半导体器件工艺学之硅片制备

合集下载

半导体的生产工艺流程

半导体的生产工艺流程

半导体的生产工艺流程1.晶圆制备:晶圆制备是半导体生产的第一步,通常从硅片开始。

首先,取一块纯度高达99.9999%的单晶硅,然后经过脱氧、精炼、单晶生长和棒状晶圆切割等步骤,制备出硅片。

这些步骤的目的是获得高纯度、无杂质的单晶硅片。

2.晶圆加工:晶圆加工是将硅片加工成具有特定电子器件的过程。

首先,通过化学机械抛光(CMP)去除硅片上的表面缺陷。

然后,利用光刻技术将特定图案投射到硅片上,并使用光刻胶保护未被刻蚀的区域。

接下来,使用等离子刻蚀技术去除未被保护的硅片区域。

这些步骤的目的是在硅片上形成特定的电子器件结构。

3.器件制造:器件制造是将晶圆上的电子器件形成完整的制造流程。

首先,通过高温扩散或离子注入方法向硅片中掺杂特定的杂质,以形成PN结。

然后,使用化学气相沉积技术在硅片表面沉积氧化层,形成绝缘层。

接下来,使用物理气相沉积技术沉积金属薄膜,形成电压、电流等电子元件。

这些步骤的目的是在硅片上形成具有特定功能的电子器件。

4.封装测试:封装测试是将器件封装成实际可使用的电子产品。

首先,将器件倒装到封装盒中,并连接到封装基板上。

然后,通过线缆或焊接技术将封装基板连接到主板或其他电路板上。

接下来,进行电极焊接、塑料封装封装,形成具有特定外形尺寸和保护功能的半导体芯片。

最后,对封装好的半导体芯片进行功能性测试和质量检查,以确保其性能和可靠性。

总结起来,半导体的生产工艺流程包括晶圆制备、晶圆加工、器件制造和封装测试几个主要步骤。

这些步骤的有机组合使得我们能够生产出高性能、高效能的半导体器件,广泛应用于电子产品和信息技术领域。

硅基半导体的制备技术

硅基半导体的制备技术

硅基半导体的制备技术硅基半导体是一种重要的材料,在电子行业中有广泛的应用。

它具有优良的电子特性和稳定性,因此被广泛用于集成电路、太阳能电池等领域。

本文将介绍硅基半导体的制备技术,包括单晶硅的生长、掺杂和薄膜沉积等关键步骤。

一、单晶硅的生长单晶硅是硅基半导体的基础材料,其生长过程需要高纯度的硅原料和精密的控制条件。

目前常用的单晶硅生长方法有Czochralski法和区域熔融法。

Czochralski法是一种常用的单晶硅生长方法。

首先,将高纯度的硅原料放入石英坩埚中,加热至高温熔化。

然后,在熔融硅液表面悬挂一根带有小晶种的单晶硅棒,通过旋转和提升下降的方式,逐渐拉出单晶硅棒。

在拉出的过程中,控制温度和拉速,使得硅液逐渐凝固形成单晶硅。

区域熔融法是另一种常用的单晶硅生长方法。

它通过在硅片上制造一定的掺杂区域,然后加热整个硅片,使得掺杂区域熔化。

随后,通过控制温度梯度,使得熔融区域逐渐移动,最终形成单晶硅。

二、掺杂掺杂是指向硅基半导体中引入杂质,以改变其电子特性。

常用的掺杂方法有扩散法和离子注入法。

扩散法是一种常用的掺杂方法。

它通过将硅片放入含有掺杂材料的气氛中,加热至高温,使得掺杂材料扩散到硅片中。

掺杂材料可以是五价元素如磷或三价元素如硼,通过控制温度和时间,可以控制掺杂的浓度和深度。

离子注入法是另一种常用的掺杂方法。

它通过将掺杂材料的离子注入到硅片中,使得掺杂材料与硅原子发生置换。

离子注入法具有高精度和可控性,适用于制备高精度的器件。

三、薄膜沉积薄膜沉积是指在硅基半导体表面沉积一层薄膜,用于制备各种器件结构。

常用的薄膜沉积方法有化学气相沉积(CVD)和物理气相沉积(PVD)。

化学气相沉积是一种常用的薄膜沉积方法。

它通过将气体中的前驱体在高温下分解,生成沉积物质并沉积在硅基半导体表面。

