第一章 回顾与思考二 勾股定理
第1章 《勾股定理》回顾与思考

•③勾股定理在实际问题中的应用:运用勾股定理的数 学模型解决现实世界的实际问题.
★【基础必杀题】满分:75 分 一、选择题
►答案见:D2
(★)分别以下列五组数为一个三角形的边长:①6,8,10;②13,
设 BD=x,则 CD=14-x. 由勾股定理,得 AD2=AB2-BD2=152-x2, AD2=AC2-CD2=132-(14-x)2,
:过点 A 作 AD⊥BC 于点 D.
∴152-x2=132-(14-x)2. 解得 x=9. ∴AD=12.
BD∴=S△AxB, C=12则BC·ACDD== 12×1144×-12=x8. 4. 勾股定理,得 AD2=AB2-BD2=152-x2,
第一章 勾股定理
《勾股定理》回顾与思考
本 章知 识 架 构
直角三角形
勾股定理
勾股定理 的逆定理
验证方法 已知两边求
第ห้องสมุดไป่ตู้边
判定直角三角形 判定勾股数 判定垂直
一 勾股定理
如果直角三角形两直角边分别为a,b,斜边为c,
那么
a2 + b2 = c2
即直角三角形两直角边的平方和等于斜边的
平方.
勾股定理的应用条件
为( D )
A.600 m
B.800 m
C.1 000 m
D.1 300 m
(★)如图,在边长为 1 个单位长度的小正方形组成的网格中, 点 A,B 都是格点,则 AB 的长为( A ) A.5 B.6 C.7 D.25
(★)如图,长方体的高为 9 m,底面是边长为 6 m 的正方形,
北师大版八年级上册第一章勾股定理复习(教案)

举例:针对勾股定理证明的难点,教师可以通过以下方法帮助学生突破:
-使用直观的图形和动画演示面积法的证明过程,让学生看到面积转化的直观效果。
-分步骤讲解证明过程,强调每一步的逻辑关系和数学意义。
-组织学生进行小组讨论,鼓励他们用自己的语言解释证明过程,加深理解。
其次,在新课讲授环节,我注重理论与实践相结合,通过具体的案例分析和实验操作,帮助学生加深对勾股定理的理解。这种教学方法取得了较好的效果,但我也注意到部分学生在理解证明过程时仍存在困难。因此,在今后的教学中,我需要更加关注学生的个体差异,针对不同水平的学生进行有针对性的辅导。
在实践活动环节,分组讨论和实验操作使学生积极参与到课堂中,提高了他们的动手能力和团队协作能力。但同时,我也发现部分小组在讨论过程中存在时间分配不均的问题。为了提高课堂效率,我需要在今后的教学中加强对小组讨论的引导和监督,确保每个学生都能充分参与到讨论中来。
-对于勾股数的性质,教师可以设计一些探索性的活动,如让学生尝试找出一定范围内所有的勾股数,通过实践活动发现勾股数的规律。
-在解决实际问题时,教师应引导学生如何从问题中抽象出数学模型,如何将现实问题转化为数学问题,并通过示例来演示解题步骤。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要复习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算直角三角形斜边长度的情况?”比如,测量一块三角形的草地面积。这个问题与我们将要复习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同回顾勾股定理的奥秘。
-勾股定理的应用:学会将勾股定理应用于解决实际问题,如计算直角三角形的斜边长度或判断一组数是否为勾股数。
勾股定理回顾与思考

AC1 =√52+22 =√29
.
综合运用
5.一长方体水池的长、宽、高分别为50cm、40cm、 30cm,池中有一满池水.小亮把长度为70cm的金属 棒放入水中,能否被完全淹没?说说你的理由.
2.已知△ABC的三条边长分别为a、b、c,且满足关系: (a+b)2 + c2 = 3ab + c(a+b),试判断△ABC的形状,并说 明理由.
b a b
a
c
勾股定理的作用
⑴已知直角三角形的两边,求第三边; ⑵已知直角三角形的一边,求另两边的关系; ⑶用于证明平方关系的问题; ⑷利用勾股定理,作出长为 n 的线段。
勾股定理逆定理
⑴如果三角形有三边长a、b、c满足a2+b2=c2,那么这个三角 形是直角三角形。 ⑵直角三角形的判定 设三角形ABC的三边长为a、b、c,①首先确定最长边(如 c);②验证c2与a2+b2是否具有相等关系。 若a2+b2=c2,则三角形ABC是直角三角形; a2+b2≠c2,则三 角形不是直角三角形。 注:a2+b2≠c2时,有两种情况; ① a2+b2﹥c2时,三角形为锐角三角形; ② a2+b2﹤c2时,三角形为钝角三角形。 ⑶勾股数:能够成为直角三角形三条边长的三个正整数。
D1 A1 D C1
1 B1 C 4 2
A
B
分析: 根据题意分析蚂蚁爬行的路 线有三种情况(如图①②③ ),由勾 股定理可求得图1中AC1爬行的路线 最短.
D D1 C1
2
D1
C1
1
A1
B1
4
①
②
A B 2
C1
1
勾股定理回顾与思考

