项式,另一方面p 是零多项式,所以取值永远是0.所以010====n λλλ ,这证明了n l l l ,,,10 是线性无关的.同时它一共包含1+n 个多项式,恰好等于[]X n K 的维数.所以n l l l ,,,10 构成了[]X n K 的一组基底.拉格朗日基本多项式作为基底的好处是所有的多项式都是齐次的(都是n 次多项式).1.4优点与缺点拉格朗日插值法的公式结构整齐紧凑,在理论分析中十分方便,然而在计算中,当插值点增加或减少一个时,所对应的基本多项式就需要全部重新计算,于是整个公式都会变化,非常繁琐.这时可以用重心拉格朗日插值法或牛顿插值法来代替.此外,当插值点比较多的时候,拉格朗日插值多项式的次数可能会很高,因此具有数值不稳定的特点,也就是说尽管在已知的几个点取到给定的数值,但在附近却会和“实际上”的值之间有很大的偏差.这类现象也被称为龙格现象,解决的办法是分段用较低次数的插值多项式.2 重心拉格朗日插值法重心拉格朗日插值法是拉格朗日插值法的一种改进.在拉格朗日插值法中,运用多项式)())(()(10k x x x x x x x l ---= ,图(2)拉格朗日插值法的数值稳定性:如图(2),用于模拟一个十分平稳的函数时,插值多项式的取值可能会突然出现一个大的偏差(图中的14至15中间) 可以将拉格朗日基本多项式重新写为:∏≠=--=kji i i j jj x x x x x l x l ,0)(1)()(,定义重心权∏≠=-=k ji i i j j x x ,0)(1ω,上面的表达式可以简化为:jjj x x x l x l -=ω)()(,于是拉格朗日插值多项式变为:j kj jjy xx x l x L ∑=-=0)()(ω , (1)即所谓的重心拉格朗日插值公式(第一型)或改进拉格朗日插值公式.它的优点是当插值点的个数增加一个时,将每个j ω都除以)(1+-k j x x ,就可以得到新的重心权1+k ω,计算复杂度为)(n O ,比重新计算每个基本多项式所需要的复杂度)(2n O 降了一个量级.将以上的拉格朗日插值多项式用来对函数1)(≡x g 插值,可以得到:∑=-=∀kj jjx x x l x g x 0)()(,ω,因为1)(≡x g 是一个多项式. 因此,将)(x L 除以)(x g 后可得到:∑∑==--=k j jjk j jjx x x x x L 00)(ωω, (2)这个公式被称为重心拉格朗日插值公式(第二型)或真正的重心拉格朗日插值公式.它继承了(1)式容易计算的特点,并且在代入x 值计算)(x L 的时候不必计算多项式)(x l 它的另一个优点是,结合切比雪夫节点进行插值的话,可以很好地模拟给定的函数,使得插值点个数趋于无穷时,最大偏差趋于零.同时,重心拉格朗日插值结合切比雪夫节点进行插值可以达到极佳的数值稳定性.第一型拉格朗日插值是向后稳定的,而第二型拉格朗日插值是向前稳定的,并且勒贝格常数很小.3.分段线性插值对于分段线性插值,我们看一下下面的情况.3.1问题的重诉已知211)(xx g +=,66≤≤-x 用分段线性插值法求插值,绘出插值结果图形,并观察插值误差.1.在[-6,6]中平均选取5个点作插值;2.在[-6,6]中平均选取11个点作插值;3.在[-6,6]中平均选取21个点作插值;4.在[-6,6]中平均选取41个点作插值.3.2问题的分析在数值计算中,已知数据通常是离散的,如果要得到这些离散点以外的其他点的函数值,就需要根据这些已知数据进行插值.而本题只提供了取样点和原函数)(x g .分析问题求解方法如下:(1)利用已知函数式211)(xx g +=计算取样点X 对应的函数值Y ;将Y X ,作为两个等长的已知向量,分别描述采样点和样本值.因此被插值函数是一个单变量函数,可利用一维插值处理该数据插值问题.一维插值采用的方法通常有拉格朗日多项式插值(本题采用3次多项式插值),3次样条插值法和分段线性插值.(2)分别利用以上插值方法求插值.以0.5个单位为步长划分区间[-6,6],并将每一点作为插值函数的取样点.再根据插值函数计算所选取样点的函数值.最后再利用所得函数值画出相应的函数图象,并与原函数)(x g 的图象进行对比.3.3问题的假设为了解决上述分析所提到的问题,本题可以作出如下假设:(1)假设原函数)(x g 仅作为求解取样点对应的样点值的函数关系式.而其他各点的函数值都是未知量,叙用插值函数计算.(2)为了得到理想的对比函数图象,假设)(x g 为已知的标准函数.