化学气相沉积具有高沉积速率和均匀性好的特点,适用于大面积薄膜的制备。

物理气相沉积是另一种常用的薄膜沉积方法。

它通过将金属或合金材料蒸发或溅射到硅基半导体表面,形成薄膜。

半导体生产工艺流程

半导体生产工艺流程

半导体生产工艺流程
《半导体生产工艺流程》
半导体生产是一项极其精密和复杂的工艺流程,通常包括数十个步骤。

在半导体生产工艺中,最常见的材料是硅,因为硅具有优良的半导体特性,可以被用来制造微型电子器件。

下面是一个简单的半导体生产工艺流程的概要:
1. 清洗和去除杂质:首先,硅片需要经过严格的清洗和去除杂质的步骤,以确保表面的纯净度和平整度。

2. 氧化:接下来,硅片需要进行氧化处理,将表面形成一层氧化膜,以提高硅片的电气性能和机械强度。

3. 光刻:在光刻过程中,通过光刻胶和紫外光的照射,将所需的图案形成在硅片表面上,从而准确地定义出电子器件的结构。

4. 蚀刻:使用化学液体或等离子体等方法,将光刻所定义的图案蚀刻到硅片表面上,形成所需的微型结构。

5. 沉积:在沉积过程中,通过化学气相沉积或物理气相沉积等方法,将金属或其他材料沉积到硅片表面上,形成导线、电极等部分。

6. 腐蚀:在腐蚀步骤中,通过化学或物理方法,将不需要的材料层去除,从而形成日后需要的电子器件结构。

7. 打孔和导线铺设:最后,通过打孔和导线铺设的步骤,连接各个电子器件,形成完整的电路。

整个工艺流程中,每一个步骤都需要极其严格的控制和精密的操作,以确保最终的产品质量。

同时,半导体生产工艺也需要不断的创新和改进,以应对日益复杂和高性能的电子器件需求。

随着技术的不断进步,半导体生产工艺也在不断演进,将为人类带来更多的科技进步和便利。

半导体硅片发展历程、常见形态及SOI硅片的4种制备技术?

半导体硅片发展历程、常见形态及SOI硅片的4种制备技术?

半导体硅片发展历程、常见形态及SOI硅片的4种制备技术?硅材料根据晶胞的排列方式不同,分为单晶硅和多晶硅。

单晶硅和多晶硅最大的区别是单晶硅的晶胞排是有序的,而多晶硅是无序的。

在制造方法方面,多晶硅一般是直接把硅料倒入坩埚中融化,然后再冷却而成。

单晶硅是通过拉单晶的方式形成晶棒(直拉法)。

在物理性质方面,两种硅的特性相差较大。

单晶硅导电能力强,光电转换效率高,单晶硅光电转换效率一般在 17%~25%左右,多晶硅效率在 15%以下。

光伏硅片:由于光电效应,且单晶硅优势明显,所以人们使用硅片完成太阳能到电能的转换。

在光伏领域使用的一般为圆角方形的单晶硅电池片。

价格较便宜的电多晶硅片也有使用,但转换效率较低。

由于光伏硅片对纯度、曲翘度等参数要求较低,所制造过程相对简单。

以单晶硅电池片为例,第一步是切方磨圆,先按照尺寸要求将单晶硅棒切割成方棒,然后将方棒的四角磨圆。

第二步是酸洗,主要是为了除去单晶方棒的表面杂质。

第三步是切片,先将清洗完毕后的方棒与工板粘贴。

然后将工板放在切片机上,按照已经设定好的工艺参数进行切割。

最后将单晶硅片清洗干净监测表面光滑度,电阻率等参数。

半导体硅片:半导体硅片比光伏硅片的要求更高。

首先,半导体行业使用的硅片全部为单晶硅,目的是为了保证硅片每个位臵的相同电学特性。

在形状和尺寸上,光伏用单晶硅片是正方形,主要有边长125mm,150mm,156mm 的种类。

而半导体用单晶硅片是圆型,硅片直径有 150mm(6 寸晶圆),200mm(8 寸晶圆)和 300mm (12 寸晶圆)尺寸。

在纯度方面,光伏用单晶硅片的纯度要求硅含量为4N-6N 之间(99.99%-99.9999%),但是半导体用单晶硅片在9N(99.9999999%)-11N(99.999999999%)左右,纯度要求最低是光伏单晶硅片的1000 倍。

