2019-2020学年河南省郑州市高一上学期期末数学试题及答案解析版

合集下载

2022-2023学年河南省郑州市实验高级中学高一上学期期末数学试题(解析版)

2022-2023学年河南省郑州市实验高级中学高一上学期期末数学试题(解析版)

2022-2023学年河南省郑州市实验高级中学高一上学期期末数学试题一、单选题1.已知集合{}|11A x x =-<<,{}02B x x =≤≤,则A B =( )A .(12]-,B .(12)-,C .[01),D .[01],【答案】C【分析】由交集的定义计算.【详解】由已知{|01}[0,1)A B x x =≤<=. 故选:C .2.函数1()lg(2)3f x x x =-+-的定义域是( ) A .(2)+∞,B .(23),C .(3)+∞,D .(23)(3)+∞,, 【答案】D【分析】由题可得2030x x ->⎧⎨-≠⎩,即得.【详解】∵1()lg(2)3f x x x =-+-, ∴2030x x ->⎧⎨-≠⎩,解得2x >,且3x ≠, 所以函数的定义域为(2,3)(3,)+∞. 故选:D.3.已知ln3a =,0.43-=b ,0.53c -=,则( ) A .a b c >> B .c a b >> C .a c b >> D .c b a >>【答案】A【分析】根据对数的单调性,指数函数的单调性,求解即可. 【详解】因为ln3lne 1a =>=,0.50.4331c b --=<=<, 所以a b c >>. 故选:A4.用二分法求函数32()22f x x x x =+--的一个正零点的近似值(精确度为0.1)时,依次计算得到如下数据:f (1)=–2,f (1.5)=0.625,f (1.25)≈–0.984,f (1.375)≈–0.260,关于下一步的说法正确的是A .已经达到精确度的要求,可以取1.4作为近似值B .已经达到精确度的要求,可以取1.375作为近似值C .没有达到精确度的要求,应该接着计算f (1.4375)D .没有达到精确度的要求,应该接着计算f (1.3125) 【答案】C【分析】根据已知能的特殊函数值,可以确定方程32220x x x +--=的根分布区间,然后根据精确要求选出正确答案.【详解】由由二分法知,方程32220x x x +--=的根在区间区间(1.375,1.5),没有达到精确度的要求,应该接着计算f (1.4375).故选C .【点睛】本题考查了二分法的应用,掌握二分法的步骤是解题的关键.5.玉雕在我国历史悠久,拥有深厚的文化底蕴,数千年来始终以其独特的内涵与魅力深深吸引着世人.某扇形玉雕壁画尺寸(单位:cm )如图所示,则该玉雕壁画的扇面面积约为( )A .21600cmB .23200cmC .23350cmD .24800cm【答案】D【分析】利用扇形的面积公式,大扇形面积减去小扇形面积即可求解【详解】易知该扇形玉雕壁画可看作由一个大扇形剪去一个小扇形得到,设大、小扇形所在圆的半径分别为1r ,2r ,相同的圆心角为θ,则1216080r r θ==,得122r r =,又因为1240r r -=,所以180r =,240r =,该扇形玉雕壁画面积1211111608016080804048002222S r r =⨯⨯-⨯⨯=⨯⨯-⨯⨯=(2cm ).故选:D .6.已知角α的顶点与原点重合,始边与x 轴的正半轴重合,点(1,3)P - 在角α的终边上,则sin cos 2sin 3cos αααα-=- ( )A .34-B .34C .49-D .49【答案】D【分析】先根据三角函数的定义求出tan α ,然后采用弦化切,代入tan α 计算即可 【详解】因为点(1,3)P - 在角α的终边上,所以tan 3α=- sin cos tan 13142sin 3cos 2tan 32(3)39αααααα----===--⨯--故选:D7.下列关于函数tan 23y x π⎛⎫=-+ ⎪⎝⎭的说法正确的是( )A .最小正周期为πB .图像关于点5,012π⎛⎫⎪⎝⎭成中心对称C .在区间,312ππ⎛⎫-- ⎪⎝⎭上单调递增D .图像关于直线12x π=-成轴对称【答案】B【分析】根据函数tan(2)tan(2)33y x x ππ=-+=--,结合正切函数的图象与性质,对选项中的命题判断正误即可.【详解】解:函数tan(2)tan(2)33y x x ππ=-+=--,当512x π=时,521232πππ⨯-=,所以图象关于点5,012π⎛⎫⎪⎝⎭成中心对称,选项B 正确; 函数的最小正周期为2T π=,所以A 错误;当,312x ππ⎛-∈⎫-⎪⎝⎭时,2,32x πππ⎛⎫-∈-- ⎪⎝⎭,所以函数在,312ππ⎛⎫-- ⎪⎝⎭上单调递减,所以C 错误; 正切函数不是轴对称函数,所以D 错误. 故选:B .8.下列有关命题的说法错误的是( )A .()2lg(23)f x x x =-++的增区间为(1,1)-B .“1x =”是“2x -4x +3=0”的充分不必要条件C .若集合{}2440A x kx x =++=中只有两个子集,则1k =D .对于命题p :.存在0x R ∈,使得20010x x ++<,则⌝p :任意x R ∈,均有210x x ++≥【答案】C【分析】A.利用复合函数的单调性判断;B.利用充分条件和必要条件的定义判断;C.由方程2440kx x ++=有一根判断;D.由命题p 的否定为全称量词命题判断.【详解】A.令223t x x =-++,由2230x x -++>,解得13x -<<,由二次函数的性质知:t 在(1,1)-上递增,在(1,3)上递减,又lg y t =在()0,∞+上递增,由复合函数的单调性知:()2lg(23)f x x x =-++在(1,1)-上递增,故正确;B. 当1x =时,2x -4x +3=0成立,故充分,当2x -4x +3=0成立时,解得1x =或3x =,故不必要,故正确;C.若集合{}2440A x kx x =++=中只有两个子集,则集合只有一个元素,即方程2440kx x ++=有一根,当0k =时,=1x -,当0k ≠时,16160k ∆=-=,解得1k =,所以0k =或1k =,故错误;D.因为命题p :.存在0x R ∈,使得20010x x ++<是存在量词命题,则其否定为全称量词命题,即⌝p任意x R ∈,均有210x x ++≥,故正确; 故选:C二、多选题9.下列化简结果正确的是( ) A .1cos 22sin 52sin 22cos522︒︒-︒︒= B .1sin15sin 30sin 754︒︒︒=C .cos15sin15︒-︒=D .tan 24tan 361tan 24tan 36︒+︒=-︒︒【答案】ACD【分析】由正弦、余弦、正切函数的和差角公式逐一判断可得选项.【详解】解:对于A ,()1cos 22sin 52sin 22cos52sin 5222sin 302︒︒-︒︒=-==,故A 正确;对于B ,11111sin15sin 30sin 75cos15sin15sin 30sin 30sin 3022228︒︒︒=︒︒︒=⋅=⨯⨯=,故B 不正确;对于C ,()2cos15sin1545152sin 302︒-︒=-==,故C 正确;对于D ,()tan 24tan 36tan 24+36tan 601tan 24tan 36︒+︒=︒︒=︒=-︒︒D 正确,故选:ACD.10.下列四个命题正确的有( )A .已知π3cos 65α⎛⎫-= ⎪⎝⎭,则πsin 3α⎛⎫+ ⎪⎝⎭值为35B .若22a x a y ≥,则x y ≥C .若sin tan 0αα⋅>且cos tan 0αα⋅<,则角2α为第二或第四象限角 D .函数1cos 2y x =+是周期函数,最小正周期是2π 【答案】ACD【分析】利用诱导公式可以判断A ;利用特值法可以判断B ;对C 先判断α的象限,再判断2α的象限;对D ,作出函数的图象,再由图象进行判断.【详解】A.因为π3cos 65α⎛⎫-= ⎪⎝⎭,所以5ππππsin sin cos 3π3co 26s 66αααα⎛⎫⎛⎫⎛⎫+=+-=-⎝⎛⎫-= ⎪ ⎪ ⎪⎝⎭ ⎝⎝=⎪⎭⎭⎭,故选项A 正确;B .当0a =,1,2x y ==时,满足22a x a y ≥,但不能得到x y ≥,故选项B 错误;C .2sin sin tan 0cos αααα⋅=>且cos tan sin 0ααα⋅=<,∴cos 0,sin 0αα><,α为第四象限角,所以32ππ2π2π,Z 2k k k α+<<+∈,所以3ππππ,Z 42k k k α+<<+∈,∴2α为第二或第四象限角,故选项C 正确; D .作出1|cos |2y x =+的图象如图所示,由图象可得此函数为周期函数且最小正周期为2π,故选项D 正确;故选:ACD11.下列说法正确的有( ) A .若12x <,则1221x x +-的最大值是1- B .若x ,y ,z 都是正数,且2x y z ++=,则411x y z+++的最小值是3 C .若0x >,0y >,228x y xy ++=,则2x y +的最小值是2D .()f x 是定义在实数集上的偶函数,且在()0,∞+上单调递增,()10f =,则不等式()0f x x>的解集为()(),11,-∞-⋃+∞ 【答案】AB【分析】对于A ,凑分母,结合基本不等式,可得答案;对于B ,根据基本不等式,结合“1”的妙用,可得答案;对于C ,根据基本不等式的变式,整理出关于所求整式的二次不等式,可得答案;对于D ,根据题意可得函数在(),0∞-上单调递减,从而可得不等式()0f x x>等价于()00x f x >⎧⎨>⎩或()00x f x <⎧⎨<⎩,从而可得出答案 【详解】对于A ,因为12x <,所以210x -<,所以120x ->,所以()1122112121x x x x +=-++=---()112121112x x ⎡⎤-++-=-⎢⎥-⎣⎦≤, 当且仅当11212x x -=-,即0x =时等号成立,故1221x x +-的最大值为1-,故A 正确; 对于B ,因为x ,y ,z 都是正数,且2x y z ++=, 所以13x y z +++=,10x +>,0y z +>, 所以()411411131x y z x y z x y z ⎛⎫+=++++ ⎪++++⎝⎭,所以()4411115531313y z x x y z x y z ⎡+⎡⎤++=++≥+=⎢⎢⎥++++⎢⎣⎦⎣, 当且仅当()411y z x x y z ++=++,即()12x y z +=+,即11x y z =⎧⎨+=⎩时等号成立, 所以411x y z+++的最小值为3,故B 正确; 对于C ,因为0x >,0y >,所以2222x y x y +⎛⎫⋅≤ ⎪⎝⎭,即()2224x y xy +≤(当且仅当2x y =时等号成立), 因为228x y xy ++=,所以()282xy x y =-+,所以()()22824x y x y +-+≤,所以()()2242320x y x y +++-≥,解得28x y +≤-(舍去)或24x y +≥, 当且仅当22x y ==时等号成立,所以2x y +的最小值为4,故C 错误;对于D ,因为函数()f x 是偶函数,且在()0,∞+上单调递增,所以函数在(),0∞-上单调递减, 又因(1)0f =,所以(1)0f -=,不等式()0f x x>等价于()00x f x >⎧⎨>⎩或()00x f x <⎧⎨<⎩, 即()()01x f x f >⎧⎨>⎩或()()01x f x f <⎧⎨<-⎩,所以10x -<<或1x >,即不等式()0xf x >的解集为()(1,01,)-⋃+∞,故D 错误 故选:AB12.定义运算:a b ad bc c d=-,将函数()cos sin x f x xωω=的图像向左平移23π个单位,所得图像关于原点对称,若01ω<<,则下列说法正确的是( ) A .()f x 的最小正周期为4πB .对任意的x R ∈,都有()23f x f x π⎛⎫=- ⎪⎝⎭C .()f x 在()0,π上是增函数D .由2sin y x ω=的图像向右平移3π个单位长度可以得到()f x 图像 【答案】AC【分析】依题意得()2sin 3f x x πω⎛⎫=- ⎪⎝⎭,根据奇函数可得12ω=,可判断A ;判断3x π=是否为对称轴可判断B ;当()0,x π∈时,有13236x πππ-<-<,可判断C ;根据平移性质可判断D .【详解】依题意得()cos sin 2sin 3sin xf x x x x x ωπωωωω⎛⎫===- ⎪⎝⎭,()f x 图像向左平移23π个单位得22sin 33y x ππω⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦为奇函数 所以2,33k k Z πωππ-=∈,又01ω<<,得12ω=故()12sin 23f x x π⎛⎫=- ⎪⎝⎭,其最小正周期为4π,A 正确;由于12sin 2sin 132336f ππππ⎛⎫⎛⎫⎛⎫=⨯-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以3x π=不是对称轴,故B 错;当()0,x π∈时,有13236x πππ-<-<,由于sin y x =在,36ππ⎛⎫- ⎪⎝⎭上单调递增, 所以()f x 在()0,π上是增函数,故C 正确;由2sin y x ω=的图像向右平移3π个单位长度可以得到()12sin 23y x f x π⎛⎫=-≠ ⎪⎝⎭,故D 错;故选:AC三、填空题13.幂函数()()222mm m f x x =+-在区间()0,∞+上单调递减,则实数m 的值为______.【答案】3-【分析】利用幂函数的定义,幂函数的单调性列式计算作答.【详解】因函数()()222mm m f x x =+-是幂函数,则2221m m +-=,解得m =1或m =-3,又函数()f x 在()0,∞+上单调递减,则0m <, 所以实数m 的值为-3. 故答案为:-314.已知sin α+cos α=713,α∈(-π,0),则tan α=________. 【答案】512-. 【解析】由题意利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得sin α和cos α的值,可得tan α的值.【详解】因为sin α+cos α=713,① 所以sin 2α+cos 2α+2sin αcos α=49169, 即2sin αcos α=120169-. 因为α∈(-π,0),所以sin α<0,cos α>0,所以sin α-cos α=1713==-, 与sin α+cos α=713联立解得sin α=-513,cos α=1213, 所以tan α=sin 5cos 12αα=-. 故答案为:512-. 【点睛】该题考查的是有关三角函数恒等变换化简求值问题,涉及到的知识点有同角三角函数关系式,在解题的过程中,注意sin cos ,sin cos ,sin cos αααααα++⋅这三个式子是知一求二,属于简单题目.15.已知函数π()cos ln(4f x x x =+⋅在区间[]2022,2022-上的最大值是M ,最小值是m ,则()f M m +=____________.【答案】π4【分析】令()2()cos ln 1g x x x x =⋅++,则()()π4f xg x =+,()f x 和()g x 在[]2022,2022-上单调性相同,()g x 时奇函数,可得()g x 在max min ()()0g x g x +=,据此可求M +m ,从而求出()f M m +.【详解】令()2()cos ln 1g x x x x =⋅++,则()()π4f xg x =+, ∴()f x 和()g x 在[]2022,2022-上单调性相同,∴设()g x 在[]2022,2022-上有最大值max ()g x ,有最小值min ()g x .∵()()2cos ln 1g x x x x -⋅-++=,∴()()()()22cos ln 110g x g x x x x x x ⎡⎤+-=⋅+++-=⎢⎥⎣⎦,∴()g x 在[]2022,2022-上为奇函数,∴max min ()()0g x g x +=, ∴max min ππ(),()44M g x m g x =+=+,∴π2M m +=,()ππ24f M m f ⎛⎫+== ⎪⎝⎭.故答案为:π416.如图是某市夏季某一天的温度变化曲线,若该曲线近似地满足函数()()sin 0πy A x B ωϕϕ=++<<,则下列说法正确的是________.①该函数的周期是16.②该函数图象的一条对称轴是直线14x =③该函数的解析式是()π3π10sin 2002484y x x ⎛⎫=++≤≤ ⎪⎝⎭④这一天的函数关系式也适用于第二天 【答案】①②【分析】根据图象确定函数的最小正周期及14x =时,函数取得最大值,判断①②正确;由于2ππ8T ω==,故可取π8ω=-,从而该函数的解析式不一定是()π3π10sin 2002484y x x ⎛⎫=++≤≤ ⎪⎝⎭,③错误;这一天的函数关系式只适用于当天,④错误.【详解】由图象可得:函数最小正周期()146216T =-⨯=,①正确; 故2ππ8T ω==, 不妨令A >0,且3010A B A B +=⎧⎨-+=⎩,解得:1020A B =⎧⎨=⎩,由图象可得:当14x =时,函数取得最大值,故该函数图象的一条对称轴是直线14x =,②正确;不妨取π8ω=-,则π10sin 208y x ϕ⎛⎫=-++ ⎪⎝⎭, 将()6,10代入得:3π10sin 20104ϕ⎛⎫-++= ⎪⎝⎭,因为0πϕ<<,解得:π4ϕ=,故③错误;这一天的函数关系式只适用于当天,不一定适合第二天,④错误. 故答案为:①②四、解答题 17.化简求值:(1))12431818-⎛⎫- ⎪⎝⎭.(2)2log 32122log 1lg 25lg 4⎛⎫++-⋅ ⎪⎝⎭【答案】(1)5; (2)4.【分析】(1)利用指数幂的运算法则化简计算即得; (2)利用对数的运算性质化简计算即得. 【详解】(1))()()1211204333443181=22218---⎛⎫-⨯+- ⎪⎝⎭2415=+-=;(2)2log 321122log 1lg 25lg 30lg10031442⎛⎫++-⋅++⋅=+= ⎪⎝⎭. 18.已知全集U =R ,集合{}13A x x =<≤,集合{}21B x m x m =<<-.条件①U AB =∅;②x A∈是x B ∈的充分条件;③12,x A x B ∀∈∃∈,使得12x x =.(1)若1m =-,求A B ⋂; (2)若集合A ,B 满足条件__________(三个条件任选一个作答),求实数m 的取值范围.【答案】(1){}12x x <<(2)∞(-,-2)或{}|2m m -<【分析】(1)可将1m =-带入集合B 中,得到集合B 的解集,即可求解出答案;(2)可根据题意中三个不同的条件,列出集合A 与集合B 之间的关系,即可完成求解.【详解】(1)当1m =-时,集合{}22B x x =-<<,集合{}13A x x =<≤,所以{}12A B x x ⋂=<<;(2)i.当选择条件①时,集合{}21B x m x m =<<-,当B =∅时,U A B A =≠∅,舍;当集合B ≠∅时,即集合21m m -<,13m <时,{}|21U B x x m x m =≤≥-或, 此时要满足U A B =∅,则2131m m ≤⎧⎨-⎩<,解得m <-2, 结合13m <,所以实数m 的取值范围为∞(-,-2)或{}|2m m -<; ii.当选择条件②时,要满足x A ∈是x B ∈的充分条件,则需满足在集合B ≠∅时,集合A 是集合B 的子集,即2131m m ≤⎧⎨-⎩<,解得m <-2, 所以实数m 的取值范围为∞(-,-2)或{}|2m m -<;iii.当选择条件③时,要使得12,x A x B ∀∈∃∈,使得12x x =,那么需满足在集合B ≠∅时,集合A 是集合B 的子集,即2131m m ≤⎧⎨-⎩<,解得m <-2, 所以实数m 的取值范围为∞(-,-2)或{}|2m m -<;故,实数m 的取值范围为∞(-,-2)或{}|2m m -<.19.已知角α在第二象限,且4tan 3α=-. (1)求23112tan()sin 2sin(3)sin 2ππααπαπα⎡⎤⎢⎥⎛⎫--+⎢⎥ ⎪+⎛⎫⎝⎭⎢⎥- ⎪⎢⎥⎝⎭⎣⎦的值; (2)若cos()αβ-=αβ-为第一象限角,求sin β的值. 【答案】(1)145-【分析】(1)利用同角三角函数关系可求解得43sin ,cos 55αα==-,利用诱导公式化简原式可得原式2(sin cos )αα=--,代入即得解;(2)利用同角三角函数关系可得sin()αβ-=,又sin[(]sin )ααββ=--,利用两角差的正弦公式,即得解【详解】(1)因为4tan 3α=-,且α在第二象限, 故22sin 4cos 3sin cos 1sin 0cos 0αααααα⎧=-⎪⎪⎪+=⎨⎪>⎪<⎪⎩,所以43sin ,cos 55αα==-, 原式2112(tan )cos sin cos αααα⎛⎫=--+ ⎪⎝⎭sin cos 2sin cos 2(sin cos )sin cos αααααααα-=-⋅=-- 145=- (2)由题意有sin()0αβ->故sin()αβ-==, sin sin[()]sin cos()cos sin()βααβααβααβ=--=---4355⎛⎫=-- ⎪⎝⎭ 20.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,现有一个筒车按逆时针方向匀速转动.每分钟转动5圈,如图,将该筒车抽象为圆O ,筒车上的盛水桶抽象为圆O 上的点P ,已知圆O 的半径为4m ,圆心O 距离水面2m ,且当圆O 上点P 从水中浮现时(图中点0P )开始计算时间.(1)根据如图所示的直角坐标系,将点P 到水面的距离h (单位:m ,在水面下,h 为负数)表示为时间t (单位:s )的函数,并求13t =时,点P 到水面的距离;(2)在点P 从0P 开始转动的一圈内,点P 到水面的距离不低于4m 的时间有多长?【答案】(1)()ππ4sin 266h t t ⎛⎫=-+ ⎪⎝⎭,2m (2)4s【分析】(1)根据题意先求出筒车转动的角速度,从而求出h 关于时间t 的函数,和13t =时的函数值;(2)先确定定义域[]0,12t ∈,再求解不等式,得到26t ≤≤,从而求出答案.【详解】(1)筒车按逆时针方向匀速转动.每分钟转动5圈,故筒车每秒转动的角速度为52ππ606⨯=()rad /s ,故()ππ4sin 266h t t ⎛⎫=-+ ⎪⎝⎭,当13t =时,()13ππ134sin 2266h ⎛⎫=-+= ⎪⎝⎭,故点P 到水面的距离为2m(2)点P 从0P 开始转动的一圈,所用时间012t =,令()ππ4sin 2466h t t ⎛⎫=-+≥ ⎪⎝⎭,其中[]0,12t ∈,解得:26t ≤≤,则624-=,故点P 到水面的距离不低于4m 的时间为4s.21.已知()π2sin cos 3cos 44f x x x x x π⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭. (1)求函数()f x 的单调递减区间:(2)若函数()()42sin 2g x f x k x =--在区间7,1212ππ⎡⎤⎢⎥⎣⎦上有唯一零点,求实数k 的取值范围. 【答案】(1)7,()1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)11|44k k ⎧-<≤⎨⎩或12k ⎫=-⎬⎭. 【解析】(1)化简()f x ,利用正弦函数的递减区间列式可解得结果;(2)转化为函数()cos 26h x x π⎛⎫=+ ⎪⎝⎭在7,1212x ππ⎡⎤∈⎢⎥⎣⎦上的图象与2y k =的图象有唯一交点,根据图象可得结果.【详解】(1)()2sin cos 23cos cos 44f x x x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭ sin 223sin cos 244x x x πππ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭ sin 223sin cos 44x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭ sin 23sin 22x x π⎛⎫=++ ⎪⎝⎭ sin 23cos 22sin 23x x x π⎛⎫=+=+ ⎪⎝⎭, 令3222232k x k πππππ+≤+≤+,Z k ∈,解得:71212k x k ππππ+≤≤+,Z k ∈, ∴()f x 的单调递减区间为7,()1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. (2)由(1)知,函数2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭, ()g x =2sin 242sin 23x k x π⎛⎫+-- ⎪⎝⎭在7,1212ππ⎡⎤⎢⎥⎣⎦上有唯一零点等价于132sin 2sin 2sin 2cos 2cos 23226k x x x x x ππ⎛⎫⎛⎫=+-=-+=+ ⎪ ⎪⎝⎭⎝⎭在7,1212ππ⎡⎤⎢⎥⎣⎦上有唯一实根, 设()cos 26h x x π⎛⎫=+ ⎪⎝⎭,7,1212x ππ⎡⎤∈⎢⎥⎣⎦,依题意可知2y k =与()y h x =的图象有唯一交点, 函数()h x 在7,1212x ππ⎡⎤∈⎢⎥⎣⎦上的图象如图:由图可知实数k 应满足11222k -<≤或21k =-, ∴1144k -<≤或12k =-, 故实数k 的取值范围11|44k k ⎧-<≤⎨⎩或12k ⎫=-⎬⎭. 【点睛】关键点点睛:转化为函数()cos 26h x x π⎛⎫=+ ⎪⎝⎭在7,1212x ππ⎡⎤∈⎢⎥⎣⎦上的图象与2y k =的图象有唯一交点,根据图象求解是解题关键.22.已知函数()()2log 41x f x kx =++为偶函数. (1)求实数k 的值;(2)解关于m 的不等式()()211f m f m +>-;(3)设()()()2log 20x g x a a a =⋅+≠,若函数()f x 与()g x 图象有2个公共点,求实数a 的取值范围. 【答案】(1)1-(2)()(),20,-∞-⋃+∞(3)()2,1【分析】(1)根据偶函数的定义及性质直接化简求值;(2)判断0x ≥时函数的单调性,根据奇偶性可得函数在各区间内的单调性,解不等式即可;(3)由函数()f x 与()g x 图象有2个公共点,可得1222x x xa a ⋅+=+有两个实数根,再利用换元法转化为二次方程有两个根,利用判别式求参数范围.【详解】(1)函数的定义或为R ,函数()()2log 41x f x kx =++为偶函数. ()()f x f x ∴-=,即 ()()22og 41lo l g 41x x kx kx -+-=++,()()22224142log 41log 41log log 4241x x x x x x kx x --+∴=+-+===-+, 1k ∴=-;(2)()()222411log 41log log 222x xx x x f x x ⎛⎫+⎛⎫=+-==+ ⎪ ⎪⎝⎭⎝⎭, 当0x ≥时,21x ≥,122x xy =+单调递增, f x 在[)0,∞+上单调递增,又函数()f x 为偶函数,所以函数()f x 在[)0,∞+上单调递增,在(],0-∞上单调递减; ()()211f m f m +>-,211m m ∴+>-,解得2m <-或0m >,所以所求不等式的解集为 ()(),20,-∞-⋃+∞;(3)函数()f x 与()g x 图象有2个公共点,()()()()22241log 2log 41log 2x x xx g x a a f x x ⎛⎫+∴=⋅+==+-= ⎪⎝⎭, 即4112222x xx x x a a +⋅+==+,20x a a ⋅+>, 设20x t =>,则1at a t t +=+,即()2110a t at -+-=, 又2x t =在R 上单调递增,所以方程()2110a t at -+-=有两个不等的正根;()()210Δ411001101a a a a a a -≠⎧⎪=--⨯->⎪⎪∴⎨->-⎪⎪->⎪-⎩,解得21a ,即a的取值范围为()2,1.。

