新高考数学二轮复习专题二函数与导数课时作业五导数的简单应用理

合集下载

高考数学二轮复习专题02:函数与导数

高考数学二轮复习专题02:函数与导数
A . f(a)>f(b)
B . f(a)<f(b)
C . f(a)=f(b)
D . f(a)f(b)>0
4. (2分) (2019高二上·浙江期中) 已知 ,且 , , 是函数 的两个相邻的零点,且 ,则 的值为( )
A .
B .
C .
D .
5. (2分) 定义在R上的奇函数f(x),当x≥0时,f(x)= , 则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为( )
A . 3a﹣1
B . 1﹣3a
C . 3﹣a﹣1
D . 1﹣3﹣a
6. (2分) 已知函数 的图像为曲线C,若曲线C存在与直线 垂直的切线,则实数m的取值范围是( )
A .
B .
C .
D .
7. (2分) (2016高一上·沈阳期中) 已知函数f(x)满足:当f(x)= ,则f(2+log23)=( )
29-2、答案:略
29-3、答案:略
29-4、答案:略
30-1、
高考数学二轮复习专题02:函数与导数
姓名:________班级:________ 成绩:________
一、 单选题 (共17题;共34分)
1. (2分) (2016高一上·厦门期中) 已知函数f(x)=xln(x﹣1)﹣a,下列说法正确的是( )
A . 当a=0时,f(x)没有零点
B . 当a<0时,f(x)有零点x0 , 且x0∈(2,+∞)
A .
B .
C .
D .
17. (2分) ( )
A . 0
B . π
C . -π
D . 2π
二、 填空题 (共7题;共8分)

2025高考数学二轮复习导数应用中的函数构造技巧

2025高考数学二轮复习导数应用中的函数构造技巧

函数形式出现的是“-”法形式时,优先考虑构造 y=型函数.
(2)利用f(x)与ex(enx)构造
() ()

常用的构造形式有 e f(x),e f(x), e , e ,这类形式一方面是对 y=uv,y=型函
x
nx
数形式的考查,另外一方面也是对(ex)'=ex,(enx)'=nenx 的考查.所以对于
f'(x)cos x-f(x)sin x>0,所以 F'(x)>0,即函数
由于
f
π
6
f
π
6
π
0<6
<
π
4
π
π
cos6<f 4
<
3
π
3
3
<
π
3
<
π
,所以
2
π
π
cos4<f 3
π
F(x)在区间(0,2)
π
4
<F
π
cos3,因此可得
π
6
,故选 AD.
F
π
6
<F
f
π
x∈(0,2)时,
π
3
<
内单调递增.
,即
锐角三角形,则( D )
A.f(sin A)sin2B>f(sin B)sin2A
B.f(sin A)sin2B<f(sin B)sin2A
C.f(cos A)sin2B>f(sin B)cos2A
D.f(cos A)sin2B<f(sin B)cos2A
解析 因为
() '
2

高考数学二轮复习 专题2 函数与导数 第3讲 导数的概念

高考数学二轮复习 专题2 函数与导数 第3讲 导数的概念

第3讲导数的概念及其简单应用导数的几何意义及导数的运算1.(2015洛阳统考)已知直线m:x+2y-3=0,函数y=3x+cos x的图象与直线l相切于Ρ点,若l ⊥m,则Ρ点的坐标可能是( B )(A)(-错误!未找到引用源。

,-错误!未找到引用源。

) (B)(错误!未找到引用源。

,错误!未找到引用源。

)(C)(错误!未找到引用源。

,错误!未找到引用源。

)(D)(-错误!未找到引用源。

,-错误!未找到引用源。

)解析:由l⊥m可得直线l的斜率为2,函数y=3x+cos x的图象与直线l相切于Ρ点,也就是函数在P点的导数值为2,而y ′=3-sin x=2,解得sin x=1,只有B,D符合要求,而D中的点不在函数图象上,因此选B.2.(2014广东卷)曲线y=e-5x+2在点(0,3)处的切线方程为.解析:由题意知点(0,3)是切点.y′=-5e-5x,令x=0,得所求切线斜率为-5.从而所求方程为5x+y-3=0.答案:5x+y-3=0利用导数研究函数的单调性3.(2015辽宁沈阳市质检)若定义在R上的函数f(x)满足f(x)+f′(x)>1,f(0)=4,则不等式f(x)>错误!未找到引用源。

+1(e为自然对数的底数)的解集为( A )(A)(0,+∞) (B)(-∞,0)∪(3,+∞)(C)(-∞,0)∪(0,+∞) (D)(3,+∞)解析:不等式f(x)>错误!未找到引用源。

+1可以转化为e x f(x)-e x-3>0令g(x)=e x f(x)-e x-3,所以g′(x)=e x(f(x)+f′(x))-e x=e x(f(x)+f′(x)-1)>0,所以g(x)在R上单调递增,又因为g(0)=f(0)-4=0,所以g(x)>0⇒x>0,即不等式的解集是(0,+∞).故选A.4.(2014辽宁卷)当x∈[-2,1]时,不等式ax3-x2+4x+3≥0恒成立,则实数a的取值范围是( C )(A)[-5,-3] (B)[-6,-错误!未找到引用源。