在外观方面,半导体用硅片在表面的平整度,光滑度和洁净程度要比光伏用硅片的要求高。

硅集成电路基本工艺流程简介

硅集成电路基本工艺流程简介

硅集成电路基本工艺流程简介近年来,日新月异的硅集成电路工艺技术迅猛发展,一些新技术、新工艺也在不断地产生,然而,无论怎样,硅集成电路制造的基本工艺还是不变的。

以下是关于这些基本工艺的简单介绍。

IC制造工艺的基本原理和过程IC基本制造工艺包括:基片外延生长、掩模制造、曝光、氧化、刻蚀、扩散、离子注入及金属层形成。

一、硅片制备(切、磨、抛)1、晶体的生长(单晶硅材料的制备):1) 粗硅制备: SiO2+2H2=Si+2H2O99%经过提纯:>99.999999%2) 提拉法基本原理是将构成晶体的原料放在坩埚中加热熔化,在熔体表面接籽晶提拉熔体,在受控条件下,使籽晶和熔体的交界面上不断进行原子或分子的重新排列,随降温逐渐凝固而生长出单晶体.2、晶体切片:切成厚度约几百微米的薄片二、晶圆处理制程主要工作为在硅晶圆上制作电路与电子元件,是整个集成电路制造过程中所需技术最复杂、资金投入最多的过程。

功能设计à模块设计à电路设计à版图设计à制作光罩其工艺流程如下:1、表面清洗晶圆表面附着一层大约2um的Al2O3和甘油混合液保护之,在制作前必须进行化学刻蚀和表面清洗。

2、初次氧化有热氧化法生成SiO2 缓冲层,用来减小后续中Si3N4对晶圆的应力氧化技术干法氧化Si(固) + O2 àSiO2(固)湿法氧化Si(固) +2H2O àSiO2(固) + 2H23、CVD法沉积一层Si3N4。

CVD法通常分为常压CVD、低压CVD 、热CVD、电浆增强CVD及外延生长法(LPE)。

着重介绍外延生长法(LPE):该法可以在平面或非平面衬底上生长出十分完善的和单晶衬底的原子排列同样的单晶薄膜的结构。

在外延工艺中,可根据需要控制外延层的导电类型、电阻率、厚度,而且这些参数不依赖于衬底情况。

4、图形转换(光刻与刻蚀)光刻是将设计在掩模版上的图形转移到半导体晶片上,是整个集成电路制造流程中的关键工序,着重介绍如下:1)目的:按照平面晶体管和集成电路的设计要求,在SiO2或金属蒸发层上面刻蚀出与掩模板完全对应的几何图形,以实现选择性扩散和金属膜布线。

半导体工艺流程和制造工艺管理制度

半导体工艺流程和制造工艺管理制度

半导体工艺流程和制造工艺管理制度一、引言半导体工艺流程和制造工艺管理制度是半导体制造过程中的重要环节。

本文将介绍半导体工艺流程的主要步骤,以及制造工艺管理制度的重要性和实施方法。

二、半导体工艺流程1. 制备硅片硅片是半导体器件的基础材料,制备硅片的过程包括原材料清洗、去杂质处理、晶体生长、切割和抛光等步骤。

其中,晶体生长是关键步骤,通过在高温环境下将纯度极高的硅材料熔化,再逐渐降温结晶形成硅单晶。

2. 形成层形成层是在硅片表面沉积一层薄膜,用于制造器件的结构和电性传导。

常见的形成层材料包括二氧化硅、聚合物、金属等。

形成层的沉积方法有物理气相沉积(PVD)、化学气相沉积(CVD)等。

3. 光刻光刻是通过光刻胶和光罩来进行图案转移的关键步骤。

首先,在硅片上涂覆一层光刻胶,然后将光罩放置在光刻机上,通过曝光、显影等步骤,将光刻胶部分暴露,形成所需的图案。

4. 刻蚀和湿法清洗刻蚀是将光刻后暴露的硅片表面进行化学腐蚀或物理磨损,以去除不需要的材料。

刻蚀方法有干法刻蚀和湿法刻蚀等。

刻蚀后,需要进行湿法清洗,以去除残留的物质和杂质。

5. 金属沉积和电镀在半导体器件中,常常需要金属电极和导线来实现电信号的传导。

金属沉积和电镀是将金属材料沉积在硅片表面的过程,其中含有金属离子的溶液通过电解的方式,将金属沉积在所需的区域。

三、制造工艺管理制度1. 管理目标制造工艺管理制度的目标是确保半导体制造过程具有稳定的品质和高度的可重复性。

通过制定管理制度,可以规范操作流程,降低人为失误的风险,提高生产效率和产品质量。

2. 规范操作流程制造工艺管理制度要求制定详细的操作规程和标准,明确每一步骤的要求和流程。

操作人员必须按照规程进行操作,不得随意变动或省略步骤。

同时,要建立相应的记录和检查机制,确保操作的准确性和可追溯性。

3. 过程监控和控制制造工艺管理制度要求建立全面的过程监控和控制机制。

包括设备的参数监测、产品的质量抽样检验、环境条件的控制等。

第二章 硅和硅片制_

第二章 硅和硅片制_

第二章硅和硅片制备硅是用来制造芯片的主要半导体材料,也是半导体产业中最重要的材料。

锗是第一个用做半导体的材料,它很快被硅取代了,这主要有四个原因:1)硅的丰裕度:硅是地球上第二丰富的元素,占到地壳成分的25%,经合理加工,硅能够提纯到半导体制造所需的足够高的纯度而消耗更低的成本。