河南省郑州市第一中学2024-2025学年高一上学期第一次月考试题 数学(含答案)

河南省郑州市第一中学2024-2025学年高一上学期第一次月考试题 数学(含答案)

郑州一中27届(高一)第一次模拟测试数学试题卷第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集,,则如图中阴影部分表示的集合为( )A. B. C. D. 2. 命题“,”的否定是( )A. , B. ,C. , D. ,3. 已知函数的值为( )A. B. 0 C. 2 D. 44. 已知,若,,,且,,,则的值( )A. 大于0B. 等于0C. 小于0D. 不能确定5. 函数的部分图象大致为( )A.B.U R =(){}{}30,1M x x x N x x =+<=<-{|1}x x ≥-{|30}-<<x x {|3}x x ≤-{|10}x x -≤<x ∃∈R 310x x +>x ∃∈R 310x x +≥x ∃∈R 310x x+≤x ∀∈R 310x x+≤x ∀∈R 310x x +>()()2,1,2,1x x f x f x x -≤⎧=⎨>⎩2-3()2f x x x =+a b c ∈R 0a b +>0a c +>0b c +>()()()f a f b f c ++()22111x f x x +=-+C. D.6. 已知,则下列不等式一定成立的是( )A. B. C D. 7. 已知,关于的一元二次不等式的解集中有且仅有3个整数,则的值不可能是( )A 13 B. 14 C. 15 D. 168. 已知函数,若的值域为,则实数的取值范围是( )A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列函数中,既是奇函数,又在上单调递增的是( )A. B. C. D. 10. 命题“,”为真命题的一个充分不必要条件可以是( )A. B. C. D. 11. 设为实数,不超过的最大整数称为的整数部分,记作.例如,.称函数为取整函数,下列关于取整函数的结论中正确的是( )A. 在上是单调递增函数B. 对任意,都有C. 对任意,,都有..0a b >>22a b a b +>+2()4a b ab+≤2b a a b +<22b b a a +<+Z a ∈x 280x x a -+≤a 212,()23,3x c f x x x x c x ⎧-+<⎪=⎨⎪-+≤≤⎩()f x [2,6]c 11,4⎡⎤--⎢⎥⎣⎦1,04⎡⎫-⎪⎢⎣⎭[1,0)-11,2⎡⎤--⎢⎥⎣⎦(0,)+∞()f x =()||f x x x =2()1x x f x x -=-3()f x x =[1,2)x ∀∈20x a -≤4a ≥5a >6a ≥7a >x x x []x [1.2]1=[ 1.4]2-=-()[]f x x =()f x ()f x R x ∈R ()1f x x >-x ∈R k ∈Z ()()f x k f x k+=+D 对任意,,都有第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12. 用列举法表示______.13. 函数是上的偶函数, 且当时,函数的解析式为,则______;当时,函数的解析式为___________.14. 已知,为非负实数,且,则的最小值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或验算步骤.15. 已知全集,集合,.(1)求;(2)求.16. 设命题,使得不等式恒成立;命题,不等式成立.(1)若为真命题,求实数取值范围;(2)若命题、有且只有一个是真命题,求实数取值范围.17. 设函数为定义在上的奇函数.(1)求实数的值;(2)判断函数的单调性,并用定义法证明在(0,+∞)上的单调性.18. 已知某园林部门计划对公园内一块如图所示的空地进行绿化,用栅栏围4个面积相同的小矩形花池,一面可利用公园内原有绿化带,四个花池内种植不同颜色的花,呈现“爱我中华”字样.(1)若用48米长的栅栏围成小矩形花池(不考虑用料损耗),则每个小矩形花池的长、宽各为多少米时,才能使得每个小矩形花池的面积最大?.的的x y ∈R ()()()f xy f x f y =6N N 1a a ⎧⎫∈∈=⎨⎬-⎩⎭∣()f x R 0x >2()1f x x=-(1)f -=0x <a b 21a b +=22211a b a b+++R U ={}2|560A x x x =-+>{|230}B x x =->A B ⋂()()U U A B ðð[]:1,1p x ∀∈-2230x x m --+<[]:0,1q x ∃∈2223x m m -≥-p m p q m ()22a f x x a x+=-+(,0)(0,)-∞+∞ a ()f x ()f x(2)若每个小矩形的面积为平方米,则当每个小矩形花池的长、宽各为多少米时,才能使得围成4个小矩形花池所用栅栏总长度最小?19. 已知集合中含有三个元素,同时满足①;②;③为偶数,那么称集合具有性质.已知集合,对于集合的非空子集,若中存在三个互不相同的元素,使得均属于,则称集合是集合的“期待子集”.(1)试判断集合是否具有性质,并说明理由;(2)若集合具有性质,证明:集合是集合的“期待子集”;(3)证明:集合具有性质的充要条件是集合是集合的“期待子集”.983A ,,x y z x y z <<x y z +>x y z ++A P {}1,2,3,,2n S n = *(N ,4)n n ∈≥n SB n S ,,a b c ,,+++a b b c c a B B n S {}1,2,3,5,7,9A =P {}3,4,B a =P B 4S M P M n S郑州一中27届(高一)第一次模拟测试数学试题卷第I卷(选择题)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】D【2题答案】【答案】C【3题答案】【答案】D【4题答案】【答案】A【5题答案】【答案】A【6题答案】【答案】D【7题答案】【答案】D【8题答案】【答案】A二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BD【10题答案】【答案】BCD【11题答案】【答案】BC第II卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】 ①. ②. 【14题答案】【答案】2四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或验算步骤.【15题答案】【答案】(1)或 (2)【16题答案】【答案】(1)(2)【17题答案】【答案】(1)(2)在上单调递减,在(0,+∞)上单调递减,证明见解析【18题答案】【答案】(1)长为6米、宽为4米(2)长为7米、宽为米【19题答案】【答案】(1)不具有,理由见解析(2)证明见解析 (3)证明见解析{}1,2,3,61()21f x x=--{3|22x x <<3}x >3|232x x x ⎧⎫≤≤≤⎨⎬⎩⎭或(,0)-∞(,3]-∞0a =(,0)-∞143。