勾股定理在物理学中也有实际应用, 特别是在解决与力和运动相关的问题 时。通过勾股定理,我们可以计算物 体运动过程中的速度、加速度和位移 等物理量。
勾股定理在电磁学中也有应用,例如 在计算电场强度和磁场强度时,可以 利用勾股定理来计算相关物理量。
05 勾股定理的思考与启示
勾股定理对数学教育的启示
培养逻辑思维
毕达哥拉斯证明法
总结词:数形结合
详细描述:毕达哥拉斯的证明方法是将勾股定理与整数、有理数和无理数等数学概念相结合,通过数形结合的方式证明了勾 股定理,体现了数学中数与形之间的紧密联系。
欧拉证明法
总结词:构造法
详细描述:欧拉在证明勾股定理时采用了构造法,他通过构造一个特殊的几何图形来证明勾股定理。 这个图形由多个三角形和矩形组成,通过巧妙地运用这些图形,欧拉证明了勾股定理的正确性。
勾股定理在复数域的应用
要点一
总结词
勾股定理在复数域的应用是指,在复数域中,勾股定理仍 然适用,可以用来解决一些复数域中的问题。
要点二
详细描述
勾股定理在复数域的应用是指,在复数域中,勾股定理仍然 适用。复数域中的勾股定理是指,对于任何复数$z$,有 $|z|^2 = x^2 + y^2$,其中$z=x+yi$,$x$和$y$分别是 复数$z$的实部和虚部。这个定理可以用来解决一些复数域 中的问题,例如求解复数方程、判断复数三角形的形状等。
勾股定理在数论中的应用
勾股定理在数论中也有重要的应用,例如在求解一些与整 数和完全平方数相关的问题时。通过勾股定理,我们可以 找到满足特定条件的整数解,进而解决一些数论问题。
勾股定理在证明一些数学定理时也有所应用,例如在证明 费马大定理和欧拉定理时,可以利用勾股定理来推导和证 明这些定理。
八年级上册数学目录

5. 应用二元一次方程组——里程碑上的数
6. 二元一次方程与一次函数
7. 用二元一次方程组确定一次函数表达式
*8. 三元一次方程组
回顾与思考
复习题
第六章 数据的分析 1Βιβλιοθήκη 平均数 2. 中位数与众数
3. 从统计图分析数据的集中趋势
4. 数据的离散程度
回顾与思考
复习题
第七章 平行线的证明
1. 为什么要证明
2. 定义与命题
3. 平行线的判定
4. 平行线的性质
5. 三角形内角和定理
回顾与思考
复习题
综合与实践
⊙ 计算器运用与功能探索
综合与实践
⊙ 哪一款手机资费套餐更合适
综合与实践
⊙ 哪个城市夏天更热
总复习
旧版资源
2. 平面直角坐标系
3. 轴对称与坐标变化
回顾与思考
复习题
第四章 一次函数
1. 函数
2. 一次函数与正比例函数
3. 一次函数的图象
4. 一次函数的应用
回顾与思考
复习题
第五章 二元一次方程组
1. 认识二元一次方程组
2. 求解二元一次方程组
3. 应用二元一次方程组——鸡兔同笼
八年级上册数学目录
第一章 勾股定理
1. 探索勾股定理
2. 一定是直角三角形吗
3. 勾股定理的应用
回顾与思考
复习题
第二章 实数
1. 认识无理数
2. 平方根
3. 立方根
4. 估算
5. 用计算器开方
第一章直角三角形边角关系回顾与思考(教案)

在课程总结时,我发现部分学生对直角三角形边角关系在实际生活中的应用仍存在疑问。为了让学生更好地将所学知识应用于实际,我计划在今后的教学中,引入更多实际案例,让学生在解决实际问题的过程中,深化对知识点的理解。
五、教学反思
在今天的教学中,我重点关注了直角三角形边角关系这一章节的核心知识点。通过导入日常生活中的实际问题,我试图激发学生的兴趣,帮助他们理解数学知识在实际中的应用。在讲授过程中,我发现以下几点值得反思:
首先,学生对勾股定理的理解程度参差不齐。在讲解过程中,我注意到有些学生能够迅速掌握定理的推导和应用,而部分学生则对定理的理解较为吃力。针对这一现象,我考虑在今后的教学中,加强对定理推导过程的演示,并设计不同难度的练习题,以满足不同学生的学习需求。
-举例:使用平面几何图形或三维模型展示勾股定理的推导过程。
-难点2:三角函数值的计算与应用。学生可能在计算过程中混淆三角函数的定义,需要通过反复练习和实际应用案例来加深理解。
-举例:提供不同角度的三角函数值计算练习,并讲解在测量、导航等领域的应用。
-难点3:边角关系在实际问题中的综合应用。学生可能不知道如何将复杂的实际问题抽象为直角三角形的模型,需要教师引导和示范。
2.回顾与思考:
-通过对勾股定理的推导和应用实例,引导学生思考直角三角形边长之间的关系;
-结合锐角三角函数的定义与性质,探讨三角函数在直角三角形中的应用;
-引导学生运用互余两角的三角函数关系,解决实际问题;
-分析直角三角形的边角关系在生活中的应用,提高学生解决实际问题的能力。
第一章 回顾与思考