2)更高的熔化温度允许更宽的工艺容限:硅1412℃的熔点远高于锗937℃的熔点,使得硅可以承受高温工艺。

3)更宽的工作温度范围:用硅制造的半导体元件可以用于比锗更宽的温度范围。

4)氧化硅的自然生成:硅表面有自然生长氧化硅(SiO2)的能力。

SiO2是一种高质量、稳定的电绝缘材料,而且能充当优质的化学阻挡层以保护硅不受外部沾污。

现在,全世界芯片的85%以上都是由硅来制造的。

2.1半导体级硅用来做芯片的高纯硅被称为半导体级硅(semiconductor-grade silicon), 或者SGS,有时也被称做电子级硅。

从天然硅中获得生产半导体器件所需纯度的SGS要分几步。

现介绍一种得到SGS的主要方法:第一步,在还原气体环境中,通过加热含碳的硅石(SiO2),一种纯沙,来生产冶金级硅。

SiC(固体)+SiO2(固体)→Si(液体)+SiO(气体)+CO(气体)在反应式右边所得到的冶金级硅的纯度有98%。

由于冶金级硅的沾污程度相当高,所以它对半导体制造没有任何用处。

第二步,将冶金级硅压碎并通过化学反应生成含硅的三氯硅烷气体。

Si(固体)+3HCl(气体)→SiHCl3(气体)+H2(气体)+加热第三步,含硅的三氯硅烷气体经过再一次化学过程并用氢气还原制备出纯度为99.9999999%的半导体级硅。

2SiHCl3(气体)+2H2(气体)→2Si(固体)+6HCl(气体)这种生产纯SGS的工艺称为西门子工艺。

(图2.1)半导体级硅具有半导体制造要求的超高纯度,它包含少于百万分之(ppm)二的碳元素和少于十亿分之(ppb)一的Ⅲ、Ⅴ族元素(主要的掺杂元素)。

硅片知识点总结

硅片知识点总结

硅片知识点总结1. 硅片的概念硅片是一种重要的半导体材料,被广泛应用于电子、光电子等领域。

硅片的主要成分是硅元素,具有优良的电子特性和光学特性,因此被广泛用于制造集成电路、光伏电池、LED等产品。

2. 硅片的制备硅片的制备主要包括晶体生长、切割、抛光等工艺。

首先,通过化学气相沉积或单晶生长炉等方法,在硅溶液中生长出大尺寸的硅单晶棒。

然后,利用锯片将硅单晶棒切割成薄片,再通过化学机械抛光等工艺对硅片表面进行精细加工,最终形成高质量的硅片。

3. 硅片的特性硅片具有优良的电子特性和光学特性,主要包括以下几个方面:(1)电子特性:硅片是一种半导体材料,具有一定的导电性能。

经过掺杂或特殊处理后,硅片可以具有N型或P型的电子特性,广泛用于制造集成电路等电子产品。

(2)光学特性:硅片在可见光和红外光范围具有很好的透光性,因此被广泛应用于光伏电池、光电器件等领域。

此外,硅片还具有较高的折射率和低的光学吸收系数,使其成为一种优良的光学材料。

4. 硅片的应用硅片作为半导体材料,被广泛应用于电子、光电子等领域,主要包括以下几个方面:(1)集成电路:硅片是制造集成电路的基础材料,通过光刻、离子注入、金属蒸镀等工艺,在硅片表面上制造出晶体管、电容器、电阻器等元器件,从而实现电子器件的集成化和微小化。

(2)光伏电池:硅片是光伏电池的主要材料,通过将硅片制成P-N结,当受到阳光照射时会产生光伏效应,将光能转换为电能,从而产生电流。

(3)LED:硅片还被用于制造LED器件,通过在硅片表面上沉积金属电极和发光层等材料,实现LED的发光。

5. 硅片的发展趋势随着科技的发展和需求的不断变化,硅片的应用领域和产品性能也在不断创新和发展,主要包括以下几个方面:(1)微电子器件:随着半导体工艺的不断精进和升级,微电子器件对硅片的要求也在不断提高,需要更高的晶格纯度和表面平整度。

