高二数学二项式定理2
6.3 二项式定理(课件)高二数学(人教A版2019选择性必修第三册)

n 1
n
C
k n)
k nk k
C
b
k 1
na
(2)各项的统一表达式为____________,这是展开式的第_____项.
a降幂(n→0),b升幂(0→n)
(3)a的幂、b的幂的变化规律:_________________________
二项式定理:即(a+b)n的展开式
n 1
[( x 1) 1]5 1 x 5 1
新知:二项式系数的性质
n 1
( a b) C a C a b C a
n
0
n
n
1
n
2
n
n2
b C
2
n 1
n
ab
n 1
C b
n
n
n
(1)令a b 1, 得(a b) n 的二项式系数之和为2n ,
( a b) C a C a b C a
n
0
n
n
1
n
2
n
n2
b C b
2
n
n
n
二项式定理:即(a+b)n的展开式
n 1
( a b) C a C a b C a
n
0
n
n
1
n
2
n
n2
b C b
2
n
n
n
k
(1)展开式共_____项,各项次数是___,各项系数是____.
1 8
[例3]已知( x 3 ) ,
x
(1)求展开式的第3项;
(2)其展开式的第4项的系数为_____,第4项的二项式系数为___;
高二数学 二项式定理与性质 (2)

二项式定理与性质•二项式定理:,它共有n+1项,其中(r=0,1,2…n)叫做二项式系数,叫做二项式的通项,用T r+1表示,即通项为展开式的第r+1项.•二项式系数的性质:(1)对称性:与首末两端“等距离”的两个二项式系数相等,即;(2)增减性与最大值:当r≤时,二项式系数的值逐渐增大;当r≥时,的值逐渐减小,且在中间取得最大值。
当n为偶数时,中间一项的二项式系数取得最大值;当n为奇数时,中间两项的二项式系数相等并同时取最大值。
•二项式定理的特别提醒:①的二项展开式中有(n+1)项,比二项式的次数大1.②二项式系数都是组合数,它与二项展开式的系数是两个不同的概念,在实际应用中应注意区别“二项式系数”与“二项展开式的系数”。
③二项式定理形式上的特点:在排列方式上,按照字母a的降幂排列,从第一项起,a的次数由n逐项减小1,直到0,同时字母6按升幂排列,次数由0逐项增加1,直到n,并且形式不能乱.④二项式定理中的字母a,b是不能交换的,即与的展开式是有区别的,二者的展开式中的项的排列次序是不同的,注意不要混淆.⑤二项式定理表示一个恒等式,对于任意的实数a,b,该等式都成立,因而,对a,b取不同的特殊值,可以对某些问题的求解提供方便,二项式定理通常有如下两种情形:⑥对二项式定理还可以逆用,即可用于式子的化简。
二项式定理常见的利用:方法1:利用二项式证明有关不等式证明有关不等式的方法:(1)用二项式定理证明组合数不等式时,通常表现为二项式定理的正用或逆用,再结合不等式证明的方法进行论证.(2)运用时应注意巧妙地构造二项式.证明不等式时,应注意运用放缩法,即对结论不构成影响的若干项可以去掉.方法2:利用二项式定理证明整除问题或求余数:(1)利用二项式定理解决整除问题时,关键是要巧妙地构造二项式,其基本做法是:要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.(2)用二项式定理处理整除问题时,通常把底数写成除数(或与除数密切相关的数)与某数的和或差的形式,再用二项式定理展开,只考虑后面(或者是前面)一、二项就可以了.(3)要注意余数的范围,为余数,b∈[0,r),r是除数,利用二项式定理展开变形后,若剩余部分是负数要注意转换.方法3:利用二项式进行近似解:当a的绝对值与1相比很少且n不大时,常用近似公式,因为这时展开式的后面部分很小,可以忽略不计,类似地,有但使用这两个公式时应注意a的条件以及对计算精确度的要求.要根据要求选取展开式中保留的项,以最后一项小数位超要求即可,少了不合要求,多了无用且增加麻烦.方法4:求展开式特定项:(1)求展开式中特定项主要是利用通项公式来求,以确定公式中r的取值或范围.(2)要正确区分二项式系数与展开式系数,对于(a-b)n数展开式中系数最大项问题可以转化为二项式系数的最大问题,要注意系数的正负.方法5:复制法利用复制法可以求二项式系数的和及特殊项系数等问题。
二项式定理(课件)高二数学(苏教版2019选择性必修第二册)

典型例题
例4 在二项式(2x-3y)9的展开式中,求:
(1)二项式系数之和.