2022-2023学年河南省郑州市第一中学高一上学期期末数学试题(解析版)

2022-2023学年河南省郑州市第一中学高一上学期期末数学试题(解析版)
所以 ,即 ,得 ,
所以 ,当且仅当 时,等号成立.
同理 ,解得 ,当且仅当 时,等号成立.
对于A, ,
所以 ,当 时,等号成立,所以A错误;
对于B, ,当 时,等号成立,所以B正确;
对于C, ,当且仅当 时,等号成立,所以C正确;
对于D,设 ,பைடு நூலகம் ,所以 ,
即 ,则 ,得 ,
解得 ,所以D正确.
故选:BCD.
12.设函数 的定义域为 ,且满足 , ,当 时, .则下列说法正确的是()
A.
B.当 时, 的取值范围为
C. 为奇函数
D.方程 仅有3个不同实数解
【答案】BC
【解析】
【分析】根据 ,推导出 ,所以 的周期为8,可判断A;根据函数性质求出 , ,当 时, ,从而确定 的取值范围,可判断B;根据 得到 关于 中心对称,从而 关于原点中心对称,即 为奇函数,可判断C;画出 与 的图象,数形结合求出交点个数,即可求出方程 的根的个数,可判断D.
【详解】解:由二次函数图象开口向下知: ,对称轴为 ,即 ,故 .
又因为 ,
所以 .
故选:ACD.
11.已知 为正数, ,则下列说法正确的是()
A. B. 的最小值为1
C. 最小值为8D. 的最小值为
【答案】BCD
【解析】
【分析】由 结合基本不等式,求得 的最大值, 的最小值,判断选项正误.
【详解】因为 , 为正数, ,
对于B,函数 偶函数,故B正确:
对于C,因为 是第一象限角,所以 ,所以 ,所以 是第一象限或第三象限角,故C正确;
对于D,取 , ,满足 、 是第一象限的角,且 ,而 .故D错误.
故选:BC.
10.二次函数 的图象如图所示,则下列说法正确的是()

河南省郑州市2021-2022高一数学上学期期末考试试题(含解析)

河南省郑州市2021-2022高一数学上学期期末考试试题(含解析)
【详解】将正四面体补成一个正方体,则正方体的棱长为1,正方体的对角线长为
正四面体的外接球的直径为正方体的对角线长,
外接球的表面积的值为 ,
故答案为:
【点睛】本题考查球的内接多面体等基础知识,考查运算求解能力,考查逻辑思维能力,属于容易题.
16.高斯是德国的著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设 ,用 表示不超过x的最大整数,则 称为高斯函数,例如: , .已知函数 ,则函数 的值域是_________.
则故 取得最小值,为 ,
当 时,函数值最大为 .
即函数取值范围是 .
故选:B.
【点睛】本题主要考查了分段函数的运用,主要考查函数的单调性的运用,运用数形结合的思想方法是解题的关键,属于难题.
二、填空题
13.已知集合M满足 ,则满足条件的集合M有_________个.
【答案】4
【解析】
【分析】
根据集合包含关系的定义,将满足条件的集合逐个列出,即可得到本题答案.
【点睛】本题主要考查了分段函数,函数的最值,函数在实际问题中的应用,属于中档题.
22.已知函数 为奇函数,其中a为常数.
(Ⅰ)求常数a的值;
(Ⅱ)判断函数 在 上的单调性,并证明;
(Ⅲ)对任意 ,都有 恒成立.求实数m的取值范围.
【答案】(Ⅰ) (Ⅱ) 在 上为增函数,证明见解析(Ⅲ)
7.已知 ,若 ,则t=( )
A. 16B. 8C. 4D. 1
【答案】D
【解析】
【分析】
根据函数 为单调函数,令 ,求出 即可.
【详解】 , ,
令 ,
,
,
即 ,

河南省郑州市2020年(春秋版)高一上学期数学期末考试试卷(I)卷(模拟)

河南省郑州市2020年(春秋版)高一上学期数学期末考试试卷(I)卷(模拟)

河南省郑州市2020年(春秋版)高一上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2016高一上·杭州期中) 若{1,a, }={0,a2 , a+b},则a2005+b2005的值为()A . 0B . ﹣1C . 1D . 1或﹣12. (2分)下列四组函数,表示同一函数的是()A .B .C .D .3. (2分)在△ABC中,角A、B、C所对的边分别为a,b,c,则直线xsinA+ay+c=0与直线bx﹣ysinB+sinC=0的位置关系是()A . 平行B . 垂直C . 重合D . 相交但不垂直4. (2分) (2019高二上·宁波期中) 如图,在正四棱锥S-ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:①EP⊥AC;②EP∥BD;③EP∥平面SBD;④EP⊥平面SAC,其中恒成立的为()A . ①③B . ③④C . ①②D . ②③④5. (2分)已知函数f(x)=,满足对任意的x1≠x2都有<0成立,则a 的取值范围是()A . (0,]B . (0,1)C . [, 1)D . (0,3)6. (2分)设a=()-, b=(), c=log2,则a,b,c的大小顺序是()A . b<a<cB . c<b<aC . c<a<bD . b<c<a8. (2分)直线与直线平行,则它们之间的距离是()A .B .C .D .9. (2分) (2017高一上·黑龙江月考) 已知函数为奇函数,设函数,若函数存在最大值为,最小值为,则()A . 2B . 1C .D . 010. (2分) (2019高一上·哈密月考) 已知函数,则()A . 3x+5B . 3x+6C . x+5D . x+611. (2分)(2020·天津模拟) 如图,长方体的体积是36,点E在棱上,且,则三棱锥E-BCD的体积是()A . 3B . 4C . 6D . 1212. (2分) (2016高一下·武邑开学考) 已知函数f(x)= sin2x﹣cos2x,有下列四个结论:①f(x)的最小正周期为π;②f(x)在区间[﹣, ]上是增函数;③f(x)的图象关于点(,0)对称;④x= 是f(x)的一条对称轴.其中正确结论的个数为()A . 1B . 2C . 3D . 4二、填空题 (共4题;共4分)13. (1分)(2015·河北模拟) 在平面直角坐标系xOy中,将直线y=x与直线x=1及x轴所围成的图形绕x轴旋转一周得到一个圆锥,圆锥的体积V圆锥= πx2dx= x3| = .据此类比:将曲线y=2lnx与直线y=1及x轴、y轴所围成的图形绕y轴旋转一周得到一个旋转体,该旋转体的体积V=________.14. (1分)已知函数f(x)= ,则f(f(10))的值为________ .15. (1分) (2015高二下·湖州期中) 已知函数f(x)= ,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是________.16. (1分)将边长为2正方形ABCD沿对角线BD折成直二面角A﹣BD﹣C,有如下四个判断:①AC⊥BD②AB与平面BCD所成60°角③△ABC是等边三角形④若A、B、C、D四点在同一个球面上,则该球的表面积为8π其中正确判断的序号是________ .三、解答题 (共6题;共65分)17. (10分)已知的三个顶点 .(1)求边所在直线方程;(2)边上中线的方程为,且 ,求的值.18. (15分) (2016高一上·兴国期中) 已知全集U=R,集合A={x|x>4},B={x|﹣6<x<6}.(1)求A∩B和A∪B;(2)求∁UB;(3)定义A﹣B={x|x∈A,且x∉B},求A﹣B,A﹣(A﹣B).19. (5分)(2017·铜仁模拟) 如图,棱柱ABCD﹣A1B1C1D1中,底面ABCD是平行四边形,侧棱AA1⊥底面ABCD,AB=1,AC= ,BC=BB1=2.(Ⅰ)求证:AC⊥平面ABB1A1;(Ⅱ)求二面角A﹣C1D﹣C的平面角的余弦值.20. (5分)已知直线L:x﹣y﹣1=0,L1:2x﹣y﹣2=0,若直线L2与L1关于直线L对称,求L2的方程.21. (15分) (2016高一上·友谊期中) 已知函数f(x)=x2+2ax+a+1.(1)当a=1时,求函数在区间[﹣2,3]上的值域;(2)函数f(x)在[﹣5,5]上单调,求实数a的取值范围;(3)求函数f(x)在[0,2]上的最小值g(a)的解析式.22. (15分) (2019高二下·富阳月考) 已知函数 . (1)当时,,求的值;(2)若,求函数的单调递增区间;(3)若对任意的,恒成立,求实数的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共65分) 17-1、17-2、18-1、18-2、18-3、19-1、20-1、21-1、21-2、21-3、22-1、22-2、22-3、。

河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案

河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案

河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若$\{1,2\}\subset A\subset\{1,2,3,4,5\}$,则满足条件的集合$A$的个数是()A。

6B。

8C。

7D。

92.设$a,b\in\mathbb{R}$,集合$A=\{1,a+b,a\},B=\{0,\frac{b}{a},b\}$,若$A=B$,则$b-a=$()A。

2B。

$-1$C。

1D。

$-2$3.下列各组函数中$f(x)$与$g(x)$的图象相同的是()A。

$f(x)=x,g(x)=|x|$B。

$f(x)=x^2,g(x)=\begin{cases}x,&(x\geq 0)\\-x,&(x<0)\end{cases}$C。

$f(x)=1,g(x)=x$D。

$f(x)=x,g(x)=\begin{cases}x,&(x\geq0)\\0,&(x<0)\end{cases}$4.下列函数中,既是偶函数又在$(-\infty,0)$内为增函数的是()A。

$y=-\frac{1}{2}$B。

$y=x^2$C。

$y=x+1$D。

$y=\log_3(-x)^2$5.三个数$a=0.32,b=\log_2 0.3,c=2^0.3$之间的大小关系为()A。

$a<c<b$B。

$a<b<c$C。

$b<a<c$D。

$b<c<a$6.下列叙述中错误的是()A。

若点$P\in\alpha,P\in\beta$且$\alpha\cap\beta=l$,则$P\in l$B。

三点$A,B,C$能确定一个平面C。

若直线$a\parallel b$,则直线$a$与$b$能够确定一个平面D。

若点$A\in l,B\in l$且$A\in\alpha,B\in\alpha$,则$l\subset\alpha$7.方程$\log_3 x+x=3$的解所在区间是()A。