可以选取0.5个单位为步长划分区间[-6,6],分别计算插值函数和标准函数)(x g 在该区间的取样点的函数值.画出函数图象进行对比.3.4分段线性插值原理给定区间[]b a ,, 将其分割成b x x x a n =<<<= 10,已知函数)(x f y =在这些插值结点的函数值为),1,0)((n k x f y k k ==;求一个分段函数)(x I k ,使其满足:(1) k k h y x I =)(,),1,0(n k =;(2) 在每个区间[]1,+k k x x 上, )(x I h 是个一次函数.易知,)(x I h 是个折线函数, 在每个区间[]1,+k k x x 上,),1,0(n k =1111)(++++--+--=k kk kk k k k k h y x x x x y x x x x x I ,于是, )(x I h 在[]b a ,上是连续的,但其一阶导数是不连续的. 于是即可得到如下分段线性插值函数:)()(0x l y x I ni i i n ∑==,其中⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤≤--=≤≤--=+++---.,0;,;0,111111其他时舍去时,且当时舍去时,且当n i x x x x x x x i x x x xx x x l i i i i i i i i ii i3.5问题的求解在MATLAB 中实现分段线性插值,最近点插值,3次多项式插值,3次样条插值的命令为interp 1,其调用格式为: Y 1=interp 1(X ,Y ,X 1,’method ’)函数根据X ,Y 的值,计算函数在X 1处的值.X ,Y 是两个等长的已知向量,分别描述采样点和样本值,X 1是一个向量或标量,描述欲插值点,Y 1是一个与X 1等长的插值结果.method 是插值方法,包括:linear :分段线性插值.它是把与插值点靠近的两个数据点用直线连接,然后在直线让选取对应插值点的数.nearest :近点插值法.根据已知两点间的插值点与这两点间的位置远近插值.当插值点距离前点远时,取前点的值,否则取后点的值.cubic :3次多项式插值.根据已知数据求出一个3次多项式,然后根据多项式进行插值. spline :3次样条插值.在每个分段(子区间)内构造一个3次多项式,使其插值函数除满足插值条件外,还要求个节点处具有光滑条件.再根据已知数据求出样条函数后,按照样条函数插值.运用Matlab 工具软件编写代码,并分别画出图形如下: (一)在[-6,6]中平均选取5个点作插值:-10-5051000.20.40.60.81分段线性插值-10-50510-0.500.513次样条插值-10-5051000.20.40.60.81最近点插值-10-5051000.20.40.60.813次多项式插值(二)在[-6,6]中平均选取11个点作插值:-10-5051000.20.40.60.81-10-5051000.20.40.60.81-10-5051000.20.40.60.81-10-5051000.20.40.60.81(三)在[-6,6]中平均选取21个点作插值:-10-5051000.20.40.60.81分段线性插值-10-551000.20.40.60.813次样条插值-10-551000.20.40.60.81-10-551000.20.40.60.813次多项式插值(四)在[-6,6]中平均选取41个点作插值-10-5051000.20.40.60.81-10-5051000.20.40.60.8100.20.40.60.8100.20.40.60.813次多项式插值3.6 分段插值方法的优劣性分析从以上对比函数图象可以看出,分段线性插值其总体光滑程度不够.在数学上,光滑程度的定量描述是函数(曲线) 的k 阶导数存在且连续,则称该曲线具有k 阶光滑性.一般情况下,阶数越高光滑程度越好.分段线性插值具有零阶光滑性,也就是不光滑.3次样条插值就是较低次数的多项式而达到较高阶光滑性的方法.总体上分段线性插值具有以下特点:优点: 1.分段线性插值在计算上具有简洁方便的特点.2.分段线性插值与3次多项式插值函数在每个小区间上相对于原函数都有很强的收敛性,(舍入误差影响不大),数值稳定性好且容易在计算机上编程实现等优点缺点: 分段线性插值在节点处具有不光滑性的缺点(不能保证节点处插值函数的导数连续),从而不能满足某些工程技术上的要求.而3次样条插值却具有在节点处光滑的特点.。