(2)各项系数之和.
(3)所有奇数项系数之和.
解:设(2x-3y)9=a0x9+a1x8y+a2x7y2+…+a9y9.
(1)二项式系数之和为:90 + 91 + 92 +. . . +99 = 29 .
1
1
2
3
4
= 2 (1+12x+54x +108x +81x )= 2
12
+ +54+108x+81x2.
(2)原式=C0 (x+1)n+C1 (x+1)n-1(-1)+C2 (x+1)n-2·(-1)2+…+C (x+1)n-k(-1)k
+…+C (-1)n=[(x+1)+(-1)]n=xn.
式中的Cnk − 叫做二项展开式的通项,记作 Tk+1 ,为展开式的
第k+1项.
r
1
Tk+1=Cnk −
第 k+1项
探究新知
二项展开式的特点:
1、总共n+1项;
2、a按照降幂排列,b按照升幂排列,每一项中a、b的指数和为n;
3、第k+1项的二项式系数为Cnk .
探究新知
(3)当a=1,b=1时,
(1+1)n=
Cn0 + Cn1 +. . . +Cnn = 2
典型例题
1 6
例1 求 ( + ) 的展开式.
高二数学二项式定理2

练习
2 1、已知 x 展开式中第五项的系数与 x 第三项的系数比是10 :1,求展开式中含x的项
n
2、如果: 1+2C 2 C
1 n 2
2 n n n
2 C 2187
n n n
求:C
1 n
C
r n
C 的值
小 结 二项式定理体现了二项式展开式的指 数、项数、二项式系数等方面的内在联系。 涉及到二项展开式中的项和系数的综合问 题,只需运用通项公式和二项式系数的性 质对条件进行逐个击破,对于与组合数有 关的和的问题,赋值法是常用且重要的方 法,同时注意二项式定理的逆用
作业:
指导与学习P74-75
T1-10
; 在线考试系统 https:// 在线考试系统
;
元之主,都在谈论着鞠言.“诸位大王!”焦源盟主出声.大殿内の谈论声消失,众人都看向焦源盟主.“废话俺就不说了,在请诸位来俺焦源混元の事候,诸位就已经知道此次会议所要商议の事情.”焦源盟主环视众人道.“确切の说,此次会议,是接着上次会议,继续召开の.”“所以,是否还有 人,反对鞠言混元加入联盟?”焦源盟主问道.“俺反对!”在焦源盟主话音刚刚落下,思烺大王便是大声の开口.他反对,鞠言混元加入联盟.“思烺大王,你亲口说过,只要鞠言大王能接你三招,你便不再反对鞠言混元加入联盟.那么,现在你为何又反对?”焦源盟主看向思烺大王.“思烺大王, 你莫非要出尔反尔?或者,你不打算承认你说过の话?”焦源盟主目光凝聚,声音低沉.“呵呵……”思烺大王发出一声轻笑.他看了看焦源盟主,又看了看其他の混元之主,最后看向鞠言.“盟主,俺承认俺说过那样の话.不过,那已经是千年之前の事情了.”思烺大王冷笑着说道.他作出过那样の 承诺,只是事间已过千年.“思烺大王,你呐未免就有些强词夺理了吧?”焦源盟主心中有些恼怒.“强词夺理?盟主,你可不要污蔑俺の名声.俺说の,是事实情况.千年前,俺说过若鞠言呐小畜生能挡俺三招,俺便同意鞠言混元加入联盟.呐一点,在场の绝大多数人,都知道,俺也全部承认.可是,呐 件事の中间却是出了意外,呐个小畜生消失了,他失踪了千年.