2020-2021学年河南省郑州市高一(上)期末数学试卷

2020-2021学年河南省郑州市高一(上)期末数学试卷1.(单选题,5分)已知集合A={x|x>-1},B={x|x<2},则A∪(∁R B)=()A.{x|x>-1}B.{x|x≥-1}C.{x|x<-1}D.{x|-1<x≤2}的定义域为()2.(单选题,5分)函数f(x)=ln(x-1)+ 1x−2A.(0,2)∪(2,+∞)B.[0,2)∪(2,+∞)C.(1,2)∪(2,+∞)D.[1,2)∪(2,+∞)3.(单选题,5分)已知a=0.3-0.3,b=3-0.3,c=log30.3,则()A.a>b>cB.b>a>cC.a>c>bD.c>a>b4.(单选题,5分)下列说法中错误的是()A.空间中,“一条直线在平面内”也可以说“平面经过这条直线”B.空间中,直线与平面的位置关系有且只有三种:直线在平面内、直线与平面相交和直线与平面平行C.空间中,两个平面之间的位置关系有且只有三种:两个平面平行、两个平面相交和两个平面垂直D.空间中两条直线的位置关系有且只有三种:相交直线、平行直线和异面直线5.(单选题,5分)某几何体的三视图如图所示,若该几何体的体积是4,则a=()3A. 23√3B.1C. √2D.26.(单选题,5分)若直线x-y+2=0与圆(x-m)2+y2=2有公共点,则实数m的取值范围是()A.[-3,1]B.[-1,3]C.[-4,0]D.[0,4]7.(单选题,5分)已知alog32=1,则2a=()A. 13B.1C.2D.38.(单选题,5分)阿波罗尼乌斯(Apollonius,约前262~约前190)是古希腊时期的数学家、天文学家.师从于欧几里得,他结合前人的研究成果,在没有现代数学符号系统的支持下,以超越常人的智慧写出了经典之作《圆锥曲线论》.该书共八卷,传下来七卷,其中给出了解析几何的大部分内容的论断和证明.在其第七卷《平面轨迹》中提出:如果一个移动的点与两定点之间距离的比是常量(且不等于1),则它的轨迹是一个圆.现在已知两个定点的坐标分=2,则P点轨迹方程为()别为A(-1,0),B(2,0),动点P满足|PA||PB|A.x2+y2-6x+5=0B.x2+y2-6x+7=0C.x2+y2-10x+7=0x+5=0D.x2+y2- 1439.(单选题,5分)如图,在正方体ABCD-A′B′C′D′中,线段B'D′上有两个动点E,F,若线段EF长度为一定值,则下列结论中错误的是()A.AC⊥BEB.BD⊥平面ABEC.EF || 平面ABCDD.三棱锥B-AEF的体积为定值10.(单选题,5分)在三棱锥P-ABC 中,PA=PB ,过P 作PO⊥平面ABC ,O 为垂足,M 为AB 的中点,则下列结论中肯定成立的是( )A.∠OCA=∠OCBB.OA=OBC.OC⊥ABD.C ,O ,M 三点共线11.(单选题,5分)已知点Q (x 0,1),若在圆O :x 2+y 2=1上存在点P ,使得∠OQP=60°,则x 0的取值范围是( )A.[- 13 , 13 ]B.[- 12 , 12 ]C.[- √22 , √22 ]D.[- √33 , √33 ]12.(单选题,5分)已知函数f (x )=lnx+x-2的零点为a ,记函数g (a )=lna+2a-k ,若g (a )>0恒成立,则正整数k 的最大值为( )A.1B.2C.3D.413.(填空题,5分)空间中,线段PQ 的端点坐标分别为(1,4,-7),(3,-4,5),则线段PQ 的中点M 的坐标为___ .14.(填空题,5分)已知函数f (x )= {x +4,(x <0)2x −1,(x ≥0) ,若f (a )=3,则a 的值为___ . 15.(填空题,5分)已知函数f (x )=1-22x +1 ,则不等式f (2x-1)+f (x-2)>0的解集为___ .16.(填空题,5分)在正三棱锥P-ABC 中,E ,F 分别为棱PA ,AB 上的点,PE=3EA ,BF=3FA ,且CE⊥EF .若PB=2 √3 ,则三棱锥P-ABC 的外接球的体积为___ .17.(问答题,10分)设集合A={3,5},B={x|x 2-5x+m=0},满足A∪B={2,3,5}. (Ⅰ)求集合B ;(Ⅱ)若集合C={x|ax-1=0},且满足B∩C=C ,求所有满足条件的a 的集合.18.(问答题,12分)在△ABC中,已知M(1,6)是BC边上一点,边AB,AC所在直线的方程分别为2x-y+7=0,x-y+6=0.(Ⅰ)若AM⊥BC,求直线BC的方程;(Ⅱ)若|BM=|CM|,求直线BC在x轴上的截距.19.(问答题,12分)如图,直四棱柱ABCD-A1B1C1D1的底面为菱形,AA1=AB=2,∠BAD=60°,M,E分别为A1D1,BC的中点.(Ⅰ)求证:MB1 || 平面C1DE;(Ⅱ)求证:DE⊥平面BCC1B1;(Ⅲ)求三棱锥M-C1DE的体积.20.(问答题,12分)已知圆C经过点A(2,0),与直线x+y=2相切,且圆心C在直线2x+y-1=0上.(1)求圆C的方程;(2)已知直线l经过点(0,1),并且被圆C截得的弦长为2,求直线l的方程.21.(问答题,12分)2020年,突如其来的新冠肺炎疫情席卷全球,此次疫情传播速度之快、感染范围之广、防控难度之大均创历史之最.面对疫情,我国政府快速应对,在这次疫情大考的实践中凸显了中国社会主义制度的优越性,在向全球提供支援及分享抗疫经验中体现出了大国担当的责任和情怀.据报载,截至目前,我国有5种疫苗正在开展三期临床试验.如图为某种疫苗在按规定的剂量使用后,每毫升血液中的含药量y(微克)与时间t(小时)之间的.当t≥3时,y与t之间满近似曲线,其中,OM,MN为线段,且MN所在直线的斜率为- 12足:y=(13)t-a(其中a为常数).(Ⅰ)结合图象,写出使用后y与t之间的函数关系式y=f(t),其中t>0;(Ⅱ)根据进一步的测定:每毫升血液中含药量不少于13微克时治疗有效,求使用一次治疗有效的时间范围.22.(问答题,12分)已知函数f(x)= e x−ae−x2是奇函数,g(x)= e x−be−x2偶函数.(Ⅰ)求a,b的值;(Ⅱ)求证:[g(x)]2-[f(x)]2=1;(Ⅲ)若方程[g(x)]2-kf(x)-3=0在[ln(√2 +1),+∞)上有一个实数根,求k的取值范围.。

2019年-2020学年高一上学期数学期末模拟考试试题(含答案解析)

2019年-2020 学年高一数学期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)3.函数的图象大致是()A.B.C.D.4.函数的零点所在的区间是()A.B.C.D.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.函数的值域为()A.B.C.(0,] D.(0,2]7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.110.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是2512.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.13.函数的递减区间是(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.2019年-2020 学年高一期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]【答案】A【解答】解:A={x|1<x<4},B={x|x≤2},∴A∪B=(﹣∞,4).故选:A.2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)【答案】C【解答】解:∵f(1)<0,f(2)>0,f(1.5)>0,∴在区间(1,1.5)内函数f(x)=3x+3x﹣8存在一个零点该同学在第二次应计算的函数值=1.25,故选:C.3.函数的图象大致是()A.B.C.D.【答案】D【解答】解:由,可知当x→﹣∞时,f(x)→﹣∞,排除A,C;当x→+∞时,由指数爆炸可知e x>x3,则→0,排除B.故选:D.4.函数的零点所在的区间是()A.B.C.D.【答案】C【解答】解:由于连续函数满足f()=﹣2<0,f()=>0,且函数在区间(,)上单调递增,故函数函数的零点所在的区间为(,).故选:C.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解答】解:由于ln|a|>ln|b|⇔|a|>|b|>0,由a>b推不出ln|a|>ln|b|,比如a=1,b=﹣2,有a>b,但ln|a|<ln|b|;反之,由ln|a|>ln|b|推不出a>b,比如a=﹣2,b=1,有ln|a|>ln|b|,但a<b;∴“a>b”是“ln(a﹣b)>0”的既不充分也不必要条件.故选:D.6.函数的值域为()A.B.C.(0,] D.(0,2]【答案】A【解答】解:令t(x)=2x﹣x2=﹣(x﹣1)2+1≤1∵单调递减∴即y≥故选:A.7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c【答案】B【解答】解:因为a>b>c>1,令a=16,b=8,c=2,则log c a>1>log a b所以A,C错,则故D错,B对.故选:B.8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)【答案】B【解答】解:函数f(x)=lg(ax2﹣2x+a)的值域为R,设g(x)=ax2﹣2x+a,则g(x)能取边所有的正数,即(0,+∞)是g(x)值域的子集,当a=0时,g(x)=﹣2x的值域为R,满足条件.当a≠0时,要使(0,+∞)是g(x)值域的子集,则满足得,此时0<a≤1,综上所述,0≤a≤1,故选:B.9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.1【答案】A【解答】解:由于x1和x2是函数y=e x和函数y=lnx与函数y=的图象的公共点A和B的横坐标,而A(),B()两点关于y=x对称,可得,因此x1x2=4,故选:A.10.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5【答案】C【解答】设蒲草每天长的高度为数列{a n},莞草每天长的高度为数列{b n},由题意得:{a n}为等比数列,求首项为3,公比为,所以通项公式a n=3•()n﹣1,前n项和S n=6[1﹣()n],{b n}为等比数列,首项为1,公比为2,所以通项公式b n=2n﹣1,前n项和T n=2n﹣1;由题意得设n天莞草是蒲草的二倍,即2n﹣1=2•6[1﹣()n]⇒(2n)2﹣13•2n+12=0⇒2n=12或1(舍)两边取以10为底的对数,n===2+由相关数据可得,n=4,故选:C.二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是25【答案】25【解答】解:因为x>0,y>0,+=1,所以3x+4y=(3x+4y)(+)=13++≥13+2=25(当且仅当x=2y 时取等号),所以(3x+4y)min=25.故答案为:25.12.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.【答案】(4,);.【解答】解:对于函数(a>0且a≠1),令2x﹣7=1,求得x=4,y=,可得它的图象恒过定点P(4,).点P在幂函数g(x)=xα的图象上,则4α=,即22α=2﹣1,∴α=﹣,g(x)==,故g(9)==,故答案为:(4,);.13.函数的递减区间是(3,+∞).【答案】(3,+∞)【解答】解:由2x2﹣5x﹣3>0得x>3或x<﹣,设t=2x2﹣5x﹣3,则当x>3时,函数t为增函数,当x<﹣时,函数t为减函数,∵y=log0.1t为减函数,∴要求y=log0.1(2x2﹣5x﹣3)的递减区间,即求函数t=2x2﹣5x﹣3的递增区间,即(3,+∞),即函数f(x)的单调递减区间为为(3,+∞).故答案为:(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).【答案】(,1).【解答】解:∵函数f(x)=有3个零点,∴a>0 且y=ax2+2x+1在(﹣2,0)上有2个零点,∴,解得<a<1,故答案为:(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.【解答】解:∵f(x)=3x+2m﹣1是定义在[﹣1,1]上的“倒戈函数,∴存在x0∈[﹣1,1]满足f(﹣x0)=﹣f(x0),∴3+2m﹣1=﹣3﹣2m+1,∴4m=﹣3﹣3+2,构造函数y=﹣3﹣3+2,x0∈[﹣1,1],令t=3,t∈[,3],y=﹣﹣t+2,y∈[﹣,0],∴﹣<0,∴﹣,故答案为:[﹣,0).三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围【解答】解:(1)∵函数的定义域为集合A,∴A={x|}={x|﹣1<x<2},∴∁R A={x|x≤﹣1或x≥2},∵集合B={x|1<x<8},∴集合(∁R A)∪B={x|x≤﹣1或x>1}.(2)∵A={x|}={x|﹣1<x<2},C={x|a<x<2a+1},A∪C=A,∴C⊆A,当C=∅时,a≥2a+1,解得a≤﹣1,当C≠∅时,,解得﹣1<x.综上,a的取值范围是(﹣∞,].17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.【解答】解:(1)5a=3,5b=4,得a=log53,b=log54,log2536=,(2)原式=﹣1+2=﹣1﹣2+2=2.5﹣1=1.5.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.【解答】解:(1)不等式即为log a(1﹣x)<log a(x+3),∵0<a<1,∴1﹣x>x+3>0,得解为﹣3<x<﹣1,(2),由﹣x2﹣2x+3>0解得其定义域为(﹣3,1),∵h(x)=﹣x2﹣2x+3z在(﹣3,﹣1)上单调递增,在(﹣1,1)上单调递减,∴h(x)max=h(﹣1)=4.∵0<a<1,且F(x)的最小值为﹣4,∴log a4=﹣4.得a﹣4=4,所以a==.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.(1)由题意可知x年的维修,使用x年后的总保养、维修费用为8x+【解答】解:=2x2+6x.所以盈利总额y关于x的函数为:y=54x﹣(2x2+6x)﹣128=﹣2x2+48x﹣128(x∈N×).(2)由y>0,得﹣2x2+48x﹣128>0,即x2﹣24x+64<0,解得,由x∈N*,得4≤x≤20.答:第4年该设备开始盈利.(3)方案①年平均盈利,当且仅当,即x=8时取等号,.所以方案①总利润为16×8+42=170(万元),方案②y=﹣2(x﹣12)2+160,x=12时y取得最大值160,所以方案②总利润为160+10=170(万元),答:选择方案①处理较为合理.。

2024-2025学年河南省郑州市高一上学期期中数学质量检测试卷(含解析)