高考数学总复习第二章函数导数及其应用课时作业15理含解析新人教A版

高考数学总复习第二章函数导数及其应用课时作业15理含解析新人教A版

高考数学总复习第二章函数导数及其应用课时作业15理含解析新人教A 版课时作业15 利用导数研究函数的极值、最值1.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( D )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2) 解析:由题图可知,当x <-2时,f ′(x )>0; 当-2<x <1时,f ′(x )<0; 当1<x <2时,f ′(x )<0; 当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.2.(2019·山西太原模拟)设函数f (x )=13x 3-x +m 的极大值为1,则函数f (x )的极小值为( A )A .-13B .-1 C.13D .1解析:f ′(x )=x 2-1,由f ′(x )=0得x 1=-1,x 2=1.所以f (x )在区间(-∞,-1)上单调递增,在区间(-1,1)上单调递减,在区间(1,+∞)上单调递增,所以函数f (x )在x =-1处取得极大值,且f (-1)=1,即m =13,函数f (x )在x =1处取得极小值,且f (1)=13×13-1+13=-13.故选A.3.(2019·河北三市联考)若函数f (x )=13x 3-⎝ ⎛⎭⎪⎫1+b 2x 2+2bx 在区间[-3,1]上不是单调函数,则函数f (x )在R 上的极小值为( A )A .2b -43B.32b -23 C .0D .b 2-16b 3解析:f ′(x )=x 2-(2+b )x +2b =(x -b )(x -2), ∵函数f (x )在区间[-3,1]上不是单调函数, ∴-3<b <1,则由f ′(x )>0, 得x <b 或x >2,由f ′(x )<0,得b <x <2, ∴函数f (x )的极小值为f (2)=2b -43.4.函数f (x )=x 3-3x -1,若对于区间[-3,2]上的任意x 1,x 2,都有|f (x 1)-f (x 2)|≤t ,则实数t 的最小值是( A )A .20B .18C .3D .0 解析:因为f ′(x )=3x 2-3=3(x -1)(x +1),令f ′(x )=0,得x =±1,可知-1,1为函数的极值点. 又f (-3)=-19,f (-1)=1,f (1)=-3,f (2)=1, 所以在区间[-3,2]上,f (x )max =1,f (x )min =-19. 由题设知在区间[-3,2]上,f (x )max -f (x )min ≤t ,从而t ≥20,所以t 的最小值是20.5.(2019·浙江瑞安中学月考)已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22等于( C )A.23B.43C.83D.163解析:由图象可知f (x )的图象过点(1,0)与(2,0),x 1,x 2是函数f (x )的极值点,因此1+b +c =0,8+4b +2c =0,解得b =-3,c =2,所以f (x )=x 3-3x 2+2x ,所以f ′(x )=3x 2-6x +2.x 1,x 2是方程f ′(x )=3x 2-6x +2=0的两根,因此x 1+x 2=2,x 1x 2=23,所以x 21+x 22=(x 1+x 2)2-2x 1x 2=4-43=83.6.(2019·湖南湘潭一中、长沙一中等六校联考)若函数f (x )=ax 22-(1+2a )x +2ln x (a>0)在区间⎝ ⎛⎭⎪⎫12,1内有极大值,则a 的取值范围是( C ) A.⎝ ⎛⎭⎪⎫1e ,+∞ B .(1,+∞) C .(1,2)D .(2,+∞)解析:f ′(x )=ax -(1+2a )+2x =ax 2-2a +1x +2x(a >0,x >0),若f (x )在区间⎝ ⎛⎭⎪⎫12,1内有极大值,即f ′(x )=0在⎝ ⎛⎭⎪⎫12,1内有解.则f ′(x )在区间⎝ ⎛⎭⎪⎫12,1内先大于0,再小于0,则⎩⎪⎨⎪⎧f ′⎝ ⎛⎭⎪⎫12>0,f ′1<0,即⎩⎨⎧14a -122a +1+212>0,a -2a +1+2<0,解得1<a <2,故选C.7.(2019·江西南昌调研)已知a 为常数,函数f (x )=x (ln x -ax )有两个极值点x 1,x 2(x 1<x 2),则( D )A .f (x 1)>0,f (x 2)>-12B .f (x 1)<0,f (x 2)<-12C .f (x 1)>0,f (x 2)<-12D .f (x 1)<0,f (x 2)>-12解析:f ′(x )=ln x -2ax +1,依题意知f ′(x )=0有两个不等实根x 1,x 2, 即曲线y =1+ln x 与直线y =2ax 有两个不同交点,如图.由直线y =x 是曲线y =1+ln x 的切线, 可知:0<2a <1,0<x 1<1<x 2.∴a ∈⎝ ⎛⎭⎪⎫0,12. 由0<x 1<1,得f (x 1)=x 1(ln x 1-ax 1)<0, ∵当x 1<x <x 2时,f ′(x )>0, ∴f (x 2)>f (1)=-a >-12,故选D.8.(2019·武汉模拟)若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内存在最小值,则实数k 的取值范围是 ⎣⎢⎡⎭⎪⎫1,32 . 解析:因为f (x )的定义域为(0,+∞), 又因为f ′(x )=4x -1x,所以由f ′(x )=0解得x =12,由题意得⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32.9.(2019·长沙调研)已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ⎝ ⎛⎭⎪⎫a >12,当x ∈(-2,0)时,f (x )的最小值为1,则a = 1 .解析:由题意知,当x ∈(0,2)时,f (x )的最大值为-1. 令f ′(x )=1x -a =0,得x =1a,当0<x <1a时,f ′(x )>0;当x >1a时,f ′(x )<0.∴f (x )max =f ⎝ ⎛⎭⎪⎫1a=-ln a -1=-1,解得a =1. 10.设函数f (x )=x 3+ax 2+bx (x >0)的图象与直线y =4相切于点M (1,4),则y =f (x )在区间(0,4]上的最大值为 4 ;最小值为 0 .解析:f ′(x )=3x 2+2ax +b (x >0).依题意,有⎩⎪⎨⎪⎧f ′1=0,f 1=4,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b =4,解得⎩⎪⎨⎪⎧a =-6,b =9.所以f (x )=x 3-6x 2+9x .令f ′(x )=3x 2-12x +9=0,解得x =1或x =3.当x 变化时,f ′(x ),f (x )在区间(0,4]上的变化情况如下表:所以函数f (x )=x 3-6x 2+9x 在区间(0,4]上的最大值是4,最小值是0. 11.已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值. 解:(1)f ′(x )=1x-a (x >0),①当a ≤0时,f ′(x )=1x-a >0,即函数f (x )的单调递增区间为(0,+∞). ②当a >0时,令f ′(x )=1x -a =0,可得x =1a,当0<x <1a 时,f ′(x )=1-axx>0;当x >1a 时,f ′(x )=1-ax x<0,故函数f (x )的单调递增区间为⎝⎛⎭⎪⎫0,1a ,单调递减区间为⎝ ⎛⎭⎪⎫1a ,+∞.综上可知,当a ≤0时,函数f (x )的单调递增区间为(0,+∞);当a >0时,函数f (x )的单调递增区间为⎝⎛⎭⎪⎫0,1a ,单调递减区间为⎝ ⎛⎭⎪⎫1a ,+∞.(2)①当1a≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln2-2a .②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )的最小值是f (1)=-a .③当1<1a <2,即12<a <1时,函数f (x )在⎣⎢⎡⎦⎥⎤1,1a 上是增函数,在⎣⎢⎡⎦⎥⎤1a ,2上是减函数.又f (2)-f (1)=ln2-a ,所以当12<a <ln2时,最小值是f (1)=-a ;当ln2≤a <1时,最小值为f (2)=ln2-2a .综上可知,当0<a <ln2时,函数f (x )的最小值是f (1)=-a ; 当a ≥ln2时,函数f (x )的最小值是f (2)=ln2-2a . 12.已知函数f (x )=a ln x +1x(a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.解:由题意,知函数f (x )的定义域为{x |x >0},f ′(x )=a x -1x2(a >0).(1)由f ′(x )>0解得x >1a,所以函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫1a,+∞;由f ′(x )<0解得x <1a,所以函数f (x )的单调递减区间是⎝⎛⎭⎪⎫0,1a .所以当x =1a时,函数f (x )有极小值f ⎝ ⎛⎭⎪⎫1a =a ln 1a+a =a -a ln a .(2)由(1)可知,当x ∈⎝⎛⎭⎪⎫0,1a 时,函数f (x )单调递减;当x ∈⎝ ⎛⎭⎪⎫1a,+∞时,函数f (x )单调递增.①若0<1a≤1,即a ≥1时,函数f (x )在[1,e]上为增函数,故函数f (x )的最小值为f (1)=a ln1+1=1,显然1≠0,故不满足条件.②若1<1a ≤e,即1e ≤a <1时,函数f (x )在⎣⎢⎡⎭⎪⎫1,1a 上为减函数,在⎣⎢⎡⎦⎥⎤1a ,e 上为增函数,故函数f (x )的最小值为f (x )的极小值f ⎝ ⎛⎭⎪⎫1a=a ln 1a+a =a -a ln a =a (1-ln a )=0,即ln a=1,解得a =e ,而1e≤a <1,故不满足条件.③若1a >e ,即0<a <1e 时,函数f (x )在[1,e]上为减函数,故函数f (x )的最小值为f (e)=a lne +1e =a +1e =0,即a =-1e ,而0<a <1e,故不满足条件.综上所述,不存在这样的实数a ,使得函数f (x )在[1,e]上的最小值为0.13.(2019·合肥模拟)已知函数f (x )=x ln x -a e x(e 为自然对数的底数)有两个极值点,则实数a 的取值范围是( A )A.⎝ ⎛⎭⎪⎫0,1e B .(0,e) C.⎝ ⎛⎭⎪⎫1e ,e D .(-∞,e)解析:f (x )=x ln x -a e x(x >0), ∴f ′(x )=ln x +1-a e x (x >0),由已知函数f (x )有两个极值点可得y =a 和g (x )=ln x +1e x在(0,+∞)上有两个交点, g ′(x )=1x-ln x -1e x(x >0), 令h (x )=1x-ln x -1,则h ′(x )=-1x 2-1x<0,∴h (x )在(0,+∞)上单调递减且h (1)=0,∴当x ∈(0,1]时,h (x )≥0,即g ′(x )≥0,g (x )在(0,1]上单调递增,g (x )≤g (1)=1e ,当x ∈(1,+∞)时,h (x )<0,即g ′(x )<0,g (x )在(1,+∞)上单调递减, 故g (x )max =g (1)=1e,而x →0时,g (x )→-∞,x →+∞时,g (x )→0; 若y =a 和g (x )在(0,+∞)上有两个交点, 只需0<a <1e.14.(2019·广东佛山一模)设函数f (x )=x 3-3x 2+2x ,若x 1,x 2(x 1<x 2)是函数g (x )=f (x )-λx 的两个极值点,现给出如下结论:①若-1<λ<0,则f (x 1)<f (x 2); ②若0<λ<2,则f (x 1)<f (x 2); ③若λ>2,则f (x 1)<f (x 2). 其中正确结论的个数为( B ) A .0 B .1 C .2D .3解析:函数g (x )=f (x )-λx , ∴g ′(x )=f ′(x )-λ,令g ′(x )=0,得f ′(x )-λ=0, ∴f ′(x )=λ有两解x 1,x 2(x 1<x 2). ∵f (x )=x 3-3x 2+2x , ∴f ′(x )=3x 2-6x +2, 画出y =f ′(x )的图象如图所示:。

高考数学总复习第二章函数导数及其应用课时作业

高考数学总复习第二章函数导数及其应用课时作业

高考数学总复习第二章函数导数及其应用课时作业课时作业10 函数的图象1.函数f(x)=x2ln|x|的图象大致是( D )解析:由f(-x)=-f(x)可得f(x)是奇函数,图象关于原点对称,排除A,C,而x∈(0,1)时,ln|x|<0,f(x)<0,排除B,故选D.2.现有四个函数:①y=x sin x;②y=x cos x;③y=x|cos x|;④y=x·2x.它们的图象(部分)如下,但顺序已被打乱,则按照从左到右将图象对应的函数序号排列正确的一组是( D )A.④①②③B.①④③②C.③④②①D.①④②③解析:函数y=x sin x是偶函数,由图象知,函数①对应第一个图象;函数y=x cos x是奇函数,且当x=π时,y=-π<0,故函数②对应第三个图象;函数y=x|cos x|为奇函数,且当x>0时,y≥0,故函数③与第四个图象对应;函数y =x ·2x为非奇非偶函数,与第二个图象对应.综上可知,选D.3.(2019·河南信阳模拟)已知函数f (x )(x ∈R )满足f (-x )=8-f (4+x ),函数g (x )=4x +3x -2,若函数f (x )与g (x )的图象共有168个交点,记作P i (x i ,y i )(i =1,2,…,168),则(x 1+y 1)+(x 2+y 2)+…+(x 168+y 168)的值为( D )A .2 018B .2 017C .2 016D .1 008 解析:函数f (x )(x ∈R )满足f (-x )=8-f (4+x ),可得f (-x )+f (4+x )=8,即函数f (x )的图象关于点(2,4)对称,由函数g (x )=4x +3x -2=4x -2+11x -2=4+11x -2,可知其图象关于点(2,4)对称,∵函数f (x )与g (x )的图象共有168个交点,∴两图象在点(2,4)两边各有84个交点,且两边的点分别关于点(2,4)对称,故得(x 1+y 1)+(x 2+y 2)+…+(x 168+y 168)=(4+8)×84=1 008.故选D.4.已知函数f (x )的图象如图所示,则f (x )的解析式可能是( A )A .f (x )=12x -1-x 3B .f (x )=12x -1+x 3C .f (x )=12x +1-x 3D .f (x )=12x +1+x 3解析:由图可知,函数图象的渐近线为x =12,排除C ,D ,又函数f (x )在⎝⎛⎭⎪⎫-∞,12,⎝ ⎛⎭⎪⎫12,+∞上单调递减.而函数y =12x -1在⎝ ⎛⎭⎪⎫-∞,12,⎝ ⎛⎭⎪⎫12,+∞上单调递减,y =-x 3在R上单调递减,则f (x )=12x -1-x 3在⎝ ⎛⎭⎪⎫-∞,12,⎝ ⎛⎭⎪⎫12,+∞上单调递减,故选A.5.如图所示,动点P 在正方体ABCD A 1B 1C 1D 1的体对角线BD 1上.过点P 作垂直于平面BB 1D 1D 的直线,与正方体的表面相交于M ,N 两点.设BP =x ,MN =y ,则函数y =f (x )的图象大致是( B )解析:设正方体的棱长为1,显然,当P 移动到体对角线BD 1的中点E 时,函数y =MN =AC =2取得唯一的最大值,所以排除A 、C ;当P 在BE 上时,分别过M ,N ,P 作底面的垂线,垂足分别为M 1,N 1,P 1,则y =MN =M 1N 1=2BP 1=2x cos ∠D 1BD =263x ,是一次函数,所以排除D ,故选B.6.(2019·泰安模拟)已知f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x ,f ′(x )为f (x )的导函数,则y =f ′(x )的图象大致是( A )解析:因为f (x )=14x 2+cos x ,所以f ′(x )=12x -sin x ,f ′(x )为奇函数,排除B ,D ;当x =π6时,f ′(x )=π12-12<0,排除C ,∴A 满足.7.(2019·昆明检测)已知定义在R 上的函数f (x )是奇函数,且f (x )在(-∞,0)上是减函数,f (2)=0,g (x )=f (x +2),则不等式xg (x )≤0的解集是( C )A .(-∞,-2]∪[2,+∞)B .[-4,-2]∪[0,+∞)C .(-∞,-4]∪[-2,+∞)D .(-∞,-4]∪[0,+∞)解析:依题意,画出函数的大致图象如图所示.实线部分为g (x )的草图,则xg (x )≤0⇔⎩⎪⎨⎪⎧x ≥0,g x ≤0或⎩⎪⎨⎪⎧x ≤0,g x ≥0,由图可得xg (x )≤0的解集为(-∞,-4]∪[-2,+∞).8.已知函数f (x )=2ln x ,g (x )=x 2-4x +5,则方程f (x )=g (x )的根的个数为( C ) A .0 B .1 C .2D .3解析:在平面直角坐标系内作出f (x ),g (x )的图象如图所示,由已知g (x )=(x -2)2+1,得其顶点为(2,1),又f (2)=2ln2∈(1,2),可知点(2,1)位于函数f (x )=2ln x 图象的下方,故函数f (x )=2ln x 的图象与函数g (x )=x 2-4x +5的图象有2个交点.9.(2019·江苏扬州模拟)不等式2-x ≤log 2(x +1)的解集是{x |x ≥1}__.解析:画出y =2-x ,y =log 2(x +1)的图象如图所示,由图可知,解集为{x |x ≥1}.10.给定min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,b <a ,已知函数f (x )=min{x ,x 2-4x +4}+4,若动直线y =m 与函数y =f (x )的图象有3个交点,则实数m 的取值范围为(4,5)__.解析:作出函数f (x )的图象,函数f (x )=min{x ,x 2-4x +4}+4的图象如图所示,由于直线y =m 与函数y =f (x )的图象有3个交点,数形结合可得m 的取值范围为(4,5).11.已知函数f (x )=2x,x ∈R .(1)当m 取何值时,方程|f (x )-2|=m 有一个解?两个解?(2)若不等式[f (x )]2+f (x )-m >0在R 上恒成立,求m 的取值范围. 解:(1)令f (x )=|f (x )-2|=|2x-2|,G (x )=m ,画出f (x )的图象如图所示.由图象看出,当m =0或m ≥2时,函数f (x )与G (x )的图象只有一个交点,即原方程有一个解;当0<m <2时,函数f (x )与G (x )的图象有两个交点,即原方程有两个解. (2)令f (x )=t (t >0),H (t )=t 2+t ,因为H (t )=⎝ ⎛⎭⎪⎫t +122-14在区间(0,+∞)上是增函数,所以H (t )>H (0)=0.因此要使t 2+t >m 在区间(0,+∞)上恒成立,应有m ≤0, 即所求m 的取值范围为(-∞,0].12.已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.(1)求函数f (x )的解析式;(2)若g (x )=f (x )+a x,g (x )在区间(0,2]上的值不小于6,求实数a 的取值范围. 解:(1)设f (x )图象上任一点坐标为(x ,y ),∵点(x ,y )关于点A (0,1)的对称点(-x,2-y )在h (x )的图象上, ∴2-y =-x +1-x +2,∴y =x +1x ,即f (x )=x +1x.(2)由题意g (x )=x +a +1x, 且g (x )=x +a +1x≥6,x ∈(0,2]. ∵x ∈(0,2],∴a +1≥x (6-x ),即a ≥-x 2+6x -1. 令q (x )=-x 2+6x -1,x ∈(0,2],q (x )=-x 2+6x -1=-(x -3)2+8,∴当x ∈(0,2]时,q (x )是增函数,q (x )max =q (2)=7. 故实数a 的取值范围是[7,+∞).13.(2019·安徽江南十校联考)若函数f (x )的图象如图所示,则f (x )的解析式可能是( B )A .f (x )=e x-1x 2-1B .f (x )=ex x 2-1C .f (x )=x 3+x +1x 2-1D .f (x )=x 4+x +1x 2-1解析:由题中图象可知,函数的定义域为{x |x ≠a 且x ≠b },f (x )在(-∞,a )上为增函数,在(a,0]上先增后减,在[0,b )上为减函数,在(b ,+∞)上先减后增.A 项中f (x )的定义域为{x |x ≠-1且x ≠1}, 此时a =-1,b =1. f ′(x )=exx 2-1-2x e x -1x 2-12,则f ′(-2)=79e 2-49<0,与f (x )在(-∞,-1)上递增不符.B 项中f (x )的定义域 为{x |x ≠±1},f ′(x )=exx 2-2x -1x 2-12=e x [x -12-2]x 2-12,若f ′(x )>0,则x <-1或-1<x <1-2或x >1+2,此时f (x )在各对应区间上为增函数,符合题意.同理可检验C 、D 不符,故选B.14.(2019·福建厦门双十中学模拟)已知函数f (x )=x 2+e x -12(x <0)与g (x )=x 2+ln(x+a )的图象上存在关于y 轴对称的点,则实数a 的取值范围是( B )A.⎝⎛⎭⎪⎫-∞,1eB .(-∞,e) C.⎝ ⎛⎭⎪⎫1e ,+∞ D .(e ,+∞)解析:原命题等价于在x <0时,f (x )与g (-x )的图象有交点,即方程e x-12-ln(-x+a )=0在(-∞,0)上有解,令m (x )=e x-12-ln(-x +a ),显然m (x )在(-∞,0)上为增函数.当a >0时,只需m (0)=e 0-12-ln a >0,解得0<a <e ;当a ≤0时,x 趋于-∞,m (x )<0,x 趋于a ,m (x )>0,即m (x )=0在(-∞,a )上有解.综上,实数a 的取值范围是(-。