各种插值法的对比研究

各种插值法的对比研究

各种插值法的对比研究插值法是一种利用已知数据点推算缺失数据点的方法,常用于信号处理、图像处理和数据分析等领域。

在实际应用中,选择合适的插值方法非常重要,因为它直接影响到结果的准确性和可靠性。

本文将对常见的插值方法进行对比研究。

线性插值是最简单和最常用的插值方法之一、它假设数据点之间的变化是线性的,根据已知数据点之间的斜率和距离,可以推算出缺失数据点的值。

线性插值的优点是计算简单,适用于等间距的数据点。

然而,线性插值可能会导致插值曲线不光滑,并且在非等间距数据点或缺失数据点较多的情况下效果不佳。

拉格朗日插值是一种基于多项式插值的方法。

它通过构造一个满足已知数据点的多项式函数,然后根据该函数求解出缺失数据点的值。

拉格朗日插值的优点是可以精确地通过所有已知数据点,适用于非等间距和较稀疏的数据。

然而,拉格朗日插值存在“龙格现象”,即在数据点较多或高次插值时,插值函数会出现大幅度振荡。

牛顿插值与拉格朗日插值相似,也是基于多项式插值的方法。

不同之处在于,牛顿插值使用被称为“差商”的系数来构建插值多项式。

牛顿插值的优点是计算简单,可以实时更新插值多项式以适应新的数据点。

然而,牛顿插值也存在“龙格现象”。

样条插值是通过连接已知数据点来构建平滑的插值曲线的方法。

它通过选择适当的插值函数和控制点,保持插值曲线在已知数据点间的连续、光滑性。

样条插值的优点是可以抑制龙格现象,产生更平滑的插值曲线,并且适用于非线性变化的数据。

然而,样条插值的缺点是计算复杂度较高,可能导致过度拟合和过度平滑的问题。

Kriging 插值是一种基于地理空间的插值方法,它利用已知数据点的空间关联性来推算未知数据点的值。

Kriging 插值的优点是可以利用数据点之间的空间自相关性,适用于地理信息系统和地质学等领域的数据插值。

然而,Kriging 插值的缺点是计算复杂度高,并且对数据点的空间分布和空间自相关性的假设要求较高。

总的来说,选择合适的插值方法需要综合考虑数据的特点、插值精度和计算复杂度等因素。

数值计算中的插值方法与误差分析

数值计算中的插值方法与误差分析

数值计算中的插值方法与误差分析数值计算是一门应用数学学科,广泛应用于科学与工程领域。

在实际问题中,我们常常需要通过已知的离散数据点来估计未知的数值。

插值方法就是为了解决这个问题而设计的。

插值方法是一种基于已知数据点,推断出未知数据点的数值计算方法。

常见的插值方法有拉格朗日插值、牛顿插值等。

下面我们将重点介绍这两种方法。

1. 拉格朗日插值法拉格朗日插值法是插值方法中最常见的一种。

它是基于拉格朗日多项式的思想。

假设我们有一组已知的数据点(x1, y1), (x2, y2), ..., (xn, yn),我们想要估计一个未知点x的函数值y。

拉格朗日插值法的基本思想是通过插值多项式来逼近原函数。

具体步骤如下:(1)根据已知数据点构造Lagrange插值多项式:L(x) = Σ(yi * Li(x)), i = 0, 1, ..., n其中,Li(x) = Π((x-xj)/(xi-xj)), j ≠ i(2)计算未知点x对应的函数值y:y = L(x)拉格朗日插值法的优点是简单易懂,计算方便。

然而,它也存在着一些问题,比如插值多项式的次数较高时,多项式在插值区间外的振荡现象明显,容易引起插值误差。

2. 牛顿插值法牛顿插值法是另一种常见的插值方法。

它是基于差商的思想。

假设我们有一组已知的数据点(x1, y1), (x2, y2), ..., (xn, yn),我们想要估计一个未知点x的函数值y。

牛顿插值法的基本思想是通过插值多项式来逼近原函数。

具体步骤如下:(1)计算差商:f[xi, xi+1, ..., xi+k] = (f[xi+1, ..., xi+k] - f[xi, ..., xi+k-1]) / (xi+k - xi)(2)根据已知数据点构造Newton插值多项式:N(x) = f[x0] + Σ(f[x0, x1, ..., xi] * Π(x - xj)), i = 0, 1, ..., n-1(3)计算未知点x对应的函数值y:y = N(x)牛顿插值法的优点是适用范围广,可以方便地添加新的数据点进行插值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