考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:人教A 版必修第一册第一章~第三章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的2024-2025学年河南省郑州市高一上学期期中数学质量检测试卷.1. 已知(){}(){},3,,1A x y x y B x y x y =+==-=∣∣,则A B = ( )A. 2,1x y ==B. ()2,1 C.(){}2,1 D. {}2,1【答案】C 【解析】【分析】利用交集定义即可求得A B⋂【详解】由31x y x y +=⎧⎨-=⎩,可得21x y =⎧⎨=⎩则A B =(){}(){},3,1x y x y x y x y +=⋂-=∣∣()(){}3=,=2,11x y x y x y ⎧⎫+=⎧⎨⎨⎬-=⎩⎩⎭∣故选:C2. 已知a ,b ,c ,d 均为实数,则下列说法正确的是( )A. 若a b >,c d >,则a c b d +>+ B. 若a b >,c d >,则a c b d ->-C. 若a b >,c d >,则ac bd > D. 若ac bc >,则a b>【答案】A 【解析】【分析】根据不等式的性质,结合举反例的方法,可得答案.【详解】对于A ,根据同向不等式具有可加性可知A 正确;对于B ,21a b =>=,24c d =->=-,但45a c b d -=<-=,故B 错误;对于C ,21a b =>=,24c d =->=-,但44ac bd =-==-,故C 错误;对于D ,当0c <时,由ac bc >,得a b <,故D 错误.故选:A .3. 下列函数中,与函数2y x =+是同一函数的是( )A. 22y =+B. 2y =+C. 22x y x=+ D.y =【答案】B 【解析】【分析】通过两个函数三要素的对比可得答案.【详解】2y x =+的定义域为R .对于A ,22y =+的定义域为[)0,+∞,与2y x =+的定义域不同,不是同一函数;对于B ,22y x =+=+定义域为R ,与2y x =+的定义域相同,对应关系相同,是同一函数;对于C ,22x y x=+的定义域为{}0x x ≠,与2y x =+的定义域不同,不是同一函数;对于D,2,2,22,2x x y x x x +≥-⎧==+=⎨--<-⎩与2y x =+对应关系不同,不是同一函数.故选:B .4. 已知p :0a b >> q :2211a b<,则p 是q 的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】根据0a b >>与2211a b <的互相推出情况判断出属于何种条件.【详解】当0a b >>时,220a b >>,所以2211a b<,所以充分性满足,当2211a b<时,取2,1a b =-=,此时0a b >>不满足,所以必要性不满足,所以p 是q 的充分不必要条件,的故选:A.5. 已知函数()f x 为R 上的奇函数,当0x <时,()2f x x =+,则()()03f f +等于( )A. 3- B. 1- C. 1D. 3【答案】C 【解析】【分析】根据(3)f (3)f =--以及(0)0f =可求出结果.【详解】因为函数()f x 为R 上的奇函数,当0x <时,()2f x x =+,所以()()()33321f f =--=--+=.而()00f =,∴()()031f f +=.故选:C .6. 若0x <,则1x x+( )A 有最小值―2B. 有最大值―2C. 有最小值2D. 有最大值2【答案】B 【解析】【分析】运用基本不等式求解即可.【详解】因为0x <,则0x ->,所以1()()2x x -+≥=-,当且仅当1x x -=-即:=1x -时取等号.所以12x x+≤-,当且仅当=1x -时取等号.故选:B.7. 已知函数()f x 的图象由如图所示的两条曲线组成,则( )A. ()()35ff -= B. ()f x 是单调增函数.C. ()f x 的定义域是(][],02,3∞-⋃D. ()f x 的值域是[]1,5【答案】D 【解析】【分析】根据函数的图象,结合函数求值、函数单调性、定义域与值域,可得答案.【详解】对于选项A ,由图象可得()32f -=,所以()()()321ff f -==,A 错误;对于选项B ,()04f =,()21f =,()()02f f >,故()f x 不是单调增函数,B 错误;对于选项C ,由图象可得()f x 的定义域为[][]3,02,3-⋃,C 错误;对于选项D ,由图象可得()f x 的值域为[]1,5,D 正确.故选:D .8. 若定义域为R 的奇函数()f x 在(),0-∞上单调递减,且()20f =,则满足20)(x f x x≥的x 的取值范围是( )A. [][)2,02,-⋃+∞ B. ][3,10,1⎡⎤--⋃⎣⎦C. [)[)2,02,-⋃+∞ D. [)(]2,00,2-U 【答案】D 【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <,由20)(x f x x≥可得()0xf x ≥且0x ≠可得020x x <⎧⎨-≤<⎩或002x x >⎧⎨<≤⎩解得20x -≤<或02x <≤,所以满足20)(x f x x≥的x 的取值范围是[)(]2,00,2-U ,故选:D .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列函数既是偶函数,又在()0,∞+上单调递增的是( )A. y =B. 2y x =C. yD. 1y x=【答案】BC 【解析】【分析】根据函数的单调性和奇偶性逐项分析判断.【详解】对A :=y =在定义域内为奇函数,又∵y =在R 上单调递增,5u x =在R 上单调递增,则y =在R 上单调递增,A 错误;对B :∵()22x x -=,则2y x =在定义域内为偶函数,且在()0,∞+内单调递增,B 正确;对C :y又∵当()0,x ∈+∞,y 在()0,∞+内单调递增,C 正确;对A :∵11=--x x ,则1y x =在定义域内为奇函数,且1y x=在()0,∞+内单调递减,D 错误;故选:BC.10. 下列关于幂函数y x α=的说法正确的是( )A. 幂函数的图象都过点()0,0,()1,1B. 当1,3,1α=-时,幂函数的图象都经过第一、三象限C. 当1,3,1α=-时,幂函数是增函数D. 若0α<,则幂函数的图象不过点()0,0【答案】BD 【解析】【分析】由幂函数的性质逐个判断即可.【详解】对于A ,当0α<时,幂函数的图象不通过点()0,0,A 错误;对于B ,幂指数1,3,1α=-时,幂函数分别为y x =,3y x =,1y x -=,三者皆为奇函数,图象都经过第一、三象限,故B 正确;对于C ,当1α=-时,幂函数1y x -=在(),0∞-,(0,+∞)上皆单调递减,C 错误;对于D ,若0α<,则函数图象不通过点()0,0,D 正确.故选:BD .11. 下列结论正确的是( )A. 函数21x y x+=的最小值是2B. 若0ab >,则2b a a b+≥C. 若x ∈R ,则22122x x +++的最小值为2D. 若0,0a b >>22a b ++≥【答案】BD 【解析】【分析】根据题意,结合基本不等式,逐项判定,即可求解.【详解】对于A 中,当0x <时,可得0y <,所以A 错误;对于B 中,因0ab >,则2b a a b +≥=,当且仅当b a a b =时,即a b =时,等号成立,所以B 正确;对于C中,由221222x x ++≥=+,当且仅当22122x x +=+时,此时方程无解,即等号不成立,所以C 错误;对于D 中,因为0,0a b >>22a b ++≥≥,当且仅当a b =时,等号成立,所以D 正确.故选BD .12. 已知函数()f x 的定义域为A ,若对任意x A ∈,存在正数M ,使得()f x M ≤成立,则称函数为()f x 是定义在A 上的“有界函数”.则下列函数是“有界函数”的是( )A. 3()4x f x x+=- B. ()f x =C. 25()22f x x x =-+ D. ()f x 【答案】BCD 【解析】【分析】“有界函数”值域需要有界,化简各函数,并求出函数的值域,然后进行判断.【详解】对于A ,3(4)77()1444x x f x x x x+--+===-+---,由于704x ≠-,所以()1f x ≠-,所以()[)0,f x ∈+∞,故不存在正数M ,使得()f x M ≤成立.对于B ,令21u x =-,则[]0,1u ∈,()f x =,所以()[]0,1f x ∈,故存在正数1,使得()1f x ≤成立.对于C ,令2222(1)1u x x x =-+=-+,则()5f x u=,易得1u ≥.所以()5051f x <≤=,即()(]0,5∈f x ,故存在正数5,使得()5f x ≤成立.对于D ,令t =[]0,2t ∈,24x t =-,则[]()22117()40,224f x t t t t ⎛⎫=-++=--+∈ ⎪⎝⎭,易得()1724f x ≤≤,所以()172,4f x ⎡⎤∈⎢⎥⎣⎦,故存在正数174,使得()174f x ≤成立.故选:BCD.三、填空题:本题共4小题,每小题5分,共20分.13. 已知命题p :x ∀∈Q ,x N ∈,则p ⌝为______.【答案】x ∃∈Q ,x ∉N 【解析】【分析】由全称命题的否定为特称命题即可求解.【详解】因为p :x ∀∈Q ,x ∈N ,所以p ⌝为x ∃∈Q ,x ∉N .故答案为:x ∃∈Q ,x ∉N .14. 函数()1f x x=+的定义域为_____________.【答案】()(],00,1-∞⋃【解析】【分析】由题意列不等式组即可求得.【详解】要使函数()1f x x=有意义,只需10,0,x x -≥⎧⎨≠⎩解得:1x ≤且0x ≠,从而()f x 的定义域为()(],00,1-∞⋃.故答案为:()(],00,1-∞⋃15. 已知函数()f x 满足下列3个条件:①函数()f x 的图象关于y 轴对称;②函数()f x 在()0,∞+上单调递增;③函数()f x 无最值.请写出一个满足题意的函数()f x 的解析式:______.【答案】()21f x x=-(答案不唯一)【解析】【分析】结合函数的对称性、单调性及常见函数即可求解.【详解】由()f x 的图象关于y 轴对称知()f x 为偶函数,()f x 在(0,+∞)上单调递增,()f x 无最值,根据幂函数性质可知满足题意的一个函数为()21f x x=-.故答案为:()21f x x =-(答案不唯一)16. 已知函数()21x f x x=+,则不等式()211f x -<的解集是____________.【答案】()0,1【解析】【分析】由题可得()f x 为偶函数,且在()0,∞+上单调递增,后利用()()f x f x =可得答案.【详解】因为()f x 的定义域为R ,且()()f x f x -=,所以()f x 是偶函数.的又当0x >时,()21x f x x =+2222211x x x+-==-++单调递增.因为()f x 是偶函数,所以()f x 在(),1-∞单调递减,又因为()11f =,所以()211f x -<()()211f x f ⇔-<211121101x x x ⇔-<⇒-<-<⇒<<.故答案为:()0,1.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 设全集U =R ,集合{}2680A x x x =-+=,31B x x ⎧⎫=<⎨⎬⎩⎭.(1)求()U A B ⋃ð;(2)设集合(){}233,C x x a a x a =+=+∈Z ,若A C 恰有2个子集,求a 的值.【答案】(1)(){03U A B x x ⋃=≤≤ð或}4x = (2)2或4.【解析】【分析】(1)解方程和不等式求出集合,A B ,再由补集、并集运算即可求解;(2)解方程求出集合C ,再通过a 的讨论即可求解.【小问1详解】2680x x -+=,解得2x =或4,则{}2,4A =;由31x<,解得0x <或3x >,则{0B x x =<或}3x >;所以{}03U B x x =≤≤ð,(){03U A B x x ⋃=≤≤ð或}4x =.【小问2详解】因为A C 恰有2个子集,所以A C 仅有一个元素.()()()23330x a a x x x a +=+⇒--=,当3a =时,{}3C =,A C ⋂=∅,不满足题意;当2a =时,{}2,3C =,{}2A C ⋂=,满足题意;当4a =时,{}4,3C =,{}4A C ⋂=,满足题意.综上,a 的值为2或4.18. 已知函数()1f x x x=+.(1)求证:()f x 在()0,1上单调递减,在()1,+∞上单调递增;(2)当1,22x ⎡⎤∈⎢⎥⎣⎦时,求函数()f x 值域.【答案】(1)证明见解析 (2)52,2⎡⎤⎢⎥⎣⎦.【解析】【分析】(1)根据函数单调性的定义,结合作差法,可得答案;(2)根据(1)的单调性,求得给定区间上的最值,可得答案.【小问1详解】证明:()12,0,1x x ∀∈,且12x x <,有()()()121221212121212121121211111x x x x f x f x x x x x x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫---=+-+=-+-=-+=-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由()12,0,1x x ∀∈,且12x x <,得210x x ->,1210x x -<,120x x >,所以()12211210x x x x x x --⋅<,即()()21f x f x <.所以()f x 在()0,1上单调递减.同理,当()12,1,x x ∈+∞,且12x x <,有()()()1221211210x x f x f x x x x x --=-⋅>.故()f x 在()1,+∞上单调递增.【小问2详解】由(1)得()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递减;在[]1,2上单调递增.()12f =,()15222f f ⎛⎫== ⎪⎝⎭,所以()52,2f x ⎡⎤∈⎢⎥⎣⎦.故函数()f x 的值域为52,2⎡⎤⎢⎥⎣⎦.的19. 设函数()223y ax b x =+-+.(1)若关于x 的不等式0y >的解集为{}13x x -<<,求4y ≥的解集;(2)若1x =时,2,0,0y a b =>>,求14a b+的最小值.【答案】(1){}1(2)9【解析】【分析】(1)根据不等式的解集得到方程的根,代入求出,a b ,从而解不等式求出解集;(2)先得到1a b +=,利用基本不等式“1”的妙用求出最小值.【小问1详解】由题知()2230ax b x +-+=的两个根分别是1-,3,则23093630a b a b +-+=⎧⎨+-+=⎩,解得1,4.a b =-⎧⎨=⎩故()2223234y ax b x x x =+-+=-++≥,2210x x -+≤,解得1x =.所求解集为{}1.【小问2详解】1x =时,2y =,即12++=a b ,所以有1a b +=,那么()1414a b a b a b ⎛⎫+=++ ⎪⎝⎭41459b a a b=+++≥+=,当且仅当41b a a b a b ⎧=⎪⎨⎪+=⎩,即1,323a b ⎧=⎪⎪⎨⎪=⎪⎩时,取等号.故14a b+的最小值为9.20. 已知集合(){}40A x x x =-≥,{}121B x a x a =+<<-.(1)若x A ∀∈,均有x B ∉,求实数a 的取值范围;(2)若2a >,设p :x B ∃∈,x A ∉,求证:p 成立的充要条件为23a <<.【答案】(1)5,2⎛⎤-∞ ⎥⎝⎦(2)证明见解析【解析】【分析】(1)根据二次不等式,解得集合的元素,利用分类讨论思想,可得答案;(2)根据充要条件的定义,利用集合之间的包含关系,可得答案.【小问1详解】(){}(][)40,04,A x x x ∞∞=-≥=-⋃+.因为x A ∀∈,均有x B ∉,所以A B =∅ .当2a ≤时,B =∅,满足题意;当2a >时,10214a a +≥⎧⎨-≤⎩,解得512a -≤≤,所以522a <≤.综上,52a ≤,即a 的取值范围是5,2⎛⎤-∞ ⎥⎝⎦.【小问2详解】证明:若p :x B ∃∈,x A ∉为真命题,则p ⌝:x B ∀∈,x A ∈为假命题.先求p ⌝:x B ∀∈,x A ∈为真命题时a 的范围,因为2a >,所以B ≠∅,由p ⌝:x B ∀∈,x A ∈,得B A ⊆.则210a -≤或14a +≥,解得12a ≤或3a ≥,所以3a ≥.因为p ⌝:x B ∀∈,x A ∈为假命题,所以23a <<.综上,若2a >,则p 成立的充要条件为23a <<.21. 某市财政下拨专款100百万元,分别用于植绿护绿和处理污染两个生态维护项目,植绿护绿项目五年内带来的生态收益可表示为投放资金x (单位:百万元)的函数1y (单位:百万元):12710x y x =+,处理污染项目五年内带来的生态收益可表示为投放资金x (单位:百万元)的函数2y (单位:百万元):20.3y x =.设分配给植绿护绿项目的资金为x (单位:百万元),两个生态项目五年内带来的生态收益总和为y (单位:百万元).(1)将y 表示成关于x 的函数;(2)为使生态收益总和y 最大,对两个生态项目的投资分别为多少?【答案】(1)27330(0100)1010x x y x x =-+≤≤+ (2)分配给植绿护绿项目20百万元,处理污染项目80百万元【解析】【分析】(1)由题意列式化简即可;(2)将原式变形构造成对勾函数,利用对勾函数的性质求最值即可.【小问1详解】若分配给植绿护绿项目的资金为x 百万元,则分配给处理污染项目的资金为()100x -百万元,∴272730.3(100)30(0100)101010x x x y x x x x =+-=-+≤≤++.【小问2详解】由(1)得27(10)2703(1010)2703(10)306010101010x x x y x x +-+-+⎡⎤=-+=-+⎢⎥++⎣⎦6042≤-=(当且仅当2703(10)1010x x +=+,即20x =时取等号),∴分配给植绿护绿项目20百万元,处理污染项目80百万元,生态收益总和y 最大.22. 设函数()()2*1488,,N f x mx m mn x m m n =+-++∈ .(1)若()f x 为偶函数,求n 的值;(2)若对*N n ∀∈,关于x 的不等式()0f x ≤有解,求m 的最大值.【答案】(1)2. (2)2.【解析】【分析】(1)根据函数为偶函数可得到14880m mn -+=,变形为714n m=+,结合*,1,N m n m ∈≥,即可确定答案.(2)根据对*N n ∀∈,关于x 的不等式()0f x ≤有解,可得22(1488)40m mn m ∆=-+-≥恒成立,结合二次不等式的解法,讨论n 取值,即可确定答案.【小问1详解】根据题意,函数()()2*1488,R,,N f x mx m mn x m x m n =+-++∈∈为偶函数,即满足()()f x f x -=,即()()22()1488()1488m x m mn x m mx m mn x m -+-+-+=+-++,R x ∈,则14880m mn -+=变形可得:714n m =+ ,又由*,1,N m n m ∈≥ ,则 101m<≤ , 故77111711,44444n m <+≤<≤∴ ,又N n *∈ ,则2n = ;【小问2详解】根据题意,若对*N n ∀∈,关于x 的不等式()0f x ≤有解,由于*,N 0m m ∈>,则22(1488)416[(32)2][(42)2]0m mn m m n m n ∆=-+-=-+-+≥恒成立 ,当1n = 时,32(2)(1)0m m ∆=++≥ ,对*N m ∀∈都成立, 当2n =时,32(2)0m ∆=-+≥,解得2m ≤ ,又*N m ∈,则12m ≤≤ ,当3n ≥时,21232n n <-- ,则223m n ≤- 或 12m n ≥-,当 223m n ≤- 时,又由1m ≥,则n 只能取2,不符合题意,舍去,当 12m n ≥- 时,又由1m ≥,从3n =开始讨论:令1()2g n n =-,由于1()2g n n =-单调递减,故只需1(3)132m g ≥==-,此时m 的取值范围为[1,2] ;综上所述,m 的最大值为2.。