2021年高考数学二轮复习专题突破课时作业5导数的简单应用理

2021年高考数学二轮复习专题突破课时作业5导数的简单应用理

课时作业 5 导数的简单应用1.[2021·合肥高三检测]直线2x -y +1=0与曲线y =a e x+x 相切(其中e 为自然对数的底数),那么实数a 的值是( )A .12B .1C .2D .e解析:由题意知y′=a e x+1=2,那么a>0,x =-ln a ,代入曲线方程得y =1-ln a ,所以切线方程为y -(1-ln a)=2(x +ln a),即y =2x +ln a +1=2x +1⇒a =1.答案:B2.[2021·广州综合测试]函数f(x)=x 3+ax 2+bx +a 2在x =1处的极值为10,那么数对(a ,b)为( )A .(-3,3)B .(-11,4)C .(4,-11)D .(-3,3)或(4,-11)解析:f′(x)=3x 2+2ax +b ,依题意可得⎩⎪⎨⎪⎧f′1=0,f 1=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b +a 2=10,消去b 可得a 2-a -12=0,解得a =-3或a =4,故⎩⎪⎨⎪⎧a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11.当⎩⎪⎨⎪⎧a =-3,b =3时,f′(x)=3x 2-6x +3=3(x -1)2≥0,这时f(x)无极值,不合题意,舍去,应选C .答案:C3.[2021·北师大附中期中]假设a =⎠⎛12e xd x ,b =⎠⎛12x d x ,c =⎠⎛121xd x ,那么a ,b ,c 的大小关系是( )A .a<b<cB .b<c<aC .c<a<bD .c<b<a解析:∵a=⎠⎛12e xd x =ex21=e 2-e >2,b =⎠⎛12x d x =12x221=32,c =⎠⎛121xd x =ln x 21=ln 2<1, ∴a,b ,c 的大小关系是c<b<a ,应选D . 答案:D4.[2021·南昌模拟]奇函数f′(x)是函数f(x)(x ∈R )的导函数,假设x >0时,f ′(x )>0,那么( )A .f (0)>f (log 32)>f (-log 23)B .f (log 32)>f (0)>f (-log 23)C .f (-log 23)>f (log 32)>f (0)D .f (-log 23)>f (0)>f (log 32)解析:因为f ′(x )是奇函数,所以f (x )是偶函数.而|-log 23|=log 23>log 22=1,0<log 32<1,所以0<log 32<log 23.又当x >0时,f ′(x )>0,所以f (x )在(0,+∞)上是增函数, 所以f (0)<f (log 32)<f (log 23),所以f (0)<f (log 32)<f (-log 23). 答案:C5.[2021·广州调研]直线y =kx -2与曲线y =x ln x 相切,那么实数k 的值为( ) A .ln2 B .1 C .1-ln2 D .1+ln2解析:由y =x ln x 知y ′=ln x +1,设切点为(x 0,x 0ln x 0),那么切线方程为y -x 0ln x 0=(ln x 0+1)(x -x 0),因为切线y =kx -2过定点(0,-2),所以-2-x 0ln x 0=(ln x 0+1)(0-x 0),解得x 0=2,故k =1+ln2,选D.答案:D6.[2021·长沙市、南昌市局部学校高三联合模拟]假设函数f (x )=(2x 2-mx +4)e x在区间[2,3]上不是单调函数,那么实数m 的取值范围是( )A.⎣⎢⎡⎦⎥⎤203,172 B.⎝ ⎛⎭⎪⎫203,172C.⎣⎢⎡⎦⎥⎤5,203D.⎝⎛⎭⎪⎫5,203解析:因为f (x )=(2x 2-mx +4)e x ,所以f ′(x )=[2x 2+(4-m )x +4-m ]e x,因为函数f (x )在区间[2,3]上不是单调函数,所以f ′(x )=0在区间(2,3)上有根,即2x 2+(4-m )x+4-m =0在区间(2,3)上有根,所以m =2x 2+4x +4x +1在区间(2,3)上有根,令t =x +1,那么x =t -1,t ∈(3,4),所以m =2t -12+4t -1+4t=2t 2+2t=2⎝ ⎛⎭⎪⎫t +1t 在t ∈(3,4)上有根,从而求得m 的取值范围为⎝ ⎛⎭⎪⎫203,172,应选B.答案:B7.[2021·宝安,潮阳,桂城等八校联考]函数f (x )=x 2的图象在点(x 0,x 20)处的切线为l ,假设l 也与函数y =ln x ,x ∈(0,1)的图象相切,那么x 0必满足( )A .0<x 0<12 B.12<x 0<1又f (x )只有一个零点,∴ f ⎝ ⎛⎭⎪⎫a 3=-a 327+1=0, ∴ a =3.此时f (x )=2x 3-3x 2+1,f ′(x )=6x (x -1),当x ∈[-1,1]时,f (x )在[-1,0]上递增,在[0,1]上递减. 又f (1)=0,f (-1)=-4,∴ f (x )max +f (x )min =f (0)+f (-1)=1-4=-3. 答案:-313.[2021·北京卷]设函数f (x )=[ax 2-(4a +1)x +4a +3]e x. (1)假设曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)假设f (x )在x =2处取得极小值,求a 的取值范围. 解析:(1)解:因为f (x )=[ax 2-(4a +1)x +4a +3]e x, 所以f ′(x )=[ax 2-(2a +1)x +2]e x. 所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e≠0. 所以a 的值为1.(2)解:由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x=(ax -1)(x -2)e x.假设a >12,那么当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.假设a ≤12,那么当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点.综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.14.[2021·全国卷Ⅲ]函数f (x )=ax 2+x -1ex.(1)求曲线y =f (x )在点(0,-1)处的切线方程; (2)证明:当a ≥1时,f (x )+e≥0. 解析:(1)解:f ′(x )=-ax 2+2a -1x +2ex,f ′(0)=2. 因此曲线y =f (x )在(0,-1)处的切线方程是2x -y -1=0.(2)证明:当a ≥1时,f (x )+e≥(x 2+x -1+e x +1)e -x.令g (x )=x 2+x -1+ex +1,那么g ′(x )=2x +1+e x +1.当x <-1时,g ′(x )<0,g (x )单调递减; 当x >-1时,g ′(x )>0,g (x )单调递增. 所以g (x )≥g (-1)=0. 因此f (x )+e≥0.15.[2021·武汉调研]函数f (x )=ln(x +1)-ax 2+xx +12,其中a 为常数.(1)当1<a ≤2时,讨论f (x )的单调性;(2)当x >0时,求g (x )=x ln ⎝⎛⎭⎪⎫1+1x +1xln(1+x )的最大值.解析:(1)函数f (x )的定义域为(-1,+∞),f ′(x )=x x -2a +3x +13,x >-1.①当-1<2a -3<0,即1<a <32时,当-1<x <2a -3或x >0时,f ′(x )>0,f (x )单调递增, 当2a -3<x <0时,f ′(x )<0,f (x )单调递减.②当2a -3=0,即a =32时,f ′(x )≥0,那么f (x )在(-1,+∞)上单调递增.③当2a -3>0,即a >32时,当-1<x <0或x >2a -3时,f ′(x )>0,那么f (x )在(-1,0),(2a -3,+∞)上单调递增, 当0<x <2a -3时,f ′(x )<0,那么f (x )在(0,2a -3)上单调递减.综上,当1<a <32时,f (x )在(-1,2a -3),(0,+∞)上单调递增,在(2a -3,0)上单调递减;当a =32时,f (x )在(-1,+∞)上单调递增;当32<a ≤2时,f (x )在(-1,0),(2a -3,+∞)上单调递增,在(0,2a -3)上单调递减.(2)∵g (x )=⎝⎛⎭⎪⎫x +1x ln(1+x )-x ln x =g ⎝ ⎛⎭⎪⎫1x ,∴g (x )在(0,+∞)上的最大值等价于g (x )在(0,1]上的最大值.令h (x )=g ′(x )=⎝ ⎛⎭⎪⎫1-1x 2ln(1+x )+⎝ ⎛⎭⎪⎫x +1x ·11+x -(ln x +1)=⎝ ⎛⎭⎪⎫1-1x 2ln(1+x )-ln x +1x -21+x,那么h ′(x )=2x 3⎣⎢⎡⎦⎥⎤ln1+x -2x 2+x x +12.由(1)可知当a =2时,f (x )在(0,1]上单调递减, ∴f (x )<f (0)=0,∴h ′(x )<0,从而h (x )在(0,1]上单调递减, ∴h (x )≥h (1)=0,∴g (x )在(0,1]上单调递增, ∴g (x )≤g (1)=2ln2,∴g (x )的最大值为2ln2.16.[2021·天津卷]设函数f (x )=(x -t 1)(x -t 2)(x -t 3),其中t 1,t 2,t 3∈R ,且t 1,t 2,t 3是公差为d 的等差数列.(1)假设t 2=0,d =1,求曲线y =f (x )在点(0,f (0))处的切线方程; (2)假设d =3,求f (x )的极值;(3)假设曲线y =f (x )与直线y =-(x -t 2)-63有三个互异的公共点,求d 的取值范围.解析:(1)解:由,可得f (x )=x (x -1)(x +1)=x 3-x ,故f ′(x )=3x 2f (0)=0,f ′(0)=-1.又因为曲线y =f (x )在点(0,f (0))处的切线方程为y -f (0)=f ′(0)(x -0),故所求切线方程为x +y =0.(2)解:由可得f (x )=(x -t 2+3)(x -t 2)(x -t 2-3)=(x -t 2)3-9(x -t 2)=x 3-3t 2x 2+(3t 22-9)x-t 32+9t 2.故f ′(x )=3x 2-6t 2x +3t 22-9.令f ′(x )=0,解得x =t 2-3或x =t 2+ 3. 当x 变化时,f ′(x ),f (x )的变化情况如下表:x(-∞,t 2-3)t 2-3(t 2-3,t 2+3)t 2+3(t 2+3,+∞) f ′(x ) +-+f (x )极大值极小值所以函数f (x )的极大值为f (t 2-3)=(-3)3-9×(-3)=63, 函数f (x )的极小值为f (t 2+3)=(3)3-9×3=-6 3.(3)解:曲线y =f (x )与直线y =-(x -t 2)-63有三个互异的公共点等价于关于x 的方程(x -t 2+d )(x -t 2)(x -t 2-d )+(x -t 2)+63=0有三个互异的实数解.令u =x -t 2,可得u 3+(1-d 2)u +63=0.设函数g (x )=x 3+(1-d 2)x +63,那么曲线y =f (x )与直线y =-(x -t 2)-63有三个互异的公共点等价于函数y =g (x )有三个零点.g ′(x )=3x 2+(1-d 2).当d 2≤1时,g ′(x )≥0,这时g (x )在R 上单调递增,不合题意. 当d 2>1时,令g ′(x )=0,解得x 1=-d 2-13,x 2=d 2-13.易得,g (x )在(-∞,x 1)上单调递增,在[x 1,x 2]上单调递减,在(x 2,+∞)上单调递增.所以g (x )的极大值为g (x 1)=g ⎝⎛⎭⎪⎫-d 2-13=23d 2-1329+63>0.g (x )的极小值为g (x 2)=g ⎝ ⎛⎭⎪⎫d 2-13=-23d 2-1329+6 3.假设g (x 2)≥0,那么由g (x )的单调性可知函数y =g (x )至多有两个零点,不合题意. 假设g (x 2)<0,即(d 2-1)32>27,也就是|d |>10,此时|d |>x 2,g (|d |)=|d |+63>0,且-2|d |<x 1,g (-2|d |)=-6|d |3-2|d |+63<-6210+63<0,从而由g (x )的单调性,可知函数y =g (x )在区间(-2|d |,x 1),(x 1,x 2),(x 2,|d |)内各有一个零点,符合题意.所以,d 的取值范围是(-∞,-10)∪(10,+∞).。