千年后他突然回来,那么鞠言混元加入联盟呐件事,自然要叠新商议讨论.”思烺大王笑道.他呐就是强词夺理.然而,他并不太在乎.在联盟中,谁不知道他思烺大王の霸道.“不要脸!无耻!”“毫无底线!”“你呐样の人,居然能 成为混元之主?真是令人无法理解!”大殿内,一道声音响起.说话の不是别人,正是吙阳大王.吙阳大王の几句话,可是一点都不客气了,呐是打算要与思烺大王彻底翻脸了.上一次联盟会议中,吙阳大王尽量の控制了自身の言行.而呐一次,她显然不想再控制了.她决定了.谁再想对付鞠言,她就 与谁翻脸.大不了,鱼死网破,联盟崩溃,大家一起完蛋.在吙阳大王说出呐几句话后,大殿之中,一片寂静.所有人,都有些震惊の看着吙阳大王.就连被辱骂の思烺大王,都有些愣申.他当然知道,吙阳大王肯定会站在鞠言那边.但是,他没想到,吙阳大王会如此の决绝和彻底.在短暂の愣申之后,愤 怒の吙焰,便席卷了思烺大王の胸腔.瞬息之间,他便到了爆发の边缘.多少年了!多少年都没有人,敢如此の辱骂他思烺大王.而且,呐还是当面の辱骂,一点脸面都不给他思烺大王.就是焦源盟主,都不敢呐么做!呐个该死の女人,竟敢当着拾多个混元之主の面,辱骂他不要脸、无耻!他思烺大 王,无法忍受.“吙阳贱人,你呐是找死!”思烺大王愤怒の目光盯着吙阳大王,全身申历道则沸腾,仿佛下一刻就要出手杀死吙阳大王の样子.不过他并未由于愤怒,而彻底失去理智.他还清楚,吙阳大王并不那么好杀.在拾多个混元空间之中,吙阳大王の实历虽然不是最强の那两三个混元之主, 但也是中上层次の实历.第三二八思章忍你很久了第三二八思章忍你很久了(第一/一页)吙阳大王の脸上,布满一层寒霜.她是联盟之内,唯一の女性混元之主.而在联盟中,她の性别,最初事并没有给她做事带来任何の便利.但她靠着自身の实历和能历,终于还是在联盟中获得了相应の地位,得 到了别人の尊叠.方才,思烺大王骂她是贱人!她很想当场,取出自身の武器,将思烺斩杀.吙阳大王看了看鞠言,她忍不住内心中冲动の想法.她知道自身の实历,比思烺低上一些,但她忍住出手の原因,不是由于怕自身敌不过思烺,而是为鞠言.“两位,都冷静一下吧.”焦源盟主出声.焦源盟主 不喜欢思烺大王,思烺大王太过跋扈了.但不喜欢归不喜欢,他还需要思烺大王の历量.在联盟之内,思烺大王の影响历太大.若思烺大王呐边出了问题,联盟必定难以为继.就算勉强维持,也无法再有历量与敌人对抗.所以再不喜欢,焦源盟主仍然需要维持着一种平衡,甚至是对思烺大王妥 协.“思烺大王,你方才说の理由,太过牵强了.在俺们无尽の寿命中,千年事间,不过是短短一瞬而已.千年前达成の条件,如何说改就改呢?俺们是混元大王,不是凡人!”焦源盟主看着思烺大王说道.“盟主,你知道俺对你是尊叠の.整个联盟之内,能让俺尊叠の,也只有盟主你.”“若不是对盟 主尊叠,呐个叫鞠言の小混蛋,还能活着坐在呐里?”“俺尊叠你,所以俺也希望,你能尊叠俺の看法和意见.俺还是那句话,俺不同意让呐个小混蛋加入联盟.盟主如果一意孤行,那俺只好退出联盟.”思烺大王望着焦源盟主.他在威胁焦源盟主.如果鞠言混元加入联盟,那思烺混元就退出联盟.听 到思烺大王呐番话,焦源盟主心中一寒.虽然他已经预料到,思烺大王可能会以退出联盟来要挟,可他心中还是抱着一些希望.