2022-2023学年河南省郑州市第七高级中学高一上学期学业质量测试数学试题(解析版)

2022-2023学年河南省郑州市第七高级中学高一上学期学业质量测试数学试题一、单选题1.已知集合{|||2}A x x =<,11B x x ⎧⎫=<⎨⎬⎩⎭,a A B ∈,则a 的值可以是( )A .3B .3-C .13D .13-【答案】D【分析】求得集合,A B ,得到A B ⋂,结合a A B ∈和选项,即可求解.【详解】由题意,集合{|||2}{|22}A x x x x =<=-<<,11{|0B x x x x ⎧⎫=<=<⎨⎬⎩⎭或1}x >,所以{|20A B x x =-<<或12}x <<, 因为a A B ∈,结合选项可得13A B -∈.故选:D.2.已知()f x 是定义域为(,)∞∞-+的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=A .50-B .0C .2D .50【答案】C【详解】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 详解:因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+, 所以(1)(1)(3)(1)(1)4f x f x f x f x f x T +=--∴+=-+=-∴=, 因此(1)(2)(3)(50)12[(1)(2)(3)(4)](1)(2)f f f f f f f f f f ++++=+++++,因为(3)(1)(4)(2)f f f f =-=-,,所以(1)(2)(3)(4)0f f f f +++=, (2)(2)(2)(2)0f f f f =-=-∴=,从而(1)(2)(3)(50)(1)2f f f f f ++++==,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解. 3.函数322()(6)f x x x =--的单调递减区间为( ) A .1[,2]2-B .1[3,]2--C .1[,)2-+∞D .1(,]2-∞-【答案】A【分析】()32()6f x x x =--,由260x x --≥结合函数26y x x =--的递减区间可得结果.【详解】()()33222()66f x x xx x =--=--,由260x x --≥得32x -≤≤,又22125624x x x ⎛⎫--=-++ ⎪⎝⎭,所以函数()f x 的单调递减区间为1,22⎡⎤-⎢⎥⎣⎦.故选:A .4.已知13a a -+=,下列各式中正确的个数是( )①227a a -+=;②3318a a -+=;③11225a a -+=±;④125a a a a+=; A .1 B .2 C .3 D .4【答案】C【分析】根据完全平方和公式,立方和公式分别计算即可求解. 【详解】①2212()2927a a a a --+-==-=+,正确; ②33122()(1)3(71)18a a a a a a ---+=+-+=⨯-=,正确; ③因为13a a -+=可知0a >,11220a a-+>,211221()25a a a a --=++=+,所以11225a a -+=,故错误; ④33111122221()(1)5(1)25a a a aa a a a a a a a----+=+=+-+=-+=,正确.故选:C【点睛】本题主要考查了平方和公式,立方和公式,属于容易题.5.《掷铁饼者》是希腊雕刻家米隆于约公元前450年雕刻的青铜雕像,它取材于现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的每只手臂长约4πm ,肩宽约为8πm ,“弓”所在圆的半径约为1.25m ,则如图掷铁饼者双手之间的距离约为( )A .m 2πB 52C .58πm D .2m【分析】由题意知这段弓所在弧长,结合弧长公式求出其所对圆心角,双手之间的距离为其所对弦长.【详解】由题得:弓所在的弧长为:54488l ππππ=++=;所以其所对的圆心角58524ππα==;∴两手之间的距离522sin 2 1.254d R AB π===.故选:B6.,R a b ∈,记{}()()max ,a a b a b b a b ⎧≥⎪=⎨<⎪⎩,则函数(){}2max 1,f x x x =+(x ∈R )的最小值是( ) A 352B 35+C 15+ D 15-【答案】A【分析】讨论21x x +≥,21x x +<时,可得函数的解析式,结合函数的单调性可得函数的最小值.【详解】当21x x +≥,即21x x +≥或21x x +≤-1515x -+≤≤(){}2max 1,11f x x x x x =+=+=+,函数单调递增,所以()min 15135f x ==-+- 当15x -<(){}22max 1,f x x x x =+=,函数单调递减, ()1535f x f --=⎝⎭> 当15x +(){}22max 1,f x x x x =+=,函数单调递增, ()1535f x f ++=⎝⎭> 综上,()min 35f x -=7.已知()22,0,4,0.x x f x x +⎧≥=⎨<⎩则关于a 的不等式()()223f a f a >-的解集为( )A .()0,3B .()1,3-C .()3,1-D .()0,1【答案】A【分析】先画出函数的图象,再解不等式组223,20a a a ⎧>-⎨>⎩即得解.【详解】解:函数的图象如图所示,213,23,03020a a a a a a ⎧-<<>-⎧⇒⇒<<⎨⎨>>⎩⎩, 故选:A.8.已知()f x 是定义域为()0,∞+的单调函数,若对任意的()0,x ∈+∞,都有()2log 3f f x x ⎡⎤-=⎣⎦,则函数()12f x y x=-的零点为( ) A .12B .13C .2D .3【答案】A【分析】先根据()f x 单调,结合已知条件求出()f x 的解析式,然后再进一步研究函数()12f x y x=-的零点.【详解】解:因为()f x 是定义域为()0,∞+的单调函数,且对任意的()0,x ∈+∞,都有()2log 3f f x x ⎡⎤-=⎣⎦,故可设存在唯一的实数()0,C ∞∈+,使得()3f C =, 则设()2log f x x C -=,所以()2log f x x C =+, 所以()2log 3f C C C =+=,则2log 3C C =-,由于函数2log y x =在()0,∞+上单调递增,函数3y x =-在()0,∞+上单调递减,又2log 2132==-,所以2C =, 故()()22log 2log 4f x x x =+=再令()120f x x-=,()0,x ∈+∞,得:140x x -=,解得12x =±(负值舍去).则函数()12f x y x=-的零点为12.故选:A .二、多选题9.下列选项正确的是( ) A .对1,1x x x ∀∈++R 的最小值为1 B .若0ab <,则a b ba+的最大值为2- C .若0,0a b >>,则11a b +≥D .若正实数,x y 满足21x y +=,则21x y +的最小值为8【答案】BD【分析】根据特殊值A ,由均值不等式判断BC ,根据“1”的技巧及均值不等式判断D. 【详解】对A ,取2x =-,1311x x +=-<+,故A 错误;对B ,0ab <,则()2a b a b baba+=---≤-=-,当且仅当a b =-时等号成立,故B 正确; 对C ,因为0,0a b >>,所以11a b +C 错误;对于D ,21214()(2)448y x x y x y x y x y +=++=++≥+=,当且仅当4y x x y =,即11,24x y ==时等号成立,故D 正确. 故选:BD10.已知函数()2121x x f x -=+,下面说法正确的有( )A .()f x 的图像关于原点对称B .()f x 的图像关于y 轴对称C .()f x 的值域为()1,1-D .12,x x R ∀∈,且()()121212,0f x f x x x x x -≠>-【答案】ACD【分析】判断()f x 的奇偶性即可判断选项AB ,求()f x 的值域可判断C ,证明()f x 的单调性可判断选项D ,即可得正确选项. 【详解】21()21x xf x 的定义域为R 关于原点对称, 2122112()()2112212x x x x xxxxf x f x ,所以()f x 是奇函数,图象关于原点对称,故选项A 正确,选项B 不正确;212122()1212121x x x x xf x +--===-+++,因为20x >,所以211x +>,所以10121x <<+, 22021x --<<+,所以211121x -<-<+,可得()f x 的值域为()1,1-,故选项C 正确;设任意的12x x <, 则12122112122222222()()1(1)212121212121x x x x x x x x f x f x ,因为1210x +>,2210x +>,12220x x -<,所以()()()121222202121x x x x -<++,即12())0(f x f x -<,所以()()12120f x f x x x ->-,故选项D 正确;故选:ACD【点睛】利用定义证明函数单调性的方法(1)取值:设12,x x 是该区间内的任意两个值,且12x x <;(2)作差变形:即作差,即作差12()()f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差12()()f x f x -的符号;(4)下结论:判断,根据定义作出结论.即取值---作差----变形----定号----下结论. 11.下列命题中是真命题的有( ) A .存在α,β,使()tan tan tan αβαβ-=-B .在ABC 中,若sin 2sin 2A B =,则ABC 是等腰三角形 C .在ABC 中,“A B >”是“sin sin A B >”的充要条件D .在ABC 中,若5cos 13A =,4sin 5B =则cosC 的值为3365或6365【答案】AC【分析】赋值法可以判断A 选项;在ABC 中根据正弦值相等,可得两角相等或者互补可判断B 选项;根据正弦定理可判断选项C ;先由5cos 13A =,求得12sin 13A =,再由4sin 5B =,结合大角对大边求得3cos 5B =,最后根据cos cos()C A B =-+求值即可判断选项D. 【详解】对于A ,当0β=时,正确;对于B ,由sin 2sin 2A B =可得22A B =或22A B π+=,即A B =或2A B π+=,所以ABC 是等腰三角形或直角三角形,错误;对于C ,2sin 2sin sin sin A B a b R A R B A B >⇔>⇔>⇔>(其中R 是ABC 外接圆的半径),正确;对于D ,因为5cos 13A =,0A π<<,所以12sin 13A =.因为sin sin A B >,所以由正弦定理得a b >,从而A B >.又因为4sin 5B =,所以3cos 5B ==,从而()33cos cos sin sin cos cos 65C A B A B A B =-+=-=,错误; 故选:AC.【点睛】解决判断三角形的形状问题,一般将条件化为只含角的三角函数的关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.另外,在变形过程中要注意A ,B ,C 的范围对三角函数值的影响.12.已知函数()21,0log ,0kx x f x x x +≤⎧=⎨>⎩,下列是关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的判断,其中正确的是( )A .当0k >时,有3个零点B .当0k <时,有2个零点C .当0k >时,有4个零点D .当0k <时,有1个零点【答案】CD【解析】令y =0得()1f f x =-⎡⎤⎣⎦,利用换元法将函数分解为f (x )=t 和f (t )=﹣1,作出函数f (x )的图象,利用数形结合即可得到结论.【详解】令()10y f f x =+=⎡⎤⎣⎦,得()1f f x =-⎡⎤⎣⎦,设f (x )=t ,则方程()1f f x =-⎡⎤⎣⎦等价为f (t )=﹣1,①若k >0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有两个根其中t 2<0,0<t 1<1,由f (x )=t 2<0,此时x 有两解,由f (x )=t 1∈(0,1)知此时x 有两解,此时共有4个解, 即函数y =f [f (x )]+1有4个零点.②若k <0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有一个根t 1,其中0<t 1<1,由f (x )=t 1∈(0,1),此时x 只有1个解,即函数y =f [f (x )]+1有1个零点. 故选:CD .【点睛】本题考查分段函数的应用,考查复合函数的零点的判断,利用换元法和数形结合是解决本题的关键,属于难题.三、填空题13.已知集合{}2R |2(1)0A x ax a x a =∈+++=没有非空真子集,则实数a 构成的集合为______.【答案】{}102a a ⎧⎫⋃≤-⎨⎬⎩⎭【分析】根据题意可得集合A 中元素的个数为1或0个,再分情况讨论即可,注意0a =这种情况.【详解】解:因为集合{}2R |2(1)0A x ax a x a =∈+++=没有非空真子集,所以集合A 中元素的个数为1或0个, 当集合A 中元素的个数为1个时,若0a =,则有20x =,解得0x =,符合题意, 若0a ≠,则有()224140a a ∆=+-=,解得12a =-,当集合A 中元素的个数为0个时,则()22Δ41400a a a ⎧=+-<⎪⎨≠⎪⎩,解得12a <-,综上0a =或12a ≤-,即实数a 构成的集合为{}102a a ⎧⎫⋃≤-⎨⎬⎩⎭.故答案为:{}102a a ⎧⎫⋃≤-⎨⎬⎩⎭.14.已知,a b 均为实数且,1a b >-,3a b ab ++=,则4a b +的最小值为______. 【答案】3【分析】由3a b ab ++=可得1)(14a b ++=(),再将4a b +变形为(1)4(1)5a b +++-,利用基本不等式即可求解.【详解】由3a b ab ++=,可得1)(14a b ++=(), 因为,1a b >-,所以10a +>,10+>b ,则4(1)4(1)553a b a b +=+++-≥=,当且仅当(1)4(1)(1)(1)4a b a b +=+⎧⎨++=⎩,即30a b =⎧⎨=⎩时取等号.所以4a b +的最小值为3. 故答案为:315.已知函数()()2121xx f x f x x ⎧≤⎪=⎨->⎪⎩,,,若方程()f x a =有四个不相等的实数根1x ,2x ,3x ,4x ,则22222341x x x x +++的取值范围为__________.【答案】(8,12)【分析】由题意可知函数()f x 的图象关于1x =对称,画出函数()f x 的大致图象,不妨设1234x x x x <<<,则142x x +=,232x x +=,12x x =-,所以222221234248x x x x x +++=+,再由201x <<即可求出结果.【详解】解:∵当x >1时,()(2)f x f x =-, ∴()f x 在(,1)-∞和(1,)+∞上的图象关于1x =对称, 画出函数()f x 的图象,如图所示, 不妨设1234x x x x <<<,由对称性可知,142x x +=,232x x +=,12x x =-,()()2222222221234222222248x x x x x x x x x ∴+++=++-++=+,201x <<,2284812x ∴<+<,即22222341x x x x +++的取值范围为(8,12).故答案为:(8,12).16.已知偶函数()f x 的定义域为(,0)(0,)-∞+∞,已知当210x x >>时,122221121221()()(e e )x x x f x x f x x x x x ->-,若2(2)2e 8f =+,则2||()2||e x f x x x >+的解集为______.