第3讲 小题研透——导数的简单应用 2023高考数学二轮复习课件

目录
1.曲线y=2sin x+cos x在点(π,-1)处的切线方程为
(C)
A.x-y-π-1=0
B.2x-y-2π-1=0
C.2x+y-2π+1=0
D.x+y-π+1=0
解析:由题意可知y′=2cos x-sin x,则y′|x=π=-2.所以曲线y=2sin x+ cos x在点(π,-1)处的切线方程为y+1=-2(x-π),即2x+y+1-2π=0,
故选C.
2.已知函数f(x)=x3-5x+a,直线2x+y+b=0与函数则a+b的值为____2____.
解析:f′(x)=3x2-5,令f′(x)=-2,解得x=±1.当x=1时,切点为(1,a
-4),则-4+a=-2-b,解得a+b=2;当x=-1时,同理可得a+b=
目录
4.(2022·新高考Ⅰ卷)(导数的几何意义)若曲线y=(x+a)ex有两条过坐标原点 的切线,则a的取值范围是___(-__∞__,__-__4_)_∪__(_0_,__+__∞__)__.
解析:因为 y=(x+a)ex,所以 y′=(x+a+1)ex.设切点为 A(x0,(x0+a)ex0),
4.常用结论 (1)在某区间内f′(x)>0(f′(x)<0)是函数f(x)在此区间上为增(减)函数的充 分不必要条件; (2)可导函数f(x)在(a,b)上是增(减)函数的充要条件是对∀x∈(a,b),都 有f′(x)≥0(f′(x)≤0)且f′(x)在(a,b)上的任何子区间内都不恒为零; (3)若函数f(x)在区间(a,b)内只有一个极值点,则相应的极值点一定是函 数的最值点.
第3讲 小题研透
——导数的简单应用
目录
CONTENTS
01 备考领航·重难排查 02 考点整合·研透悟通 03 专题检测