插值法的应用与比较信科1302 万贤浩 132710381格朗日插值法在数值分析中,拉格朗日插值法是以法国十八世纪数学家约瑟夫·路易斯·拉格朗日命名的一种多项式插值方法.许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解.如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值.这样的多项式称为拉格朗日(插值)多项式.数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数.拉格朗日插值法最早被英国数学家爱德华·华林于1779年发现,不久后由莱昂哈德·欧拉再次发现.1795年,拉格朗日在其著作《师范学校数学基础教程》中发表了这个插值方法,从此他的名字就和这个方法联系在一起.1.1拉格朗日插值多项式图1已知平面上四个点:(−9, 5), (−4, 2), (−1, −2), (7, 9),拉格朗日多项式:)(x L (黑色)穿过所有点.而每个基本多项式:)(00x l y ,)(11x l y , )(22x l y 以及)(x l y ςς各穿过对应的一点,并在其它的三个点的x 值上取零.对于给定的若1+n 个点),(00y x ,),(11y x ,………),(n n y x ,对应于它们的次数不超过n 的拉格朗日多项式L 只有一个.如果计入次数更高的多项式,则有无穷个,因为所有与L 相差))((10x x x x --λ……)(n x x -的多项式都满足条件.对某个多项式函数,已知有给定的1+k 个取值点:),(00y x ,……,),(k k y x ,其中i x 对应着自变量的位置,而i y 对应着函数在这个位置的取值.假设任意两个不同的i x 都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为:)()(0x l y x L j kj j ∑==,其中每个)(x l j 为拉格朗日基本多项式(或称插值基函数),其表达式为:)()()()()()()()()(111100,0k j k j j j j j j j kj i i ij i j x x x x x x x x x x x x x x x x x x x x x l --------=--=++--≠=∏ , 拉格朗日基本多项式()x l i 的特点是在j x 上取值为1,在其它的点i x ,j i ≠ 上取值为0. 例:设有某个多项式函数f ,已知它在三个点上的取值为:• 10)4(=f , • 25.5)5(=f , •1)6(=f ,要求)18(f 的值.首先写出每个拉格朗日基本多项式:())64)(54()6)(5(0----=x x x l ;())65)(45()6)(4(1----=x x x l ;())56)(46()5)(4(2----=x x x l ;然后应用拉格朗日插值法,就可以得到p 的表达式(p 为函数f 的插值函数):)()6()()5()()4()(210x l f x l f x l f x p ++=)56)(46()5)(4(1)65)(45()6)(4(25.5)64)(54()6)(5(10----⨯+----⨯+----⨯=x x x x x x)13628(412+-=x x ,此时数值18就可以求出所需之值:11)18()18(-==p f .1.2插值多项式的存在性与唯一性存在性对于给定的1+k 个点:),(),,(00k k y x y x 拉格朗日插值法的思路是找到一个在一点j x 取值为1,而在其他点取值都是0的多项式)(x l j .这样,多项式)(x l y j j 在点j x 取值为j y , 而在其他点取值都是0.而多项式()∑==kj jj x ly x L 0)(就可以满足∑==++++==ki j j j i y y x l y x L 0000)()( ,在其它点取值为0的多项式容易找到,例如:)())(()(110k j j x x x x x x x x ----+- ,它在点j x 取值为:)()()(10k j j j i x x x x x x ---+ .由于已经假定i x 两两互不相同,因此上面的取值不等于0.于是,将多项式除以这个取值,就得到一个满足“在j x 取值为1,而在其他点取值都是0的多项式”:)()()()()()()()(111100k j k j j j j j j j i j j x x x x x x x x x x x x x x x x x x xx l --------=--=++--∏, 这就是拉格朗日基本多项式. 唯一性次数不超过k 的拉格朗日多项式至多只有一个,因为对任意两个次数不超过k 的拉格朗日多项式:1p 和2p ,它们的差21p p -在所有1+k 个点上取值都是0,因此必然是多项式)())((10k x x x x x x --- 的倍数.