(2)光伏材料:随着清洁能源的发展,光伏电池对硅片的要求也在不断增加,需要更高的光电转换效率和稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

16
CZ法(直拉法)
编辑课件ppt
17
CZ法工艺过程
编辑课件ppt
18
直拉法生长出的单晶硅锭
编辑课件ppt
19
FZ法(区熔法)
编辑课件ppt
20
§2-5硅片加工
1.整形处理 2.切片 3.倒角 4.磨片 5.刻蚀 6.抛光 7.清洗 质量检测
包装
编辑课件ppt
21
1.整形处理
编辑课件ppt
SGS 纯度99.9999999% 多晶 工艺:西门子改良工艺
编辑课件ppt
15
二、单晶硅锭的制备
半导体级硅 (多晶)→单晶 生长后的单晶硅称为硅锭
方法:CZ法(直拉法) FZ法(区熔法)
CZ法:85%以上的单晶硅是用CZ法生长的 FZ法:纯度高(氧含量低)
可生长的直径小 掺杂
编辑课件ppt
原子尺寸上的局部缺陷,会造成晶格畸变
编辑课件ppt
10
2.线缺陷
线缺陷:在某方向延伸,其它两个方向延伸 很小
常见的线缺陷:位错 位错有两种基本形式:刃型和螺型
编辑课件ppt
11
刃形位错
螺形位错
编辑课件ppt
12
3.面缺陷:层错
面缺陷是二维缺陷 原子层错排
4.体缺陷:包裹体
由于杂质硼、磷、砷等在硅晶体中溶解度 有限,在杂质掺入数量超过固溶度时,杂 质在晶体中沉积,形成体缺陷
编辑课件ppt
33
第二章 半导体材料
§2-1晶体结构 §2-2晶向与晶面 §2-3晶体缺陷 §2-4单晶硅制备 §2-5硅片加工
编辑课件ppt
1
§2-1晶体结构
一、非晶材料和晶体材料(原子级别上) 非晶材料(无定形):
杂乱无章的结构 晶体材料:
有序,规则 从宏观上看:规则的几何外形,固定的熔 点,解理性,各向异性
不同,影响工艺制造和器件性能 密勒指数
编辑课件ppt
6
晶向指数
编辑课件ppt
7
常用晶面的密勒指数
编辑课件ppt
8
§2-3晶体缺陷
理想的晶体:完美的结构 实际的晶体:有缺陷 缺陷:点缺陷 线缺陷 面缺陷 体缺陷 硅中的晶体缺陷会产生于晶体生长和后面
硅锭和硅片加工中
编辑课件ppt
9
1.点缺陷
编辑课件ppt
2
二、晶体材料
晶胞: 晶体结构中最简单,最基本的单元
用晶胞来描述晶体结构 晶胞排列方式:多晶和单晶
编辑课件ppt
3
非晶材料(无定形)
晶体材料:单晶 多晶
编辑课件ppt
4
晶胞
编辑课件ppt
5
§2-2 晶向和晶面
晶向决定了硅片中晶体结构的物理排列 不同晶向的硅片的化学,电学,机械性质
22
径向研磨
编辑课件ppt
23
定位面(200mm及以下)
编辑课件ppt
24
定位槽(300mm及以上)
编辑课件ppt
25
2.切片
硅锭切割方式:外圆、内圆、线切割 200mm以下的硅片
用带有金刚石切割边缘的内圆切割机 300mm及以上硅片 线锯法→更薄的切口损失
机械损伤较小 表面平整度还存在问题 如:300mm 厚 775±25μm
编辑课件ppt
13
§2-4单晶硅制备
编辑课件ppt
14
一、半导体级硅
加热含碳的硅石来制备冶金级硅
SiO2+C → Si+CO2
沙子
MGS 纯度98%
通过化学反应将冶金级硅提纯生成三氯硅烷
Si+3HCl → SiHCl3+H2 通过三氯硅烷和氢气反应生产半导体级的硅
SiHCl3+H2 → Si+3HCl
编辑课件ppt26 Nhomakorabea内圆切割机
编辑课件ppt
27
DXQ-601型多线切割机
编辑课件ppt
28
3.倒角
编辑课件ppt
29
4.磨片
编辑课件ppt
30
5.化学刻蚀
编辑课件ppt
31
6.抛光
编辑课件ppt
32
7.清洗、质量检测、包装
清洗 质量检测:
物理尺寸 平整度 微粗糙度 氧含量 晶体缺陷 颗粒 体电阻率 包装
相关文档
最新文档