高考数学二轮复习第一篇专题二函数与导数第2讲导数的简单应用教案文

第2讲导数的简单应用1.(2018·全国Ⅰ卷,文6)设函数f(x)=x3+(a-1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为( D )(A)y=-2x (B)y=-x (C)y=2x (D)y=x解析:法一因为f(x)为奇函数,所以f(-x)=-f(x),由此可得a=1,故f(x)=x3+x,f'(x)=3x2+1,f'(0)=1,所以曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.法二因为f(x)=x3+(a-1)x2+ax为奇函数,所以f'(x)=3x2+2(a-1)x+a为偶函数,所以a=1,即f'(x)=3x2+1,所以f'(0)=1,所以曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.2.(2016·全国Ⅰ卷,文9)函数y=2x2-e|x|在[-2,2]的图象大致为( D )解析:因为f(x)=2x2-e|x|,x∈[-2,2]是偶函数,又f(2)=8-e2∈(0,1),故排除A,B.设g(x)=2x2-e x,则g'(x)=4x-e x.又g'(0)<0,g'(2)>0,所以g(x)在(0,2)内至少存在一个极值点,所以g(x)=2x2-e|x|在(0,2)内至少存在一个极值点,排除C.故选D.3.(2018·全国Ⅱ卷,文13)曲线y=2ln x在点(1,0)处的切线方程为.解析:因为y'=,y'x=1=2,所以切线方程为y-0=2(x-1),即y=2x-2.答案:y=2x-24.(2017·全国Ⅰ卷,文14)曲线y=x2+在点(1,2)处的切线方程为.解析:f(x)=x2+,f(1)=2.f'(x)=2x-,f'(1)=1.所以y=x2+在(1,2)处的切线方程为y-f(1)=f'(1)(x-1),y-2=x-1,即x-y+1=0.答案:x-y+1=05.(2015·全国Ⅱ卷,文16)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a= .解析:法一因为y'=1+,所以y'|x=1=2,所以y=x+ln x在点(1,1)处的切线方程为y-1=2(x-1),所以y=2x-1.又切线与曲线y=ax2+(a+2)x+1相切,当a=0时,y=2x+1与y=2x-1平行,故a≠0,由得ax2+ax+2=0,因为Δ=a2-8a=0,所以a=8.法二因为y'=1+,所以y'|x=1=2,所以y=x+ln x在点(1,1)处的切线方程为y-1=2(x-1),所以y=2x-1,又切线与曲线y=ax2+(a+2)x+1相切,当a=0时,y=2x+1与y=2x-1平行,故a≠0.因为y'=2ax+(a+2),所以令2ax+a+2=2,得x=-,代入y=2x-1,得y=-2,所以点-,-2在y=ax2+(a+2)x+1的图象上,故-2=a×-2+(a+2)×-+1,所以a=8.答案:86.(2017·全国Ⅲ卷,文21)已知函数f(x)=ln x+ax2+(2a+1)x.(1)讨论f(x)的单调性;(2)当a<0时,证明f(x)≤--2.(1)解:f(x)的定义域为(0,+∞),f'(x)=+2ax+2a+1=.若a≥0,因为x∈(0,+∞)时,f'(x)>0,故f(x)在(0,+∞)上单调递增.若a<0,因为x∈0,-时,f'(x)>0,当x∈-,+∞时,f'(x)<0,故f(x)在0,-上单调递增,在-,+∞上单调递减.(2)证明:由(1)知,当a<0时,f(x)在x=-处取得最大值,最大值为f-=ln--1-, 所以f(x)≤--2等价于ln--1-≤--2,即ln-++1≤0,设g(x)=ln x-x+1,则g'(x)=-1.当x∈(0,1)时,g'(x)>0;当x∈(1,+∞)时,g'(x)<0.所以g(x)在(0,1)上单调递增,在(1,+∞)上单调递减.故当x=1时,g(x)取得最大值,最大值为g(1)=0,所以当x>0时,g(x)≤0,从而当a<0时,ln-++1≤0,即f(x)≤--2.7.(2015·全国Ⅱ卷,文21)已知函数f(x)=ln x+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.解:(1)f(x)的定义域为(0,+∞),f'(x)=-a.若a≤0,则f'(x)>0,所以f(x)在(0,+∞)单调递增.若a>0,则当x∈0,时,f'(x)>0;当x∈,+∞时,f'(x)<0.所以f(x)在0,上单调递增,在,+∞上单调递减.(2)由(1)知,当a≤0时,f(x)在(0,+∞)无最大值;当a>0时,f(x)在x=处取得最大值,最大值为f=ln +a1-=-ln a+a-1.因此f>2a-2等价于ln a+a-1<0.令g(a)=ln a+a-1,则g(a)在(0,+∞)上单调递增,g(1)=0.于是,当0<a<1时,g(a)<0;当a>1时,g(a)>0.因此,a的取值范围是(0,1).1.考查角度(1)考查导数的几何意义的应用,包括求曲线的切线方程、根据切线方程求参数值等;(2)考查导数在研究函数性质中的应用,包括利用导数研究函数性质判断函数图象、利用导数求函数的极值和最值、利用导数研究不等式与方程等.2.题型及难易度选择题、填空题、解答题均有,其中导数几何意义的应用为中等难度偏下,其他问题均属于较难的试题.(对应学生用书第11~13页)导数的几何意义【例1】(1)(2018·山东日照校际联考)已知f(x)=e x(e为自然对数的底数),g(x)=ln x+2,直线l是f(x)与 g(x) 的公切线,则直线l的方程为( )(A)y=x或y=x-1(B)y=-ex或y=-x-1(C)y=ex或y=x+1(D)y=-x或y=-x+1(2)(2018·河南南阳一中三模)经过原点(0,0)作函数f(x)=x3+3x2图象的切线,则切线方程为;(3)(2018·黑龙江省哈尔滨九中二模)设函数f(x)=(x-a)2+(ln x2-2a)2.其中x>0,a∈R,存在x0使得f(x0)≤成立,则实数a的值为.解析:(1)设切点分别为(x1,),(x2,ln x2+2),因为f'(x)=e x,g'(x)=,所以==,所以=,所以(x2-1)(ln x2+1)=0,所以x2=1或x2=,因此直线l的方程为y-2=1·(x-1)或y-1=e·x-,即y=ex或y=x+1.故选C.(2)因为f'(x)=3x2+6x.设切点为P(x0,y0),切线斜率为k,则把①,③代入②得切线方程为y-(+3)=(3+6x0)(x-x0),④又切线过(0,0),所以-(+3)=-x0(3+6x0),解得,x0=0或x0=-.代入④式得切线方程为y=0或9x+4y=0.(3)由题意,问题等价于f(x)min≤.而函数f(x)可看作是动点M(x,ln x2)与N(a,2a)之间距离的平方,动点M在函数y=2ln x的图象上,N在直线y=2x的图象上,问题转化为直线与曲线的最小距离.如图,由y=2ln x得y'==2,得x=1,所以曲线上点M(1,0)到直线y=2x的距离最小,为d=,所以f(x)≥.又由题意,要使f(x0)≤,则f(x0)=,此时N恰好为垂足,由k MN===-,解得a=.答案:(1)C (2)y=0或9x+4y=0 (3)(1)求切线方程的关键是求切点的横坐标,使用切点的横坐标表达切线方程,再根据其他已知求解;(2)两曲线的公切线的切点未必是同一个点,可以分别设出切点横坐标,使用其表达切线方程,得出的两方程表示同一条直线,由此得出方程解决公切线问题;(3)从曲线外一点P(m,n)引曲线的切线方程,可设切点坐标为(x0,f(x0)),利用方程=f'(x0)求得x0后得出切线方程;(4)一些距离类最值,可以转化为求一条直线上的点到一条曲线上的点的最小值,此时与已知直线平行的曲线的切线到已知直线的距离即为其最小值.热点训练1:(1)(2018·辽宁省辽南协作校一模)已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是( )(A)y=-2x+3 (B)y=x(C)y=3x-2 (D)y=2x-1(2)(2018·安徽皖南八校4月联考)若x,a,b均为任意实数,且(a+2)2+(b-3)2=1,则(x-a)2+(ln x-b)2的最小值为( )(A)3(B)18(C)3-1 (D)19-6(3)(2018·天津部分区质量调查二)曲线y=ae x+2的切线方程为2x-y+6=0,则实数a的值为.解析:(1)由f(x)=2f(2-x)-x2+8x-8,可得f(2-x)=2f(x)-(2-x)2+8-8x,即f(2-x)=2f(x)-x2-4x+4,将其代入f(x)=2f(2-x)-x2+8x-8,可得f(x)=4f(x)+8-8x-2x2-x2+8x-8,即f(x)=x2,故f'(x)=2x,因为f(1)=1,所以切线方程为y-1=2(x-1),即y=2x-1.故选D.(2)由题意可得,其结果应为曲线y=ln x上的点与以C(-2,3)为圆心,以1为半径的圆上的点的距离的平方的最小值,可以求曲线y=ln x上的点与圆心C(-2,3)的距离的最小值,在曲线y=ln x上取一点M(m,ln m),曲线y=ln x在点M处的切线的斜率为k'=,从而有k CM·k'=-1,即·=-1,整理得ln m+m2+2m-3=0,解得m=1,所以点(1,0)满足条件,其到圆心C(-2,3)的距离为d==3,故其结果为(3-1)2=19-6,故选D.(3)根据题意,设曲线y=ae x+2与2x-y+6=0的切点的坐标为(m,ae m+2),其导数y'=ae x+2,则切线的斜率k=ae m+2,又由切线方程为2x-y+6=0,即y=2x+6,则k=ae m+2=2,则切线的方程为y-ae m+2=ae m+2(x-m),又由ae m+2=2,则切线方程为y-2=2(x-m),即y=2x-2m+2,则有-2m+2=6,可解得m=-2,则切点的坐标为(-2,2),则有2=a×e(-2)+2,所以a=2.答案:(1)D (2)D (3)2导数研究函数的单调性考向1 确定函数的单调性【例2】(2018·河南洛阳第三次统一考试)已知函数f(x)=(x-1)e x-x2,其中t∈R.(1)函数f(x)的图象能否与x轴相切?若能,求出实数t,若不能,请说明理由;(2)讨论函数f(x)的单调性.解:(1)由于f'(x)=xe x-tx=x(e x-t).假设函数f(x)的图象与x轴相切于点(x0,0),则有即显然x0≠0,将t=>0代入方程(x0-1)-=0中,得-2x0+2=0.显然此方程无实数解.故无论t取何值,函数f(x)的图象都不能与x轴相切.(2)由于f'(x)=xe x-tx=x(e x-t),当t≤0时,e x-t>0,当x>0时,f'(x)>0,f(x)单调递增,当x<0时,f'(x)<0,f(x)单调递减;当t>0时,由f'(x)=0得x=0或x=ln t,①当0<t<1时,ln t<0,当x>0时,f'(x)>0,f(x)单调递增,当ln t<x<0时,f'(x)<0,f(x)单调递减,当x<ln t,f'(x)>0,f(x)单调递增;②当t=1时,f'(x)≥0,f(x)单调递增;③当t>1时,ln t>0,当x>ln t时,f'(x)>0,f(x)单调递增,当0<x<ln t时,f'(x)<0,f(x)单调递减,当x<0时,f'(x)>0,f(x)单调递增.综上,当t≤0时,f(x)在(-∞,0)上是减函数,在(0,+∞)上是增函数;当0<t<1时,f(x)在(-∞,ln t),(0,+∞)上是增函数,在(ln t,0)上是减函数;当t=1时,f(x)在(-∞,+∞)上是增函数;当t>1时,f(x)在(-∞,0),(ln t,+∞)上是增函数,在(0,ln t)上是减函数.