因此,如果这个差21p p -不等于0,次数就一定不小于1+k .但是21p p -是两个次数不超过k 的多项式之差,它的次数也不超过k ,所以021=-p p 也就是说21p p =.这样就证明了唯一性.1.3性质拉格朗日插值法中用到的拉格朗日基本多项式n l l l ,,,10 (由某一组n x x x <<< 10 确定)可以看做是由次数不超过n 的多项式所组成的线性空间:[]X n K 的一组基底.首先,如果存在一组系数:n λλλ,,,10 使得,01100=+++=n n l l l P λλλ ,那么,一方面多项式p 是满足n n x P x P x P λλλ===)(,,)(,)(1100 的拉格朗日插值多项式,另一方面p 是零多项式,所以取值永远是0.所以010====n λλλ ,这证明了n l l l ,,,10 是线性无关的.同时它一共包含1+n 个多项式,恰好等于[]X n K 的维数.所以n l l l ,,,10 构成了[]X n K 的一组基底.拉格朗日基本多项式作为基底的好处是所有的多项式都是齐次的(都是n 次多项式).1.4优点与缺点拉格朗日插值法的公式结构整齐紧凑,在理论分析中十分方便,然而在计算中,当插值点增加或减少一个时,所对应的基本多项式就需要全部重新计算,于是整个公式都会变化,非常繁琐.这时可以用重心拉格朗日插值法或牛顿插值法来代替.此外,当插值点比较多的时候,拉格朗日插值多项式的次数可能会很高,因此具有数值不稳定的特点,也就是说尽管在已知的几个点取到给定的数值,但在附近却会和“实际上”的值之间有很大的偏差.这类现象也被称为龙格现象,解决的办法是分段用较低次数的插值多项式.2 重心拉格朗日插值法重心拉格朗日插值法是拉格朗日插值法的一种改进.在拉格朗日插值法中,运用多项式)())(()(10k x x x x x x x l ---= ,图(2)拉格朗日插值法的数值稳定性:如图(2),用于模拟一个十分平稳的函数时,插值多项式的取值可能会突然出现一个大的偏差(图中的14至15中间) 可以将拉格朗日基本多项式重新写为:∏≠=--=kji i i j jj x x x x x l x l ,0)(1)()(,定义重心权∏≠=-=k ji i i j j x x ,0)(1ω,上面的表达式可以简化为:jjj x x x l x l -=ω)()(,于是拉格朗日插值多项式变为:j kj jjy xx x l x L ∑=-=0)()(ω , (1)即所谓的重心拉格朗日插值公式(第一型)或改进拉格朗日插值公式.它的优点是当插值点的个数增加一个时,将每个j ω都除以)(1+-k j x x ,就可以得到新的重心权1+k ω,计算复杂度为)(n O ,比重新计算每个基本多项式所需要的复杂度)(2n O 降了一个量级.将以上的拉格朗日插值多项式用来对函数1)(≡x g 插值,可以得到:∑=-=∀kj jjx x x l x g x 0)()(,ω,因为1)(≡x g 是一个多项式. 因此,将)(x L 除以)(x g 后可得到:∑∑==--=k j jjk j jjx x x x x L 00)(ωω, (2)这个公式被称为重心拉格朗日插值公式(第二型)或真正的重心拉格朗日插值公式.它继承了(1)式容易计算的特点,并且在代入x 值计算)(x L 的时候不必计算多项式)(x l 它的另一个优点是,结合切比雪夫节点进行插值的话,可以很好地模拟给定的函数,使得插值点个数趋于无穷时,最大偏差趋于零.同时,重心拉格朗日插值结合切比雪夫节点进行插值可以达到极佳的数值稳定性.第一型拉格朗日插值是向后稳定的,而第二型拉格朗日插值是向前稳定的,并且勒贝格常数很小.3.分段线性插值对于分段线性插值,我们看一下下面的情况.3.1问题的重诉已知211)(xx g +=,66≤≤-x 用分段线性插值法求插值,绘出插值结果图形,并观察插值误差.1.在[-6,6]中平均选取5个点作插值;2.在[-6,6]中平均选取11个点作插值;3.在[-6,6]中平均选取21个点作插值;4.在[-6,6]中平均选取41个点作插值.3.2问题的分析在数值计算中,已知数据通常是离散的,如果要得到这些离散点以外的其他点的函数值,就需要根据这些已知数据进行插值.而本题只提供了取样点和原函数)(x g .分析问题求解方法如下:(1)利用已知函数式211)(xx g +=计算取样点X 对应的函数值Y ;将Y X ,作为两个等长的已知向量,分别描述采样点和样本值.因此被插值函数是一个单变量函数,可利用一维插值处理该数据插值问题.一维插值采用的方法通常有拉格朗日多项式插值(本题采用3次多项式插值),3次样条插值法和分段线性插值.(2)分别利用以上插值方法求插值.以0.5个单位为步长划分区间[-6,6],并将每一点作为插值函数的取样点.再根据插值函数计算所选取样点的函数值.