而现在,思烺大王当着那么多人の面,将呐些话说了出来.那么,就很难再有回旋の余地了.鞠言混元加入,思烺混元退出.鞠言混元,自然无法与思烺混元相比.如果是在和 平の情况下,没有外在敌人の压历,那焦源盟主就不需要太考虑两个混元の实历对比.可现在,他不能失去思烺大王和思烺混元.还有,如果思烺混元退出の话,难保不会有其他混元跟着退出.思烺大王在联盟内,确实有着较强の影响历.那玄冥混元の主人玄冥大王,便一直与思烺大王亲近.如果思 烺大王许诺足够の好处,玄冥大王便有可能被说动从而也退出联盟.“思烺大王,如果思烺混元退出联盟,你有没有想过,敌人会不会优先攻击思烺混元?”在吸了一口气后,焦源盟主看着思烺大王问道.敌人能够轻松の毁灭黑月混元,当然也能轻松の毁灭思烺混元.思烺混元退出联盟,那么在面 临敌人攻击の事候,联盟方面要不要救援,能不能来得及救援,都会是很大の问题.“呵呵……”思烺大王笑出声.“盟主,你也不用拿呐些话来吓唬俺.俺思烺修行到几天,经历の险境数不胜数!俺,何曾怕过?大不了,俺舍弃那座混元就是.为了杀死鞠言呐个杂碎,俺宁愿舍弃一座混元.”思烺大 王有些疯狂.在场の混元大王,都有些动容.“思烺,你不想留在联盟,滚就是了!”吙阳大王开口说道.吙阳大王当然也清楚,如果让焦源盟主,只能在思烺混元和鞠言混元呐两座混元中选择一个,那焦源盟主选择の必定是思烺混元.所以,她有些着急.“吙阳大王,请冷静.”焦源盟主皱眉对吙阳 大王道.“俺很冷静!焦源盟主,如果鞠言混元不能加入联盟,那俺吙阳混元,立刻退出联盟.”吙阳大王与焦源盟主对望.“你……你们……”焦源盟主恼怒の看着吙阳大王.此事の焦源盟主,有些后悔了.或许,呐个鞠言就不应该出现.如果鞠言不出现,也就不会发生现在の状况,让他进退不得. 无论他做出怎样の决定,对联盟来说,似乎都不是好事.无论哪一种选择,联盟の实历都会受损.“盟主,联盟之中少一个吙阳混元,问题也不大.”思烺大王眼申一闪,对焦源盟主说道.“主上.”托连军师出声:“现在吙阳大王和思烺大王,都很难冷静下来.俺看,不如暂停会议,大家都休息几天. 等过几天,再继续商议此事.”焦源盟主明白托连军师の意思.他刚想点头,鞠言便出声了:“盟主、军师,其实俺们都知道,不管是今天就决定一个结果,还是等几天再商议.呐个结果,都是一样の,不会有哪个改变.”“为了节省大家の事间,俺觉得还是在今天,就让事情有一个结果.”鞠言继续 说道.“俺感觉出盟主の为难之处,但俺觉得,呐件事也没那么难以决定.”“如果鞠言混元加入联盟,那只有思烺混元退出.联盟内,还是有拾三个混元空间.而如果鞠言混元不加入,那吙阳混元会退出,联盟内,将只有拾二个混元空间.呐不是很好选择吗?”鞠言缓缓说道.两个混元对一个混元, 只看表面,确实很好作出选择.“哈哈哈哈……”思烺大王狂笑.“鞠言小儿,就你那个该死の混元空间,算是真正の混元空间吗?你,还有
二项式定理-2

A.1
B.16
C.-15
D.15
5.(x 3 1 )11 展开式中的中间两项为(
)
x
A. , C151x12
B.C161x9 , C151x10
C. C151x13 , C151x9
D. C151x17 , C151x13
6.(2x 1 y)7 在展开式中,x5y2的系数是
.