确定函数单调性就是确定函数导数为正值、为负值的区间,基本类型有如下几种:(1)导数的零点是确定的数值,只要根据导数的零点划分定义域区间,确定在各个区间上的符号即可得出其单调区间;(2)导数零点能够求出,但含有字母参数时,则需要根据参数的不同取值划分定义域区间,再确定导数在各个区间上的符号;(3)导数存在零点,但该零点无法具体求出,此时一般是根据导数的性质、函数零点的存在定理确定导数零点的大致位置,再据此零点划分定义域区间,确定导数在各个区间上的符号.考向2 根据单调性求参数范围【例3】(1)(2018·吉林大学附中四模)已知a≥0,函数f(x)=(x2-2ax)e x,若f(x)在[-1,1]上是单调减函数,则a的取值范围是( )(A)0,(B),(C),+∞(D)0,(2)(2018·云南昆明5月适应考)已知函数f(x)=(x2-2x)e x-aln x(a∈R)在区间(0,+∞)上单调递增,则a的最大值是( )(A)-e (B)e (C)-(D)4e2(3)(2018·安徽合肥三模)若函数f(x)=x+-aln x在区间[1,2]上是非单调函数,则实数a 的取值范围是( )(A),(B),+∞(C),+∞(D),解析:(1)因为f(x)=(x2-2ax)e x,所以f'(x)=(2x-2a)e x+(x2-2ax)e x=e x(x2+2x-2ax-2a).因为f(x)在[-1,1]上是单调减函数,所以f'(x)=e x(x2+2x-2ax-2a)≤0.即x2+2x-2ax-2a≤0.法一设g(x)=x2+2x-2ax-2a,根据二次函数的图象可知,只要即可,解得a≥,所以实数a的取值范围是,+∞.故选C.法二由x2+2x-2ax-2a≤0,得x2+2x≤2a(x+1).当x=-1时,-1≤0恒成立,当(-1,1]时,a≥,a≥,a≥(x+1)-,令h(x)=(x+1)-,可知h(x)=(x+1)-在(-1,1]上为增函数,所以h(x)max=h(1)=,即a≥,所以实数a的取值范围是,+∞.故选C.(2)因为函数f(x)=(x2-2x)e x-aln x(a∈R),所以f'(x)=e x(x2-2x)+e x(2x-2)-=e x(x2-2)-.因为函数f(x)=(x2-2x)e x-aln x(a∈R)在区间(0,+∞)上单调递增,所以f'(x)=e x(x2-2)-≥0在区间(0,+∞)上恒成立,即≤e x(x2-2),亦即a≤e x(x3-2x)在区间(0,+∞)上恒成立,令h(x)=e x(x3-2x),所以h'(x)=e x(x3-2x)+e x(3x2-2)=e x(x3-2x+3x2-2)=e x(x-1)(x2+4x+2), 因为x∈(0,+∞),所以x2+4x+2>0.因为e x>0.所以令h'(x)>0,可得x>1.所以函数h(x)在区间(1,+∞)上单调递增,在区间(0,1)上单调递减. 所以h(x)min=h(1)=e1(1-2)=-e.所以a≤-e,则a的最大值为-e.故选A.(3)因为f(x)=x+-aln x,所以f'(x)=1--=,因为f(x)在区间[1,2]上是非单调函数,所以f'(x)=0在[1,2]上有解,即x2-ax-a=0在[1,2]上有解,所以x2=a(x+1)在[1,2]上有解,令g(x)=x2,x∈[1,2],h(x)=a(x+1),x∈[1,2],由图象易知,两函数图象在[1,2]上有交点时,≤a≤,即≤a≤.故选D.函数f(x)在区间D上单调递增(减),等价于在区间D上f'(x)≥0(≤0)恒成立;函数f(x)在区间D上不单调,等价于在区间D上f'(x)存在变号零点.考向3 函数单调性的简单应用【例4】(1)(2018·东北三省三校二模)已知定义域为R的函数f(x)的导函数为f'(x),且满足f'(x)>f(x)+1,则下列正确的是( )(A)f(2 018)-ef(2 017)>e-1(B)f(2 018)-ef(2 017)<e-1(C)f(2 018)-ef(2 017)>e+1(D)f(2 018)-ef(2 017)<e+1(2)(2018·辽宁省大连八中模拟)设函数f(x)在R上存在导函数f'(x),对任意的实数x都有f(x)=4x2-f(-x),当x∈(-∞,0)时,f'(x)+<4x.若f(m+1)≤f(-m)+4m+2,则实数m的取值范围是( )(A)-,+∞ (B)-,+∞(C)[-1,+∞) (D)[-2,+∞)(3)(2018·湖南永州市一模)已知定义在R上的可导函数f(x)的导函数为f'(x),若对于任意实数x有f'(x)+f(x)>0,且f(0)=1,则不等式e x f(x)>1的解集为( )(A)(-∞,0)(B)(0,+∞)(C)(-∞,e)(D)(e,+∞)解析:(1)法一设g(x)=,则g'(x)=.因为f'(x)>f(x)+1,所以f'(x)-f(x)-1>0,所以g'(x)>0在R上恒成立,所以g(x)=在R上单调递增.所以g(2 018)>g(2 017),所以>,所以f(2 018)+1>ef(2 017)+e,所以f(2 018)-ef(2 017)>e-1.故选A.法二构造特殊函数f(x)=e x-2,该函数满足f'(x)>f(x)+1,而f(2 018)-ef(2 017)=(e2 018-2)-e(e2 017-2)=2e-2,结合2e-2>e-1可知f(2 018)-ef(2 017)>e-1,排除B选项,结合2e-2<e+1可知f(2 018)-ef(2 017)<e+1,排除C选项,构造特殊函数f(x)=e x-100,该函数满足f'(x)>f(x)+1,而f(2 018)-ef(2 017)=(e2 018-100)-e(e2 017-100)=100e-100,结合100e-100>e+1可知f(2 018)-ef(2 017)>e+1,排除D选项,故选A.(2)令F(x)=f(x)-2x2,则F(-x)=f(-x)-2x2,所以F(x)+F(-x)=f(x)-[4x2-f(-x)]=0,故F(x)为奇函数.当x<0时,F'(x)=f'(x)-4x<-<0,所以F(x)在(-∞,0)上是减函数,而f(0)=0-f(-0),所以f(0)=0.故F(x)为减函数.因为f(m+1)=F(m+1)+2(m+1)2,f(-m)=F(-m)+2m2,所以F(m+1)+2(m+1)2≤F(-m)+2m2+4m+2,所以F(m+1)≤F(-m),所以m+1≥-m,所以m≥-.故选A.(3)令g(x)=e x f(x),故g'(x)=e x[f(x)+f'(x)],由f'(x)+f(x)>0可得,g'(x)>0,所以函数g(x)在R上单调递增,又f(0)=1,所以g(0)=1,所以不等式e x f(x)>1的解集为(0,+∞).故选B.函数单调性的简单应用主要有两个方面:(1)根据函数的单调性,比较函数值的大小;(2)根据函数的单调性解函数不等式.解题的基本思路是根据已知条件和求解目标,构造函数,通过构造的函数的单调性得出结论.常见的构造函数类型为乘积型h(x)g(x)和商形,具体的如xf(x),e x f(x),,tan x·f(x)等,视具体情况而定.热点训练2:(1)(2018·安徽江南十校二模)y=f(x)的导函数满足:当x≠2时,(x-2)[f(x)+2f'(x)-xf'(x)]>0,则( )(A)f(4)>(2+4)f()>2f(3)(B)f(4)>2f(3)>(2+4)f()(C)(2+4)f()>2f(3)>f(4)(D)2f(3)>f(4)>(2+4)f()(2)(2018·河北石家庄二模)定义在(0,+∞)上的函数f(x)满足xf'(x)ln x+f(x)>0(其中f'(x)为f(x)的导函数),若a>1>b>0,则下列各式成立的是( )(A)a f(a)>b f(b)>1 (B)a f(a)<b f(b)<1(C)a f(a)<1<b f(b)(D)a f(a)>1>b f(b)(3)(2018·黑龙江哈师大附中三模)若函数f(x)=2x+sin x·cos x+acos x在(-∞,+∞)上单调递增,则a的取值范围是( )(A)[-1,1] (B)[-1,3](C)[-3,3] (D)[-3,-1](4)(2018·天津河北区二模)已知函数f(x)=x2-ax+(a-1)ln x,其中a>2.①讨论函数f(x)的单调性;②若对于任意的x1,x2∈(0,+∞),x1≠x2,恒有>-1,求a的取值范围.(1)解析:令g(x)=,则g'(x)=,因为当x≠2时,(x-2)[f(x)-(x-2)f'(x)]>0,所以当x>2时,g'(x)<0,即函数g(x)在(2,+∞)上单调递减,则g()>g(3)>g(4),即>>,即2(+2)f()>2f(3)>f(4).故选C.(2)解析:构造函数g(x)=x f(x),x∈(0,+∞),两边取自然对数得ln g(x)=f(x)ln x,求导得g'(x)=f'(x)ln x+,得g'(x)=[xf'(x)ln x+f(x)].因为x>0,所以x f(x)>0,即g(x)>0,所以g'(x)>0.即g(x)在(0,+∞)上单调递增.又因为a>1>b>0,所以g(a)>g(1)>g(b),所以a f(a)>1>b f(b).故选D.(3)解析:因为f(x)=2x+sin x·cos x+acos x,所以f'(x)=2+cos 2x-asin x=-2sin2x-asin x+3,设sin x=t,-1≤t≤1,令g(t)=-2t2-at+3,因为f(x)在(-∞,+∞)上递增,所以g(t)≥0在[-1,1]上恒成立,因为二次函数图象开口向下,所以⇒-1≤a≤1,a的取值范围是[-1,1].故选A.(4)解:①由题意得函数f(x)的定义域为(0,+∞),因为f(x)=x2-ax+(a-1)ln x,所以f'(x)=x-a+=,令f'(x)=0,得x=1或x=a-1,因为a>2,所以a-1>1.由f'(x)>0,解得0<x<1或x>a-1,由f'(x)<0,解得1<x<a-1.所以函数f(x)的单调递增区间为(0,1),(a-1,+∞),单调递减区间为(1,a-1).②设x1>x2,则不等式>-1等价于f(x1)-f(x2)>x2-x1.即f(x1)+x1>f(x2)+x2,令g(x)=f(x)+x=x2-(a-1)x+(a-1)ln x,则函数g(x)在x∈(0,+∞)上为增函数.所以g'(x)=x-(a-1)+≥0在(0,+∞)上恒成立,而x+≥2,当且仅当x=,即x=时等号成立.所以2≥a-1,因为a>2,所以4(a-1)≥(a-1)2,即a2-6a+5≤0,所以1≤a≤5,而a>2,所以2<a≤5.所以实数a的取值范围是(2,5].导数研究函数的极值、最值考向1 导数研究函数极值【例5】(1)(2018·河南中原名校质检二)已知函数f(x)=2f'(1)ln x-x,则f(x)的极大值为( )(A)2 (B)2ln 2-2 (C)e (D)2-e(2)(2018·黑龙江哈三中一模)设函数f(x)=ln x+ax2+bx,若x=1是函数f(x)的极大值点,则实数a的取值范围是( )(A)-∞,(B)(-∞,1)(C)[1,+∞)(D),+∞(3)(2018·河南高三最后一模)若函数f(x)=e x-aln x+2ax-1在(0,+∞)上恰有两个极值点,则a的取值范围为( )(A)(-e2,-e) (B)-∞,-(C)-∞,- (D)(-∞,-e)解析:(1)f(x)=2f'(1)ln x-x,则f'(x)=2f'(1)-1,令x=1得f'(1)=2f'(1)-1,所以f'(1)=1,则f(x)=2ln x-x,f'(x)=-1=,所以函数在(0,2)上单调递增,在(2,+∞)上单调递减,则f(x)的极大值为f(2)=2ln 2-2,故选B.(2)f'(x)=+2ax+b=(x>0),因为x=1是函数f(x)的极大值点,所以f'(1)=0即b=-(2a+1),所以f'(x)==,当a≤0时,因为2ax-1<0,所以若0<x<1,则f'(x)>0,若x>1时,则f'(x)<0,所以x=1是函数f(x)的极大值点,符合题意; 当a>0时,若x=1是函数f(x)的极大值点,则需1<,即0<a<,综上a<.故选A.