【答案】()()2,00,2-⋃【分析】由122221121221()()(e e )x x x f x x f x x x x x ->-,可得1211222212()e ()e x x f x x f x x x x -->,令()2()exg f xx x x -=,从而可得出函数()g x 在()0,∞+上得单调性,再判断函数()g x 的奇偶性,结合2(2)2e 8f =+,求得()2g ,而所求不等式可化为||2()||e 2x f x x x->,再根据函数的单调性和奇偶性列出不等式即可得出答案.【详解】解:当210x x >>时,由122221121221()()(e e )x x x f x x f x x x x x ->-,得1211222212()e ()e x x f x x f x x x x -->, 令()2()e xg f xx x x -=,当0x >时,()2()e xg f x x x x -=, 则()()12g x g x >,所以函数()g x 在()0,∞+上递减,因为函数()f x 为偶函数,所以()()f x f x -=, 则()()()22()e()exxf x x f x x x x xg x g ----=--=-=,所以函数()g x 也是偶函数, 因为2(2)2e 8f =+,所以(2)2g =,不等式2||()2||e x f x x x >+可化为||2()||e 2x f x x x ->, 即()()2g x g >, 所以2x <,解得22x -<<,所以2||()2||e x f x x x >+的解集为()()2,00,2-⋃.故答案为:()()2,00,2-⋃.四、解答题17.函数()f x =的定义域为集合A ,函数()()112x g x x ⎛⎫=≥- ⎪⎝⎭的值域为集合B ,U =R.. (1)求 ()U A B ⋂;(2))若[],21C a a =-且C B ⊆,求实数a 的取值范围.【答案】(1)(]0,1 (2)3,2⎛⎤-∞ ⎥⎝⎦【分析】(1)此题考查集合的运算,先求集合A 与()03f =,然后再求集合的补集与交集; (2)m ,所以讨论当C =∅和C ≠∅两种情况求范围.【详解】(1)函数()f x =的定义域为10x ->, 所以()1,A =+∞,U (],1A =-∞,因为1x ≥-,1022x ⎛⎫<≤ ⎪⎝⎭,(]0,2B =; ()U A B ⋂=(]0,1.(2)因为C B ⊆,所以,21C a a =∅>-,解得:1a <.C ≠∅时,0021121232a a a a a a a ⎧⎪<>⎧⎪⎪≤-⇒≥⎨⎨⎪⎪-≤⎩⎪≤⎩,得:312a ≤≤.故实数a 的取值范围为3,2⎛⎤-∞ ⎥⎝⎦. 18.()πtan 24f x x ⎛⎫=+ ⎪⎝⎭ (1)求函数()f x 的定义域;(2)若π0,4α⎛⎫∈ ⎪⎝⎭,2cos 22f αα⎛⎫= ⎪⎝⎭,求α. 【答案】(1)ππ,82k x x k ⎧⎫∈≠+∈⎨⎬⎩⎭R Z (2)π12α=【分析】(1)由正切函数的定义域通过换元即可求解;(2)利用三角函数的和差角及二倍角公式化简可得1sin 22α=,根据π0,4α⎛⎫∈ ⎪⎝⎭,即可求解. 【详解】(1)由ππ2π,42x k k +≠+∈Z ,得ππ82k x ≠+,k ∈Z , 所以()f x 的定义域为ππ,82k x x k ⎧⎫∈≠+∈⎨⎬⎩⎭R Z . (2)由2cos 22f αα⎛⎫= ⎪⎝⎭,得πtan 2cos 24αα⎛⎫+= ⎪⎝⎭, 即()22πsin 42cos sin πcos 4αααα⎛⎫+ ⎪⎝⎭=-⎛⎫+ ⎪⎝⎭, 整理得sin cos 2(cos sin )(cos sin )cos sin αααααααα+=+--, 因为π0,4α⎛⎫∈ ⎪⎝⎭,所以sin cos 0αα+≠, 因此21(cos sin )2αα-=,即1sin 22α=, 由π0,4α⎛⎫∈ ⎪⎝⎭,得π20,2α⎛⎫∈ ⎪⎝⎭, 所以π26α=,即π12α=. 19.命题p :“[1,2]x ∀∈,20x x a +-≥”,命题q :“R x ∃∈,2320x x a ++-=”.(1)当p 为假命题时,求实数a 的取值范围;(2)若p 和q 中有且只有一个是真命题,求实数a 的取值范围.【答案】(1)14a >-(2)14a ≠- 【分析】(1)根据全称命题的否定,结合二次函数的性质,可得答案;(2)利用分类讨论的解题思想,可得答案.【详解】(1)由p 为假命题,则p ⌝为真命题,即[]1,2x ∃∈,20x x a +-<,令()2f x x x a =+-,开口向上,则140a ∆=+>,解得14a >-. (2)由(1)可知,当p 为真命题时,14a ≤-;当p 为假命题时,14a >-. 当q 为真命题时,()9420a ∆=--≥,解得14≥-a ;当q 为假命题时,14a . 当p 为真命题,q 为假命题时,14a ;当p 为假命题,q 为真命题时,14a >-; 则p 和q 中有且只有一个是真命题时,14a ≠-. 20.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的年收益()f x 与投资额x 成正比,其关系如图1:投资股票等风险型产品的年收益()g x 与投资额x 的算术平方根成正比,其关系如图2.(1)分别写出两种产品的年收益()f x 和()g x 的函数关系式;(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大年收益,其最大年收益是多少万元?【答案】(1)()0.125,()0.5f x x g x x ==(2)当投资稳健型产品的资金为16万元,风险型产品的资金为4万元时年收益最大,最大值为3万元.【分析】(1)根据待定系数法可得;(2)设用于投资稳健型产品的资金为x ,写出年收益的解析式,利用换元法可得.【详解】(1)由题意可设(),()f x mx g x x ==由图知,函数()f x 和()g x 的图象分别过点(1,0.125)和(1,0.5),代入解析式可得0.125,0.5m n ==, 所以()0.125,()0.5f x x g x x ==(2)设用于投资稳健型产品的资金为x ,用于投资风险型产品的资金为20x -,年收益为y ,则10.1250.520(420)8y x x x x =+-=+-,[0,20]x ∈ 令20t x =-,则2211(420)[(2)24]88y t t t =---=---,[0,25]t ∈ 当2t =,即16x =时,max 3y =,所以当投资稳健型产品的资金为16万元,风险型产品的资金为4万元时年收益最大,最大值为3万元.21.如图,要在一块半径为1m ,圆心为60°的扇形纸板AOB 上剪出一个平行四边形MNPQ ,使点P 在AB 弧上,点Q 在OA 上,点M 、N 在OB 上,设∠BOP=θ.平行四边形MNPQ 的面积为S .(1)求S 关于θ的函数关系式;(2)求S 的最大值及相应θ的值.【答案】(1)S 23sin cos ,0,3πθθθθ⎛⎫=∈ ⎪⎝⎭;(2)当6πθ=时,S 3【分析】(1)分别过P 、Q 作PD ⊥OB 于D ,QE ⊥OB 于E ,则QEDP 为矩形,求出边长即可求S 关于θ的函数关系式;(2)利用二倍角公式、两角和的正弦函数化简函数的表达式为一个角的一个三角函数的形式,通过θ的范围求出S 的最大值及相应的θ角.【详解】(1)分别过P 、Q 作PD ⊥OB 于D ,QE ⊥OB 于E ,则QEDP 为矩形,由扇形半径为1cm ,PD =sinθ,OD =cosθ,在Rt △OEQ 中MN =OD ﹣OE =3cos θθ 3cos sin S MN PD θθθ⎛⎫=⋅=⋅ ⎪ ⎪⎝⎭=23sin cos ,0,3πθθθθ⎛⎫∈ ⎪⎝⎭ (2)23323sin cos 26S S θθθθ⎛⎫==+ ⎪⎝⎭0,3πθ⎛⎫∈ ⎪⎝⎭252,666ππθ⎛⎫∴+∈ ⎪⎝⎭,即1sin 2,162πθ⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦ 当6πθ=时,()2max 3m 6S =【点睛】本题考查三角函数在解决实际问题中的应用,三角函数的化简求值,考查计算能力,转化思想的应用,属于中档题,.22.已知函数()()ln f x x a =+()a ∈R 的图象过点()1,0,2()()2e f x g x x =-.(1)求函数()g x 的解析式;(2)设0m >,若对于任意1,x m m ⎡⎤∈⎢⎥⎣⎦,都有()ln(1)g x m <--,求m 的取值范围. 【答案】(1)()22g x x x =-,()0,x ∈+∞;(2)12m <<.【分析】(1)由已知求得0a =,()ln f x x =,代入即可得到()22g x x x =-,()0,x ∈+∞;(2)已知可转化为max ()ln(1)g x m <--,即转化为求()g x 在1,m m ⎡⎤⎢⎥⎣⎦上的最大值,由已知可得1m >,11m <,根据二次函数的性质可知所以()g x 的最大值在1x m =或x m =处取得.作差可得()1g m g m ⎛⎫> ⎪⎝⎭.即可得到22ln(1)0m m m -+-<,1m >.令()()22ln 1h m m m m =-+-,根据定义法证明()h m 在1m >时的单调性,根据单调性求解不等式,即可求出m 的取值范围.【详解】(1)解:由已知可得,()()1ln 10f a =+=,所以0a =,所以()ln f x x =,定义域为()0,∞+.所以有,2()()2e f x g x x =-2ln 22e 2x x x x =-=-,()0,x ∈+∞.(2)解:若对于任意1,x m m ⎡⎤∈⎢⎥⎣⎦,都有()ln(1)g x m <--, 只需满足max ()ln(1)g x m <--成立.由(1)知,()22,0g x x x x =->,对称轴为1x =.由0m >,1m m <可得,21m >,所以1m >,即有11m m<<. 根据二次函数的性质,可得()g x 在1,1m ⎡⎫⎪⎢⎣⎭上单调递减,在(]1,m 上单调递增, 所以()g x 的最大值在1x m =或x m =处取得. 又22111122g m m m m m ⎛⎫⎛⎫=-⨯=- ⎪ ⎪⎝⎭⎝⎭,()22g m m m =-, ()221122g m g m m m m m ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝⎭22112m m m m ⎛⎫=--- ⎪⎝⎭()()3211m m m+-=, 又1m >,所以()10g m g m ⎛⎫-> ⎪⎝⎭,所以()1g m g m ⎛⎫> ⎪⎝⎭, 所以()ma 2x (2)g m m m g x ==-.由max ()ln(1)g x m <--成立,可得22ln(1)m m m -<--,1m >, 即22ln(1)0m m m -+-<,1m >.令()()22ln 1h m m m m =-+-,1m >,则原不等式等价于()0h m <. 12,1m m ∀>,且设12m m <,则()()()()22121112222ln 12ln 1h m h m m m m m m m -=-+--+--()()11212212ln 1m m m m m m -=-+-+-, 因为12,1m m >,12m m <,所以120m m -<,1220m m +->,12011m m <-<-, 所以121011m m -<<-,所以121ln 01m m -<-,所以()()11212212ln 01m m m m m m --+-+<-. 所以()()120h m h m -<,所以()()12h m h m <,所以()()22ln 1h m m m m =-+-在()1,+∞上单调递增.又()()22222ln 210h =-⨯+-=,则由()()02h m h <=,可解得12m <<.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年河南省郑州市高一上学期期末数学试题及答案解析版一、单选题1.已知集合=<<,集合{|{|13}A x x==,则A B=B x y()A.{|12}<<C.{|23}x xx x<B.{|13}x x<D.{|12}<<x x【答案】C【解析】化简集合B,求交集运算即可.【详解】{|{|2}===≥,B x y x xA B x x∴⋂=<,{|23}故选:C【点睛】本题主要考查了集合的交集运算,属于容易题.2.过两点A y,3)(0,)B-的直线的倾斜角为60°,则y=()A.-9 B.-3 C.5 D.6【答案】A【解析】根据直线的斜率公式即可求解.【详解】因为过两点A y,3)(0,)B-的直线的倾斜角为60°,所以tan60k=︒=解得9y=-,故选:A【点睛】本题主要考查了直线斜率的公式,属于容易题.3.下列四个命题中错误的是()A.若直线a、b相交,则直线a、b确定一个平面B.若四点不共面,则这四点中任意三点都不共线C.若两条直线没有公共点,则这两条直线是异面直线D.经过平面外一点有且只有一条直线与该平面垂直【答案】C【解析】对于A,利用确定平面的定理的推论可判断正误;对于B,根据反证法即确定平面的性质即可判断;对于C,根据异面直线的的定义判定即可;对于D,利用反证法思想及线面垂直的性质可判断.【详解】A中若直线a、b相交,则直线a、b确定一个平面符合确定一个平面的条件,正确;B中若四点不共面,则这四点中任意三点都不共线,正确,否则四点就会共面;C中若两条直线没有公共点,则这两条直线是异面直线,错误,如平行直线没有公共点;D中经过平面外一点有且只有一条直线与该平面垂直,正确,首先有直线垂直平面,其次只有一条,否则过一点有两平行直线,矛盾. 故选:C 【点睛】本题主要考查了确定一个平面的条件, 异面直线,线面垂直,属于中档题.4.设 1.50.4111,,ln 542a b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则下列关系正确的是( )A .a b c >>B .b a c >>C .b c a >>D .c a b >>【答案】B【解析】根据指数函数,幂函数,对数函数的单调性及不等式的传递性比较即可. 【详解】1()5x y =是减函数, 1.50.411055a ⎛⎫⎛⎫∴<=< ⎪ ⎪⎝⎭⎝⎭,0.4y x =在(0,)+∞上是增函数,0.40.41154b ⎛⎫⎛⎫∴<= ⎪ ⎪⎝⎭⎝⎭,由不等式的传递性知0a b <<,ln y x =是增函数,1lnln102c ∴=<=, c a b ∴<<,故选:B 【点睛】本题主要考查了指数函数、幂函数、对数函数的单调性,不等式的传递性,属于中档题.5.已知圆2222(42)4410x y mx m y m m +--++++=的圆心在直线70x y +-=上,则该圆的面积为()A .4πB .2πC .πD .2π【答案】A【解析】根据圆的一般方程化为标准方程,根据直线过圆心求出m ,即可计算半径得面积. 【详解】2222(42)4410x y mx m y m m +--++++=, 222()[(21)]x m y m m ∴-+-+=,即圆心为(,21)m m +,半径R m = 圆心在直线70x y +-=上,2170m m ∴++-=,即2m =,所以圆的半径2R =,24S R ππ∴==.故选:A 【点睛】本题主要考查了圆的一般方程,圆的标准方程,圆的面积,属于中档题.6.如下图一个几何体的三视图,则该几何体的体积是( )A .8B .83C .2D .4【答案】B【解析】由三视图可知几何体为高是2的四棱锥,且底面为正方形,利用棱锥体积公式求解即可. 【详解】由三视图知,几何体是底面为正方形的四棱锥,且有一个侧面垂直底面, 四棱锥的高为2, 所以211822333V Sh ==⨯⨯=, 故选:B 【点睛】本题主要考查了三视图,棱锥的体积,属于容易题.7.已知()23xf x =+,若()3f t =,则t =( )A .16B .8C .4D .1【答案】D【解析】根据函数()23x f x =+为单调函数,令()233xf x =+=,求出2x t =即可. 