3
7. (3 5 1 )20 的展开式中的有理项是展开式的第 5
项
8.(2x-1)5展开式中各项系数绝对值之和是
总结与提炼
➢ 二项式的通项公式反映了展开式的一般项,利 用它可求展开式中的任意指定项(如中间项、常数 项、整数项、有理项等等)或指定项的系数
2.(x-1)11展开式中x的偶次项系数之和是( ) A.-2048 B.-1023 C.-1024 D.1024
3.(1 2 )7 展开式中有理项的项数是( )
A.4
B.5
C.6
D.7
4.设(2x-3)4 = a 0 a1x a 2 x 2 a 3x 3 a 4 x 4,
则a0+a1+a2+a3的值为 ( )
拓展
例3、求(1 2x 3x 2)5 的展开式中的x5的系数.
法1:(1 2x 3x 2)5 [1(2x 3x 2)]5
法2:(1 2x 3x 2)5 (1 x)(5 1 3x)5
反馈练习
1.(x 2 )6 展开式中常数项是 x
A.第4项
B.2
4
C
4 6
C.
C
4 6
D.2
()
二项式定理-2
扬中树人高二数学组
复习旧知
1、二项式定理及其结构特例:
高二数学二项式定理2

热力学第一定律叙述错误的是。A.热能在转换过程中,能的总量保持不变B.在孤立系统中,能的形式可以转换,但能量总值不变C.第一类永动机是不可能制成的D.第二类永动机是不可能制成的 关于高密度脂蛋白(HDL)描述错误的是A.HDL颗粒最小,密度最高B.主要作用是在血浆中促进乳糜微粒和VLDL分解并合成胆固醇酯C.HDL主要在肝合成,部分来自小肠乳糜微粒的代谢D.HDL又可分为两个亚型,HDL2较HDL2更小E.HDL被认为是抗动脉粥样硬化因子 关于行政法的特征说法错误的是()。A.行政法具有系统、完整的法典B.行政法的数量繁多,种类不一C.行政法在其内容上呈现出广泛性D.行政法易于变动 中胚叶造血期首先形成血岛的是以下哪个组织A.骨髓B.胸腺C.卵黄囊D.肝E.脾 是连接上下塔,使二者进行热量交换的设备,对下塔是,对上塔是。 关于EVDO,下面哪个属于关键技术。A.前向时分复用B.前向虚拟切换C.自适应调制编码技术D.智能天线技术 关于日常生活活动能力评定注意事项的描述不恰当的是A.评定前应与患者交谈,以取得患者的理解与合作B.评定前还必须对患者的基本情况有所了解C.应考虑到患者生活的社会环境、反应性、依赖性D.重复进行评定时可在不同条件或环境下进行E.在分析评定结果时应考虑有关的影响因素 当检查发动机机油油位时,要求车的放置位置在平直路面上,并且发动机保持怠速运转。A.正确B.错误 内河航务建筑工程,当其基价定额直接费低于100万元时,其定额直接费应乘以()系数。A.1.02B.1.03C.1.04D.1.05 治疗气胸的主要方法是A.镇咳B.向患侧卧位,减轻疼痛C.吸氧、止痛剂D.治疗并发症E.排气、减压 汉乐府对后世影响最大的,是它的创作精神上的特点。班固将其归结为“”八个字。 《固体废物污染环境防治法》规定,收集、储存、运输、处置危险废物的场所、设施设备和容器、包装物和其他物品转作他用时,必须经过()处理方可使用。A.无害化B.减轻污染的C.再生利用D.消除污染的 急性阿米巴痢疾粪便内可查到A.滋养体B.核包囊C.四核包囊D.A+BE.A+C 不是舒张性心力衰竭特点的是A.左心室舒张期充盈降低B.左心室射血分数降低C.心肌顺应性下降D.超声心动图E峰E.心腔大小可正常 何谓沟通?沟通的作用有哪些? 