(3)因为f(x)=e x-aln x+2ax-1,所以f'(x)=e x-+2a,令e x-+2a=0,得a=,再令g(x)=(x>0),因为函数f(x)=e x-aln x+2ax-1在(0,+∞)上恰有两个极值点,所以g(x)=a有两个零点,又g'(x)=-(x>0),令g'(x)>0,得0<x<1,且x≠;令g'(x)<0,得x>1,所以函数g(x)在0,,,1上单调递增,在(1,+∞)上单调递减,由于g(1)=-e,因为y=g(x)与y=a有两个交点,根据数形结合法可得,a<-e,即a∈(-∞,-e).故选D.(1)可导函数的极值点是其导数的变号零点,在零点处“左负右正”的为极小值点、“左正右负”的为极大值点;(2)根据极值点的个数确定参数范围的问题可以转化为其导数零点个数的问题讨论.考向2 导数研究函数最值【例6】(1)(2018·陕西榆林四模)设实数m>0,若对任意的x≥e,不等式x2ln x-m≥0恒成立,则m的最大值是( )(A)(B)(C)2e (D)e(2)(2018·河北武邑中学质检二)已知函数f(x)=ax-cos x+b的图象在点,f处的切线方程为y=x+.①求a,b的值;②求函数f(x)在-,上的最大值.(1)解析:不等式x2ln x-m≥0⇔x2ln x≥m⇔xln x≥⇔ln xe ln x≥,设f(x)=xe x(x>0),则f'(x)=(x+1)e x>0,所以f(x)在(0,+∞)上是增函数,因为>0,ln x>0,所以≤ln x,即m≤xln x对任意的x≥e恒成立,此时只需m≤(xln x)min,设g(x)=xln x(x≥e),g'(x)=ln x+1>0(x≥e),所以g(x)在[e,+∞)上为增函数,所以g(x)min=g(e)=e,所以m≤e,m的最大值为e.故选D.(2)解:①因为f(x)=ax-cos x+b,所以f'(x)=a+sin x.又f'=a+1=,f=a+b=×+,解得a=,b=3.②由①知f(x)=x-cos x+.因为f'(x)=+sin x,由f'(x)=+sin x>0,得-<x≤,由f'(x)=+sin x<0得,-≤x<-,所以函数f(x)在-,-上单调递减,在-,上单调递增.因为f-=,f=π,所以f(x)max=f=π.(1)闭区间[a,b]上图象连续的函数其最值在极值和端点值的比较中找到;(2)在区间D上如果f(x)有唯一的极大(小)值点,该点也是函数的最大(小)值点.热点训练3:(1)(2018·福建南平5月质检)若函数g(x)=mx+在区间(0,2π)上有一个极大值和一个极小值,则实数m的取值范围是( )(A)(-e-2π,) (B)(-e-π,e-2π)(C)(-eπ,) (D)(-e-3π,eπ)(2)(2018·黔东南州一模)若函数f(x)=xln x-a有两个零点,则实数a的取值范围为( )(A)-,1(B),1(C)-,0(D)-,+∞(3)(2018·河北唐山三模)已知a>0,f(x)=,若f(x)的最小值为-1,则a等于( )(A)(B)(C)e (D)e2解析:(1)函数g(x)=mx+,求导得g'(x)=m+.令f(x)=m+,f'(x)=.易知,在0,上,f'(x)<0,f(x)单调递减;在,上,f'(x)>0,f(x)单调递增;在,2π上,f'(x)<0,f(x)单调递减.且f(0)=m+1,f=m-,f=m+,f(2π)=m+e-2π.有f<f(2π),f(0)>f.根据题意可得解得-e-2π<m<.故选A.(2)函数定义域为(0,+∞),由f(x)=xln x-a=0得xln x=a,令g(x)=xln x,则g'(x)=ln x+1,由g'(x)>0得x>,由g'(x)<0得,0<x<,所以函数g(x)在0,上单调递减,在,+∞上单调递增,所以当x=时,g(x)取得极小值即最小值,g=-,又当x→0时,g(x)→0,作出g(x)的图象如图,所以要使f(x)=xln x-a有两个零点,即方程xln x=a有两个不同的根,即函数g(x)和y=a有两个交点,所以-<a<0,选C.(3)由f(x)=,得f'(x)==,令g(x)=e x+ax+a,则g'(x)=e x+a>0,则g(x)在(-∞,+∞)上为增函数,又g(-1)=>0,所以存在x0<-1,使g(x0)=0,即f'(x0)=0,所以+ax0+a=0,①函数f(x)在(-∞,x0)上为减函数,在(x0,+∞)上为增函数,则f(x)的最小值为f(x0)==-1,即x0=--a,②联立①②可得x0=-2,把x0=-2代入①,可得a=.故选A.【例1】(1)(2018·河南高三最后一模)已知函数f(x)=4x2的图象在点(x0,4)处的切线为l,若l也与函数g(x)=ln x(0<x<1)的图象相切,则x0必满足( )(A)<x0<(B)0<x0<(C)<x0<1 (D)1<x0<(2)(2018·广西三市第二次调研)若曲线C1:y=x2与曲线C2:y=(a>0)存在公共切线,则a的取值范围为( )(A)(0,1) (B)1,(C),2(D),+∞(3)(2018·重庆綦江区5月调研)设函数f(x)=|e x-e2a|,若f(x)在区间(-1,3-a)内的图象上存在两点,在这两点处的切线相互垂直,则实数a的取值范围为( )(A)-,(B),1(C)-3,-(D)(-3,1)解析:(1)由于f'(x)=8x,f'(x0)=8x0,所以直线l的方程为y=8x0(x-x0)+4=8x0x-4.因为l也与函数g(x)=ln x(0<x<1)的图象相切,令切点为(m,ln m),g'(x)=,所以l的方程为y=x+ln m-1,因此有又因为0<m<1,所以1-4<0,x0>,4=1+ln x0+ln 8,令h(x)=4x2-ln x-ln 8-1x>,h'(x)=8x-=>0,所以h(x)=4x2-ln x-ln 8-1是,+∞上的增函数. 因为h=1-ln 4<0,h(1)=3(1-ln 2)>0,所以x0∈,1.故选C.(2)C1在点(x1,y1)处的切线为y-=2x1(x-x1),即y=2x1x-,①C2在点(x2,y2)处的切线为y=x+(1-x2),②设①②是同一条切线,则④÷③,得=1-x2,所以x1=2(x2-1),代入③得a=,因为a>0,所以x2>1,以下求函数u(x2)=的值域:u'(x2)==, 令u'(x2)=0得x2=2,在x2∈(1,2)内,u'(x2)<0,u(x2)单调递减, 在x2∈(2,+∞)内,u'(x2)>0,u(x2)单调递增,所以u(x2)min=u(2)=,当x2→+∞时,u(x2)→+∞,所以u(x2)的值域为,+∞,所以a≥.故选D.(3)f(x)=|e x-e2a|=f'(x)=若存在x1<x2,使得f'(x1)f'(x2)=-1,则必有-1<x1<2a<x2<3-a,由-1<2a<3-a得-<a<1,由-1<x1<2a<x2<3-a得2a-1<x1+x2<a+3,由f'(x1)f'(x2)=-1得x1+x2=0,所以2a-1<0<a+3,得-3<a<,综上可得-<a<.故选A.【例2】(1)(2018·江西重点中学协作体二联)已知定义在[e,+∞)上的函数f(x)满足f(x)+xln xf'(x)<0且f(2 018)=0,其中f'(x)是函数f(x)的导函数,e是自然对数的底数,则不等式f(x)>0的解集为( )(A)[e,2 018) (B)[2 018,+∞)(C)(e,+∞)(D)[e,e+1)(2)(2018·江西六校联考)已知定义在(0,+∞)上的函数f(x),恒为正数的f(x)符合f(x)<f'(x)<2f(x),则f(1)∶f(2)的取值范围为( )(A)(e,2e) (B),(C)(e,e3) (D),(3)(2018·陕西咸阳二模)已知定义在R上的函数 f(x) 的导函数为f'(x),且f(x)+f'(x)>1,设a=f(2)-1,b=e[f(3)-1],则a,b的大小关系为( )(A)a<b (B)a>b(C)a=b (D)无法确定解析:(1)设g(x)=ln x·f(x),当x∈[e,+∞)时,g'(x)=+ln xf'(x)=<0,所以g(x)在[e,+∞)上是减函数,又g(2 018)=ln 2 018f(2 018)=0,所以g(x)>0的解集为[e,2 018),又此时ln x≥1,所以f(x)>0,即f(x)>0的解集为[e,2 018).故选A.(2)令g(x)=,h(x)=,则g'(x)=>0,h'(x)=<0,所以g(1)<g(2),h(1)>h(2),所以<,>,所以<<.选D.(3)令g(x)=e x f(x)-e x,则g'(x)=e x[f(x)+f'(x)]-e x=e x[f(x)+f'(x)-1]>0.即g(x)在R上为增函数.所以g(3)>g(2),即e3f(3)-e3>e2f(2)-e2,整理得e[f(3)-1]>f(2)-1,即a<b.故选A.【例3】(2018·华大新高考联盟4月质检)设函数f(x)=x-,a∈R且a≠0,e为自然对数的底数.(1)求函数y=的单调区间;(2)若a=,当0<x1<x2时,不等式f(x1)-f(x2)>恒成立,求实数m的取值范围. 解:(1)y=1-,y'==-,->0⇔<0.①当a>0时,<0⇒<0⇒0<x<2;②当a<0时,<0⇒>0⇒x<0或x>2.综上,①当a>0时,函数y=的增区间为(0,2),减区间为(-∞,0),(2,+∞);②当a<0时,函数y=的增区间为(-∞,0),(2,+∞),减区间为(0,2).(2)当0<x1<x2时,f(x1)-f(x2)>⇔f(x1)-f(x2)>-⇔f(x1)->f(x2)-,即函数g(x)=f(x)-=x-·-在(0,+∞)上为减函数,g'(x)=1-+=≤0,em≤(x-1)e x-ex2,令h(x)=(x-1)e x-ex2,h'(x)=e x+(x-1)e x-2ex=xe x-2ex=x(e x-2e)=0⇒e x=2e⇒x=ln 2e.当x∈(0,ln 2e)时,h'(x)<0,h(x)为减函数;当x∈(ln 2e,+∞)时,h'(x)>0,h(x)为增函数.h(x)的最小值为h(ln 2e)=(ln 2e-1)·e ln 2e-eln22e=2eln 2-e(ln 2+1)2=-eln22-e.所以em≤-eln22-e⇒m≤-1-ln22,所以m的取值范围是(-∞,-1-ln22].【例4】(2018·陕西西工大附中六模)若存在两个正实数x,y,使得等式3x+a(2y-4ex)(ln y-ln x)=0成立,其中e为自然对数的底数,则实数a的取值范围是( )(A)(-∞,0)(B)0,(C),+∞(D)(-∞,0)∪,+∞解析:因为3x+a(2y-4ex)(ln y-ln x)=0,所以3x+a(2y-4ex)ln =0,所以3+2a-2e ln =0,令t=,则t>0,所以3+2a(t-2e)ln t=0,所以(t-2e)ln t=-,设g(t)=(t-2e)ln t,则g'(t)=ln t+1-,而[g'(t)]'=+.故g'(t)为增函数,因为g'(e)=0,所以当t=e时,g(t)min=g(e)=-e,所以-≥-e,即≤e.当a<0时,不等式成立;当a>0时,得a≥;当a=0时,由原等式易知不符合题意.所以a<0或a≥.故选D.(对应学生用书第13页)【典例】(2018·全国卷Ⅲ,文21)(12分)已知函数f(x)=.(1)求曲线y=f(x)在点(0,-1)处的切线方程;(2)证明:当a≥1时,f(x)+e≥0.评分细则:(1)解:f'(x)=,2分f'(0)=2.3分因此曲线y=f(x)在点(0,-1)处的切线方程是2x-y-1=0.5分(2)证明:当a≥1时,f(x)+e≥(x2+x-1+e x+1)e-x.6分令g(x)=x2+x-1+e x+1,7分则g'(x)=2x+1+e x+1.9分当x<-1时,g'(x)<0,g(x)单调递减;当x>-1时,g'(x)>0,g(x)单调递增.11分所以g(x)≥g(-1)=0.因此f(x)+e≥0.12分【答题启示】(1)导数解答题的基础是正确求出函数的导数,这是解题的起始,一定要细心处理,不要“输在起跑线上”.(2)导数证明不等式基本技巧是构造函数、利用函数的单调性、最值得出所证不等式.。