课题:第一章回顾与思考(第一课时)主备:王金辉审核: 审批:班级: 学生姓名:【学习目标】1.掌握勾股定理及其直角三角形的判别条件的内容2.能熟练运用勾股定理来进行计算3.运用勾股定理解决实际问题【知识框架图】三边的关系—勾股定理—历史,应用直角三角形直角三角形的判别—应用【学前准备】1.直角三角形的边,角之间分别存在什么关系?2.如何判断一个三角形是直角三角形?有几种方法?【例题讲解】例1.如图,四边形ABCD,已知∠A是直角, AB=3,BC=12,CD=13,DA=4。
求四边形的面积。
B CAD例2.如图所示,圆柱形玻璃容器,高18 cm,底面周长为60 cm,在外侧距下底1 cm,点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1 cm的点F处有一苍蝇,试求急于捕获苍蝇充饥的蜘蛛,所走的最短路线的长度.例3.在Rt ABC ∆中,∠=C 90 ,CD AB ⊥于D ,求证: (1)AB AD DB CD 22222=++ (2)CD AD DB 2=⋅例4、已知∆ABC 中AB cm BC cm AC cm ===51213,,,求AC 边上的高线的长。
例5.已知:如图,△ABC 中,AB =AC ,D 为BC 上任一点,求证:AB 2-AD 2=BD ·DC例6、在正方形ABCD 中, F 为DC 的中点, E 为BC 上一点, 且EC = 14BC , 求证: ∠EFA = 90︒练习题1.一个直角三角形,两直角边长分别为3和4,下列说法正确的是( )CA D BB12 5C 13D AA. 斜边长为25;B.三角形的周长为25;C. 斜边长为5;D.三角形面积为20.2.直角三角形的三条边长同时扩大同一倍数,得到的三角形是( )A. 钝角三角形;B. 锐角三角形;C. 直角三角形;D. 等腰三角形. 3. 分别以下列四组数为一个三角形的边长:(1)0.6、0.8、1;(2)5、12、13;(3)8、15、17;(4)4、5、6 其中能构成直角三角形的勾股数有 ( )A .4组B .3组C .2组D .1组4. 直角三角形两直角边长分别为3和4,则它斜边上的高是 ( ) A. 3.5 B. 2.4 C.1.2 D.5.5.等腰三角形的腰长为10,底长为12,则其底边上的高为( ) A.13; B.8; C.25; D.64.6. 在ΔABC 中,若AB 2+BC 2=AC 2,则∠A+∠C= 0 。
北师大版九年级数学下册:第一章 1《回顾与思考》精品教案

北师大版九年级数学下册:第一章 1《回顾与思考》精品教案一. 教材分析北师大版九年级数学下册第一章《回顾与思考》是对整个初中数学知识的总结与回顾。
本章通过对之前学习的知识进行梳理,帮助学生建立知识体系,提高解决问题的能力。
本节课的内容包括数的开方与乘方、勾股定理、相似三角形的性质等,旨在让学生通过回顾与思考,对所学知识有更深入的理解和掌握。
二. 学情分析九年级的学生已经掌握了初中阶段的大部分数学知识,对于数的开方与乘方、勾股定理、相似三角形的性质等概念和性质有一定的了解。
但部分学生在应用这些知识解决问题时,可能会出现混淆和错误。
因此,在教学过程中,需要关注学生的知识掌握情况,针对性地进行引导和讲解。
三. 教学目标1.帮助学生回顾和总结初中阶段的数学知识,建立知识体系。
2.提高学生运用数学知识解决实际问题的能力。
3.培养学生的逻辑思维能力和创新能力。
四. 教学重难点1.数的开方与乘方、勾股定理、相似三角形的性质等知识的运用。
2.学生对于实际问题进行分析,运用所学知识解决问题的能力。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动回顾和总结所学知识。
2.通过实例分析,让学生运用所学知识解决实际问题。
3.采用小组合作学习的方式,培养学生的团队合作能力和沟通能力。
六. 教学准备1.准备相关知识点的PPT,用于呈现和讲解。
2.准备一些实际问题,用于引导学生运用所学知识解决。
3.准备黑板和粉笔,用于板书和标注。
七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实际问题,引导学生运用所学知识解决。
例如,计算一个房间的面积,或者计算一个三角形的周长等。
通过这些问题,激发学生的学习兴趣,并引出本节课的内容。
2.呈现(10分钟)利用PPT呈现本的回顾与思考的内容,包括数的开方与乘方、勾股定理、相似三角形的性质等。
在呈现过程中,引导学生主动回顾和总结所学知识,并与同学进行交流。
3.操练(10分钟)针对每个知识点,设计一些练习题,让学生独立完成。