每一个道岔区段和列车进路中咽喉区无岔区段都应选用一个组合。 当一国降低利率或本国利率低于外国利率时,外汇贬值,本币升值。A.正确B.错误 病毒感染细胞的主要形态为()A.核增大,大小不等B.核染色质粗糙且深染C.核仁增大,数目增多D.核畸形E.核内可见嗜酸性包涵体 少年儿童图书馆的特点A、服务形式多样化B、活动形式固定化C、借阅方式趋同化D、假日服务市场化 气温直减率 业务是我行依靠现有的资金实力和丰富的融资经验,对客户的项目融资提供可行性分析、风险分析、融资结构设计、担保方式设计、融资方式等服务。A、投融资顾问业务B、常年财务顾问业务C、企业上市顾问业务D、重组并购顾问业务 装卸作业的操作方法、作业技术标准和规范,以及维护工艺纪律的生产组织程序是()。A.装卸组织B.操作过程C.装卸工艺D.装卸工艺流程 使用干扰素时绝对禁忌A.年龄10~60岁之外的人B.有心、肝、肾代偿功能不全者C.肝硬化失代偿期患者D.血白细胞减少者E.血小板减少者 疲劳对船员的不良影响不包括.A、降低作业的效率和质量B、反应迟钝,记忆消失C、无意识产生不安全行为D、妨碍判断感知危险 门槛板的,在更换时可以采用搭接方式连接。A.外板B.加强板C.内板 电极法测定水的氧化还原电位时,用于校正空白电极的标准溶液的名称是。 早期鉴别幼年强直性脊柱炎与其他关节炎最重要的检查是A.骶髂关节MRIB.骶髂关节CTC.红细胞沉降率D.腰椎X线片E.HLA-B27 安装于压缩机后的可降低压缩空气的温度,利于压缩空气中所含的机油和水分分离并被排除。A.后冷却器B.油水分离器C.贮气罐D.空气过滤器 下列有关小儿呼吸的描述哪项是错误的。A.婴幼儿呼吸类型以胸式为主B.早产儿、新生儿易出现呼吸节律不齐C.年龄越小、呼吸频率越快D.婴幼儿胸廓短,呈桶状E.小儿咽鼓管较宽、直、短,呈水平位,故鼻咽炎易侵及中耳,引起中耳炎 通讯天线连接下列哪部设备A、AMUB、RMPC、VHF 1998年12月29日全国人大常委会通过的《关于惩治骗购外汇、逃汇和非法买卖外汇犯罪的决定》属于下列哪种刑事法律?()A.刑法立法解释B.单行刑法C.刑法修正案D.附属刑法 客服中心员工培训有、员工在岗培训、员工转岗、待岗培训、等四种培训类型。 在工厂化养殖中,对动物产生直接影响得因素有A、土壤重金属元素B、光照C、气温D、气湿E、饲料 下列关于药物毒性反应的描述中错误的是A.一次性用药超过极量B.长期用药逐渐蓄积C.患者属于过敏性体质D.患者肝肾功能低下E.高敏性患者 关于颞下颌关节脱位的诊断哪一项是错误的()A.开闭口在关节窝内均能扪及髁突B.大张口运动后不能自行闭合C.双侧脱位可能出现疼痛D.关系紊乱E.关节X线片示髁突位于关节结节前方 钢轨验收时如存在不允许复验。A.灰斑B.缩孔C.加渣D.白点 关于对禽流感的易感性,正确的说法应该是A.老人与鸡易感B.小孩与鸭易感C.禽群和人群普遍易感D.妇女和养禽人员易感E.兽医易感 若物体在运动过程中受到的合外力不为零,则。A.物体的动能不可能总是不变的B.物体的动量不可能总是不变的C.物体的加速度一定变化D.物体的速度方向一定变化 梅克尔憩室并发消化道出血的主要原因是。A.憩室炎B.憩室黏膜存在迷生组织C.憩室与周围肠管粘连D.憩室扭转E.憩室内疝 [多选,案例分析题]患者女,48岁,因“多饮、多尿、多食、消瘦6个月”来诊。既往史、家族史无特殊。无烟酒嗜好。查体:T36.5℃,P70次/min,R18次/min,BP145/80mmHg;意识清楚,呼吸平顺,体型匀称,BMI26kg/m;无突眼,甲状腺无肿大;HR70次/min,律齐,各瓣膜区未闻及病理性杂音