【详解】()23x f x =+,()3f t =,令()233xf x =+=,0x ∴=,21x ∴=,即(1)3f =,1t ∴=,故选:D 【点睛】本题主要考查了函数的解析式,函数求值,属于中档题. 8.如图所示是正方体的平面展开图,在这个正方体中CN 与BM 所成角为( )A .30°B .45°C .60°D .90°【答案】C【解析】把展开图再还原成正方体如图所示:由于BE 和CN 平行且相等,故∠EBM (或其补角)为所求.再由△BEM 是等边三角形,可得∠EBM =60°,从而得出结论. 【详解】把展开图再还原成正方体如图所示:由于BE 和CN 平行且相等,故异面直线CN 与BM 所成的角就是BE 和BM 所成的角,故∠EBM (或其补角)为所求,再由∆BEM 是等边三角形,可得∠EBM =60, 故选:C 【点睛】本题主要考查了求异面直线所成的角,体现了转化的数学思想,属于中档题.9.已知定义在R 上的奇函数()f x ,满足(4)()f x f x +=恒成立,且(1)1f =,则(3)(4)(5)f f f ++的值为( ) A .-1 B .1 C .2 D .0【答案】D【解析】由(4)()f x f x +=知周期为4,利用周期转化函数值,再利用奇函数的性质即可求解. 【详解】(4)()f x f x +=,(5)(1),(4)(0),(3)(1)f f f f f f ∴===-, ()f x 是R 上的奇函数,(1)(1),(0)0f f f ∴-=-=,∴(3)(4)(5)0f f f ++=,故选:D 【点睛】本题主要考查了函数的周期性,奇函数的性质,属于中档题.10.已知圆M :22(1)(1)8xy ,过直线l :0x y --=上任意一点P 向圆引切线PA ,切点为A ,则PA 的最小值为( ) A .1 B .2 C .3 D .4【答案】A【解析】根据题意,可得PA ==当||PM 最小时,||PA 最小,而当PM 垂直于直线l 时最小,求出||PM 的最小值,可得答案. 【详解】 由圆M :22(1)(1)8xy 知圆心(1,1),半径R =P A 与圆M 相切,PA ∴==∴当||PM 最小时,||PA 最小,而当PM 垂直于直线l 时最小,此时||PM 最小值即为圆心到直线的距离d ,3d ==,min ||1PA ∴==,故选:A【点睛】本题主要考查了直线与圆的相切的性质,圆的标准方程,点到直线的距离,属于中档题.11.长方体1111ABCD A B C D -中,12,1AB AA AD ===,则异面直线1BC 与1CD 所成角的余弦值为() A .1010B .15C .105D .12【答案】C【解析】由11//CD A B ,根据异面直线所成的角的定义知,11A BC ∠(或其补角)即为所求角,利用余弦定理求余弦即可. 【详解】在长方体中,如图:11//CD A B ,∴异面直线1BC 与1CD 所成角为11A BC ∠(或其补角),在11A BC ∆中,122A B =15BC =,115AC =1110cos 5410A BC ∴∠==, 故选:C 【点睛】本题主要考查了异面直线所成的角,余弦定理,属于中档题.12.已知函数41,0()log ,0x x f x x x ⎧+⎪=⎨>⎪⎩,若方程()f x k =有4个不同的根1234,,,x x x x ,且1234x x x x <<<,则242314()4x x x x x ++的取值范围是( ) A .(7,2]- B .[7,2)-C .(2,42] D .[2,42)【答案】B【解析】作出函数()y f x =与y k =的图象,得到1x ,2x 关于1x =-对称,341x x =,化简条件,利用数形结合进行求解即可. 【详解】 作函数()y f x =与y k =的图象如下:方程()f x k =有四个不同的解1x ,2x ,3x ,4x , 且1234x x x x <<<,1x ∴,2x 关于1x =-对称,即122x x +=-,且34012x x <<<<, 则4344log log x x =, 即4344log log x x =-,则4344log log 0x x += 即434log 0x x = 则341x x =; 当4|log|1x =得4x =或14, 则414x <;3114x <; 故1244234444()2x x x x x x x ++=-+,414x <≤;则函数4442y x x =-+,在414x <≤上为减函数,则故44x =取得最小值,为817y =-+=-, 当41x =时,函数值最大为242y =-+=. 即函数取值范围是[7,2)-. 故选:B . 【点睛】本题主要考查了分段函数的运用,主要考查函数的单调性的运用,运用数形结合的思想方法是解题的关键,属于难题.二、填空题13.已知集合M 满足{3,4}{3,4,5,6}M ⊆⊆,则满足条件的集合M 有_________个. 【答案】4【解析】根据集合包含关系的定义,将满足条件的集合逐个列出,即可得到本题答案.【详解】据子集的定义,可得集合M 必定含有3、4两个元素,而且含有3,4, 5, 6中的至多四个元素,因此,满足条件{3,4}{3,4,5,6}M ⊆⊆的集合M 有:{3,4},{3,4,5},{3,4,6},{3,4,5,6},共4个, 故答案为:4 【点睛】本题主要考查了集合的包含关系,求满足条件集合M 的个数.考查了集合的包含关系的理解和子集的概念等知识,属于容易题.14.已知直线1:60l x ay ++=与2:(2)10l a x y -++=互相垂直,则a =_________.【答案】1【解析】根据两直线垂直的条件12120A A B B +=,即可求解. 【详解】因为线1:60l x ay ++=与2:(2)10l a x y -++=互相垂直, 所以20a a -+=, 即1a =, 故答案为:1 【点睛】本题主要考查了两直线垂直的条件12120A A B B +=,属于容易题.15.若正四面体ABCD,则该正四面体的外接球的表面积为_________.【答案】3π【解析】将正四面体补成一个正方体,正四面体的外接球的直径为正方体的对角线长,即可得出结论. 【详解】将正四面体补成一个正方体,则正方体的棱长为1,正方体正四面体的外接球的直径为正方体的对角线长,∴外接球的表面积的值为243S ππ==,故答案为:3π 【点睛】本题考查球的内接多面体等基础知识,考查运算求解能力,考查逻辑思维能力,属于容易题.16.高斯是德国的著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[3,4]4-=-,[2,7]2=.已知函数21()15x xe f x e =-+,则函数[()]y f x =的值域是_________. 【答案】{}1,0,1-【解析】求出函数()f x 的值域,由高斯函数的定义即可得解. 【详解】2(1)212192()2151551x x x x e f x e e e +-=-=--=-+++,11x e +>,1011xe ∴<<+, 2201xe ∴-<-<+,19195515x e ∴-<-<+, 所以19(),55f x ⎛⎫∈- ⎪⎝⎭,{}[()]1,0,1f x ∴∈-,故答案为:{}1,0,1- 【点睛】本题主要考查了函数值域的求法,属于中档题.三、解答题17.已知直线1:230l x y -+=与直线2:2380l x y +-=的交点为M . (Ⅰ)求过点M 且与直线3:310l x y -+=平行的直线l 的方程;(Ⅱ)若直线'l 过点M ,且点(04)P ,到'l 线'l 的方程.【答案】(Ⅰ)310x y --=(Ⅱ)230x y -+=【解析】(Ⅰ)联立直线方程可求出交点,根据所求直线过交点且与3:310l x y -+=平行即可求解(Ⅱ)分斜率存在与不存在两种情况讨论,利用点到直线距离求解即可. 【详解】(Ⅰ)联立2302380x yx y-+=⎧⎨+-=⎩,解得:()1,2M.所以与3l平行的的直线方程为:()231y x-=-,整理得:310x y--=.(Ⅱ)当斜率不存在时,不合题意;当斜率存在时,设():21l y k x-=-,即:20kx y k-+-=.=24410k k-+=,12k=;所以,所求直线的方程为:230x y-+=.【点睛】本题主要考查了两直线的交点,平行直线,点到直线的距离,分类讨论,属于中档题.18.已知全集U=R,集合{|25},{|121}M x x N x a x a=-=++.(Ⅰ)若1a=,求()RM N;(Ⅱ)M N M⋃=,求实数a的取值范围.【答案】(Ⅰ)(){|22RM C N x x=-≤<或35}x<≤(Ⅱ)2a≤【解析】(Ⅰ)1a=时,化简集合B,根据集合交集补集运算即可(Ⅱ)由M N M⋃=可知N M⊆,分类讨论N=∅,N≠∅即可求解.【详解】(Ⅰ)当1a=时,{}|23N x x=≤≤,{|2RC N x x=<或}3x>.故(){|22RM C N x x=-≤<或35}x<≤.(Ⅱ),M N M⋃=N M∴⊆当N =∅时,121a a +>+,即0a <; 当N ≠∅时,即0a ≥.N M ⊆,12215a a +≥-⎧∴⎨+≤⎩解得02a ≤≤. 综上:2a ≤. 【点睛】本题主要考查了集合的交集,补集运算,子集的概念,分类讨论,属于中档题.19.如图,在四棱锥P ABCD -中,PD ⊥面ABCD ,底面ABCD 为菱形,E 为棱PB 的中点,O 为AC 与BD 的交点.(Ⅰ)求证://PD 面EAC ; (Ⅱ)求二面角C OE B --的大小. 【答案】(Ⅰ)证明见解析(Ⅱ)90【解析】(Ⅰ)连接EO ,由中位线性质可知//EO PD ,即可证明(Ⅱ)由题意可证明BOC ∠即为二面角的平面角,由菱形知角的大小. 【详解】(Ⅰ)连接EO ,O 是BD 的中点,因为E 为棱PB 的中点, 所以//EO PD .又因为PD ⊄面,EAC EO ⊂面EAC ; 所以//PD 面EAC . (Ⅱ)//EO PDEO ∴⊥面ABCD EO BO ∴⊥,EO CO ⊥,则BOC ∠为二面角C OE B --的平面角. 四边形ABCD 为菱形,BO AC ∴⊥90,BOC ∴∠=∴二面角C OE B --的大小为90.【点睛】本题主要考查了直线与平面平行的判定,二面角的定义及求法,属于中档题.20.已知圆C 的圆心在直线y x =上,且圆C 与直线l :20x y -+=相切于点(0)A ,2.(Ⅰ)求圆C 的标准方程;(Ⅱ)若直线l '过点(03)P ,且被圆C 所截得弦长为2,求直线l '的方程.【答案】(Ⅰ)()()22112x y -+-=(Ⅱ)34120x y +-=或0x =【解析】(Ⅰ)由题可设圆心(),C a a ,利用圆心到直线距离等半径即可求解(Ⅱ)由平面几何性质可得圆心到直线距离,分斜率存在不存在两种情况,设直线方程利用点到直线距离求解即可. 【详解】(Ⅰ)由题可设圆心(),C a a ,显然0,a ≠则21CA a k a-==-,解得:1a =,所以圆心的坐标()1,1C,r AC ==;所以圆的标准方程为:()()22112x y -+-=.(Ⅱ)当直线的斜率存在时,可设直线/l 的方程:3y kx =+,即:30kx y -+=.由题得:1d === ,解得:34k =-,所求直线l 的方程为:34120x y +-= .当直线l 的斜率不存在时,直线/0l x =,满足题意; 故所求直线的方程为:34120x y +-=或0x =. 【点睛】本题主要考查了圆的标准方程,直线与圆的位置关系,点到直线的距离,分类讨论,属于中档题.21.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2019年不仅净利润创下记录,海外增长同祥强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投人固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且210200,040()100008019450,40x x x R x x x x ⎧+<<⎪=⎨+-⎪⎩,由市场调研知,每部手机售价0.8万元,且全年内生产的手机当年能全部销售完. (Ⅰ)求出2020年的利润()Q x (万元)关于年产量x (千部)的函数关系式(利润=销售额-成本);(Ⅱ)2020年产量x 为多少(千部)时,企业所获利润最大?最大利润是多少? (说明:当0a >时,函数ay x x=+在单调递减,在)+∞单调递增)【答案】(Ⅰ)()210600250,040,100009200,40.x x x Q x x x x ⎧-+-<<⎪∴=⎨--+≥⎪⎩(Ⅱ)2020年年产量为100(千部)时,企业获得的利润最大,最大利润为9000万元.【解析】(Ⅰ)根据题意知利润等于销售收入减去可变成本及固定成本,分类讨论即可写出解析式(Ⅱ)利用二次函数求040x <<时函数的最大值,根据对勾函数求40x ≥时函数的最大值,比较即可得函数在定义域上的最大值. 【详解】(Ⅰ)当040x << 时,()()228001020025010600250Q x x x x x x =-+-=-+-;当40x ≥时,()100001000080080194502509200Q x x x x x x ⎛⎫=-+--=--+ ⎪⎝⎭.()210600250,040,100009200,40.x x x Q x x x x ⎧-+-<<⎪∴=⎨--+≥⎪⎩(Ⅱ)当040x <<时,()()210308750Q x x =--+,()()max 308750Q x Q ∴==万元;当40x ≥时,()100009200Q x x x ⎛⎫=-++ ⎪⎝⎭,当且仅当100x =时,()()max 1009000Q x Q ==万元.所以,2020年年产量为100(千部)时,企业获得的利润最大,最大利润为9000万元. 【点睛】本题主要考查了分段函数,函数的最值,函数在实际问题中的应用,属于中档题. 22.已知函数134()log 4axf x x -=-为奇函数,其中a 为常数.(Ⅰ)求常数a 的值;(Ⅱ)判断函数()f x 在(,4)x ∈-∞-上的单调性,并证明; (Ⅲ)对任意(,5)x ∈-∞-,都有1()2xf x m ⎛⎫+ ⎪⎝⎭恒成立.求实数m的取值范围.【答案】(Ⅰ)-1a =(Ⅱ)()f x 在(),4x ∈-∞-上为增函数,证明见解析(Ⅲ)[)30,-+∞【解析】(Ⅰ)根据()f x 为奇函数,利用奇函数的定义即可求解a (Ⅱ)根据复合函数的单调性,先利用定义证明内层函数()814g x x =+-的单调性即可证明(Ⅲ)分离参数可得()12xm f x ⎛⎫≥- ⎪⎝⎭,利用单调性求()()12xf x h x ⎛⎫-= ⎪⎝⎭的最大值即可.【详解】(Ⅰ)()134log 4ax f x x -=-为奇函数,()()2211123334416log log log 04416ax ax a x f x f x x x x -+-∴+-=+==----恒成立,即21a =,1a 或1a =-,当1a =时检验不合题意,1a ∴=-(Ⅱ)由(Ⅰ)得:()134log 4x f x x +=-=138log 14x ⎛⎫+ ⎪-⎝⎭, 令()814g x x =+- ,()1212,,4,x x x x ∀∈-∞-<,则()()()()()21121212128888811444444x x g x g x x x x x x x -⎛⎫-=+-+=-= ⎪------⎝⎭. ()1212,,4,x x x x ∈-∞-<,()()12g x g x ∴<.()13log f t t =是减函数,()()111233log log g x g x ∴< ,即()()12f x f x <.所以()f x 在(),4x ∈-∞-上为增函数.(Ⅲ)()12x f x m ⎛⎫≤+ ⎪⎝⎭恒成立,即:()()12xm f x h x ⎛⎫≥-= ⎪⎝⎭恒成立. 由(Ⅱ)知:()h x 在(],5x ∈-∞-上为增函数,所以()()max 530m h x h ≥=-=-,所以m 的取值范围是:[)30,-+∞ .【点睛】本题主要考查了奇函数的定义,函数单调性,不等式恒成立问题,属于难题.。

相关文档
最新文档