最后再利用所得函数值画出相应的函数图象,并与原函数)(x g 的图象进行对比.3.3问题的假设为了解决上述分析所提到的问题,本题可以作出如下假设:(1)假设原函数)(x g 仅作为求解取样点对应的样点值的函数关系式.而其他各点的函数值都是未知量,叙用插值函数计算.(2)为了得到理想的对比函数图象,假设)(x g 为已知的标准函数.可以选取0.5个单位为步长划分区间[-6,6],分别计算插值函数和标准函数)(x g 在该区间的取样点的函数值.画出函数图象进行对比.3.4分段线性插值原理给定区间[]b a ,, 将其分割成b x x x a n =<<<= 10,已知函数)(x f y =在这些插值结点的函数值为),1,0)((n k x f y k k ==;求一个分段函数)(x I k ,使其满足:(1) k k h y x I =)(,),1,0(n k =;(2) 在每个区间[]1,+k k x x 上, )(x I h 是个一次函数.易知,)(x I h 是个折线函数, 在每个区间[]1,+k k x x 上,),1,0(n k =1111)(++++--+--=k kk kk k k k k h y x x x x y x x x x x I ,于是, )(x I h 在[]b a ,上是连续的,但其一阶导数是不连续的. 于是即可得到如下分段线性插值函数:)()(0x l y x I ni i i n ∑==,其中⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤≤--=≤≤--=+++---.,0;,;0,111111其他时舍去时,且当时舍去时,且当n i x x x x x x x i x x x xx x x l i i i i i i i i ii i3.5问题的求解在MATLAB 中实现分段线性插值,最近点插值,3次多项式插值,3次样条插值的命令为interp 1,其调用格式为: Y 1=interp 1(X ,Y ,X 1,’method ’)函数根据X ,Y 的值,计算函数在X 1处的值.X ,Y 是两个等长的已知向量,分别描述采样点和样本值,X 1是一个向量或标量,描述欲插值点,Y 1是一个与X 1等长的插值结果.method 是插值方法,包括:linear :分段线性插值.它是把与插值点靠近的两个数据点用直线连接,然后在直线让选取对应插值点的数.nearest :近点插值法.根据已知两点间的插值点与这两点间的位置远近插值.当插值点距离前点远时,取前点的值,否则取后点的值.cubic :3次多项式插值.根据已知数据求出一个3次多项式,然后根据多项式进行插值. spline :3次样条插值.在每个分段(子区间)内构造一个3次多项式,使其插值函数除满足插值条件外,还要求个节点处具有光滑条件.再根据已知数据求出样条函数后,按照样条函数插值.运用Matlab 工具软件编写代码,并分别画出图形如下: (一)在[-6,6]中平均选取5个点作插值:-10-5051000.20.40.60.81分段线性插值-10-50510-0.500.513次样条插值-10-5051000.20.40.60.81最近点插值-10-5051000.20.40.60.813次多项式插值(二)在[-6,6]中平均选取11个点作插值:-10-5051000.20.40.60.81-10-5051000.20.40.60.81-10-5051000.20.40.60.81-10-5051000.20.40.60.81(三)在[-6,6]中平均选取21个点作插值:-10-5051000.20.40.60.81分段线性插值-10-551000.20.40.60.813次样条插值-10-551000.20.40.60.81-10-551000.20.40.60.813次多项式插值(四)在[-6,6]中平均选取41个点作插值-10-5051000.20.40.60.81-10-5051000.20.40.60.8100.20.40.60.8100.20.40.60.813次多项式插值3.6 分段插值方法的优劣性分析从以上对比函数图象可以看出,分段线性插值其总体光滑程度不够.在数学上,光滑程度的定量描述是函数(曲线) 的k 阶导数存在且连续,则称该曲线具有k 阶光滑性.一般情况下,阶数越高光滑程度越好.分段线性插值具有零阶光滑性,也就是不光滑.3次样条插值就是较低次数的多项式而达到较高阶光滑性的方法.总体上分段线性插值具有以下特点:优点: 1.分段线性插值在计算上具有简洁方便的特点.2.分段线性插值与3次多项式插值函数在每个小区间上相对于原函数都有很强的收敛性,(舍入误差影响不大),数值稳定性好且容易在计算机上编程实现等优点缺点: 分段线性插值在节点处具有不光滑性的缺点(不能保证节点处插值函数的导数连续),从而不能满足某些工程技术上的要求.而3次样条插值却具有在节点处光滑的特点.。

相关文档
最新文档