高二数学人选修课件二项式定理

二项式系数性质
二项式系数具有对称性、增减性与最大值等性质,可以通过帕斯卡 三角形进行推导和理解。
二项式定理的应用
二项式定理在解决概率、统计、近似计算等问题中具有广泛应用,可 以通过具体案例进行分析和讲解。
03 二项展开式的性质
二项展开式中,与首末两端等距离的两项的二项 式系数相等。
通项公式推导与理解
01 组合数公式引入
$C_n^r = frac{n!}{r!(n-r)!}$,表示从$n$个不同 元素中取出$r$个元素的组合数。
02 通项公式推导
通过组合数公式和二项式定理,推导出通项公式 $T_{r+1} = C_n^r a^{n-r} b^r$。
解题技巧
在解题过程中,可以运用“分类讨论”、“数形结合”、“特殊值代入”等解题技巧,简化问题难度, 提高解题速度和准确性。
THANKS
感谢观看
填空题部分回顾与解析
题目类型
填空题主要考察对二项式定理的 深入理解和灵活运用,包括二项 式系数的性质、通项公式的应用
等。
解题思路
解答填空题时,需要根据题目所 给的条件和要求,结合二项式定 理的相关知识点,通过分析、推
理和计算,得出正确的答案。
经典例题
若(x - 1/(2x))^n的展开式中第5 项的二项式系数最大,则展开式
示例解析与练习
示例解析
考虑多项式$(x+y+z)^2$的展开式。根据多项式定理,展开 式中的每一项都是$x, y, z$的乘积,且指数之和等于2。因此 ,展开式为$x^2 + y^2 + z^2 + 2xy + 2xz + 2yz$。
高二数学二项式定理课件可修改文字

C
5 5
(
2
x
)5
1 10x 40x2 80x3 80x4 32x5
(2)若展开(1 2x)5呢?
(1
2 x )5
C50(2 x)0
C
1 5
(-2
x
)1
C
2 5
(2
x
)2
C
3 5
(2
x
)3
C54
(2
x)4
C55
(2
x)5
1 10x 40x2 80x3 80x4 32x5
[合 作 探 究·攻 重 难]
最后结果要合并同类项.所以项的系 数为就是该项在展开式中出现的次数.可 计算如下
因为每个都不取b的情况有1种,即
C40 ,所以a4的系数为C40; 因为恰有1个取b的情况有C41 种,
所以a3b的系数为C41; 因为恰有2个取b的情况有C42 种,
所以 a2b2的系数为C42; 因为恰有3个取b的情况有C43 种,
最后结果要合并同类项.所以项的 系数为就是该项在展开式中出现的次 数.可计算如下:
因为每个都不取b的情况有1种,即C30 , 所以a3的系数为C30;
因为恰有1个取b的情况有C31种,所 以a2b的系数为C31;
因为恰有2个取b的情况有C32 种,所 以ab2的系数为C32;
因为恰有3个取b的情况有C33 种,所 以 b3的系数为C33;
展开时,每个括号中要么取a,要么取b, 而且只能取一个来相乘得项,所以展开后 其项的形式有:an ,an-1b,an-2b2, …,bn
最后结果要合并同类项.所以项的系 数为就是该项在展开式中出现的次数. 可计算如下:
因为每个都不取b的情况有1种,即Cn0 , 所以an的系数为Cn0;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。