高三数学二轮复习 2.4导数及其应用课件


3.导数的计算
(1)基本初等函数的导数公式
①c′=0(c为常数);
②(xm)′=mxm-1;
③(sinx)′=cosx; ④(cosx)′=-sinx;
⑤(ex)′=ex; ⑥(ax)′=axlna;
⑦(lnx)′=1x; ⑧(logax)′=-xl1na.
(2)导数的四则运算法则 ①[f(x)±g(x)]′=f′(x)±g′(x); ②[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x); ③[gfxx]′=f′xgxg- 2xfxg′x. ④(理)(f(u))′=f′(u)·φ′(x)=af′(ax+b)
[解析] (1)f′(x)=1k(x2-k2)exk, 令f′(x)=0,得x=±k. 当k>0时,f(x)与f′(x)的情况如下:
x
(-∞, -k)
-k
(-k, k)
k
(k,+ ∞)
f′(x) + 0 - 0 +
f(x)
4k2 e-1
0
所以,f(x)的单调递增区间是(-∞,-k)和(k,+∞);单调 递减区间是(-k,k).
所以∀x∈(0,+∞),f(x)≤1e等价于 f(-k)=4ek2≤1e. 解得-12≤k<0.
故当∀x∈(0,+∞),f(x)≤1e时, k 的取值范围 是[-12,0).
[评析] 讨论函数的单调性其实就是讨论不等式的解集的情 况,大多数情况下是归结为一个含有参数的一元二次不等 式的解集的讨论,在能够通过因式分解求出不等式对应方 程的根时依据根的大小进行分类讨论,在不能通过因式分 解求出根的情况时根据不等式对应方程的判别式进行分类 讨论.讨论函数的单调性是在函数的定义域内进行的,千 万不要忽视了定义域的限制.

2021新高考数学二轮总复习专题二函数与导数学案含解析打包6套

专题二函数与导数考情分析函数与导数是高中数学的主干知识,是高考考查的重点内容,近几年高考命题的趋势是稳中求变、变中求新、新中求活,纵观近几年的高考题,对函数与导数的考查多数为“三小一大”或“四小一大”,题型遍布选择、填空与解答,难度上分层考查;基础题考查考生对必备知识和基本方法的掌握;中档题考查的是“数学抽象”“逻辑推理”和“数学运算”三大核心素养;导数与函数解答题综合考查多个核心素养以及综合应用能力,近两年的难度有所降低,题目所在试卷的位置有所提前,不再固定在最后压轴位置上,预计这一趋势会保持下去.2.1函数概念、性质、图象专项练必备知识精要梳理1.函数的概念(1)求函数的定义域的方法是依据含自变量x的代数式有意义来列出相应的不等式(组)求解.(2)求函数值域要优先考虑定义域,常用方法:配方法、分离常数法(分式函数)、换元法、单调性法、基本不等式法、数形结合法、有界函数法(含有指、对数函数或正、余弦函数的式子).2.函数的性质(1)函数奇偶性:①定义:若函数的定义域关于原点对称,则有:f(x)是偶函数⇔f(-x)=f(x)=f(|x|);f(x)是奇函数⇔f(-x)=-f(x).②判断方法:定义法、图象法、奇偶函数性质法(如奇函数×奇函数是偶函数).(2)函数单调性判断方法:定义法、图象法、导数法.(3)函数周期性的常用结论:若f(x+a)=-f(x)或f(x+a)=±(a≠0),则T=2a;若f(x+a)=f(x-b),则T=a+b;若f(x)的图象有两条对称轴x=a和x=b(a≠b),则T=2|b-a|;若f(x)的图象有两个对称中心(a,0)和(b,0),则T=2|b-a|(类比正、余弦函数).3.函数的图象(1)函数图象的判断方法:①找特殊点;②看性质:根据函数性质判断图象的位置,对称性,变化趋势等;③看变换:看函数是由基本初等函数经过怎样的变换得到.(2)若y=f(x)的图象关于直线x=a对称,则有f(a+x)=f(a-x)或f(2a-x)=f(x)或f(x+2a)=f(-x);若y=f(x)对∀x∈R,都有f(a-x)=f(b+x),则f(x)的图象关于直线x=对称;若y=f(x)对∀x∈R都有f(a-x)=b-f(x),即f(a-x)+f(x)=b,则f(x)的图象关于点对称.(3)函数y=f(x)与y=f(-x)的图象关于y轴对称,函数y=f(a-x)和y=f(b+x)的图象关于直线x=对称;y=f(x)与y=-f(x)的图象关于x轴对称;y=f(x)与y=-f(-x)的图象关于原点对称.(4)利用图象可解决函数的最值、方程与不等式的解以及求参数范围问题.考向训练限时通关考向一函数及其相关概念1.(2020安徽合肥一中模拟,理1)设集合A={x|y=lg(x-3)},B={y|y=2x,x∈R},则A∩B等于()A.⌀B.RC.{x|x>3}D.{x|x>0}2.(多选)符号[x]表示不超过x的最大整数,如[3.14]=3,[-1.6]=-2,定义函数:f(x)=x-[x],则下列命题正确的是()A.f(-0.8)=0.2B.当1≤x<2时,f(x)=x-1C.函数f(x)的定义域为R,值域为[0,1)D.函数f(x)是增函数、奇函数3.(2020北京,11)函数f(x)=+ln x的定义域是.4.设函数f(x)=则f=,f(f(x))=1的解集为.考向二函数的性质5.(2020天津,6)设a=30.7,b=,c=log0.70.8,则a,b,c的大小关系为()A.a<b<cB.b<a<cC.b<c<aD.c<a<b6.(2020全国Ⅱ,理9)设函数f(x)=ln|2x+1|-ln|2x-1|,则f(x)()A.是偶函数,且在单调递增B.是奇函数,且在单调递减C.是偶函数,且在单调递增D.是奇函数,且在单调递减7.(2020全国Ⅲ,理12)已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<cB.b<a<cC.b<c<aD.c<a<b8.(2020江西名校大联考,理13)已知函数f(x)=则f(5+log26)的值为.考向三函数的图象9.(2020天津,3)函数y=的图象大致为()10.(2020山西太原二模,理6)函数f(x)=的图象大致为()11.(2020山东济宁6月模拟,5)函数f(x)=cos x·sin的图象大致为()考向四函数的概念、性质、图象的综合12.(多选)(2020山东淄博4月模拟,12)函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有f[f(x1)+f(x2)],则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,则下列说法错误的是()A.f(x)在[1,3]上的图象是连续不断的B.f(x2)在[1,]上具有性质PC.若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3]D.对任意x1,x2,x3,x4∈[1,3],有f[f(x1)+f(x2)+f(x3)+f(x4)]13.(2020北京海淀一模,15)如图,在等边三角形ABC中,AB=6.动点P从点A出发,沿着此三角形三边逆时针运动回到A点,记点P运动的路程为x,点P到此三角形中心O距离的平方为f(x),给出下列三个结论:①函数f(x)的最大值为12;②函数f(x)的图象的对称轴方程为x=9;③关于x的方程f(x)=kx+3最多有5个实数根.其中,所有正确结论的序号是.专题二函数与导数2.1函数概念、性质、图象专项练考向训练·限时通关1.C解析A={x|y=lg(x-3)}={x|x-3>0}={x|x>3},B={y|y=2x,x∈R}={y|y>0}.∴A∩B={x|x>3},故选C.2.ABC解析f(x)=x-[x]表示数x的小数部分,则f(-0.8)=f(-1+0.2)=0.2,故A正确;当1≤x<2时,f(x)=x-[x]=x-1,故B正确;函数f(x)的定义域为R,值域为[0,1),故C正确;当0≤x<1时,f(x)=x-[x]=x.当1≤x<2时,f(x)=x-1.当x=0.5时,f(0.5)=0.5,当x=1.5时,f(1.5)=0.5,则f(0.5)=f(1.5),即f(x)不为增函数,由f(-1.5)=0.5,f(1.5)=0.5,可得f(-1.5)=f(1.5),即f(x)不为奇函数,故D不正确.故选ABC.3.(0,+∞)解析由题意得∴x>0,故答案为(0,+∞).4{1,e e}解析∵f=ln<0,∴f=fx<0时,0<e x<1,x=0时,e x=1,方程f(f(x))=1,可得f(x)=0,ln x=0,解得x=1,f(x)>0时,方程f(f(x))=1,可得ln[f(x)]=1,f(x)=e,即ln x=e,解得x=e e.5.D解析∵b==30.8>30.7=a>30=1,c=log0.70.8<log0.70.7=1,∴c<a<b.故选D.6.D解析由题意可知,f(x)的定义域为,关于原点对称.∵f(x)=ln|2x+1|-ln|2x-1|,∴f(-x)=ln|-2x+1|-ln|-2x-1|=ln|2x-1|-ln|2x+1|=-f(x),∴f(x)为奇函数.当x时,f(x)=ln(2x+1)-ln(1-2x),∴f'(x)=>0,∴f(x)在区间内单调递增.同理,f(x)在区间内单调递减.故选D.7.A解析a=log53=lo34=log12581<1,∴a<b=log85=lo54=log512625>1,∴b>,∵55<84,b=log85=lo55<1,∴b<,∵134<85,c=log138=lo85>1,∴c>综上,a<b<c.8.12解析由题意当x>4时,函数f(x)=f(x-1),所以f(x)在(4,+∞)时,周期为1,因为2<log26<3,所以5+log26∈(7,10),1+log26∈(3,4),所以f(5+log26)=f(1+log26)==2×6=12.9.A解析∵函数y=为奇函数,∴排除C,D.再把x=1代入得y==2>0,排除B.故选A.10.A解析f(1)=>0,排除选项C,D;由f(x)==0,则方程无解,即函数没有零点,排除B,故选A.11.C解析显然函数f(x)的定义域是R,由f(x)=cos x·sin,得f(-x)=cos(-x)sin=cos x·sin=-f(x),即f(x)为奇函数,其图象关于原点对称,排除选项A,B;又f(1)=cos1·sin>0,可排除选项D,故选C.12.ABD解析对于A,函数f(x)=在[1,3]上具有性质P,但f(x)在[1,3]上的图象不连续,故选项A错;对于B,f(x)=-x在[1,3]上具有性质P,但f(x2)=-x2在[1,]上不满足性质P,故选项B 错;对于C,因f(x)在x=2处取得最大值1,所以f(x)≤1,设x∈[1,2],则4-x∈[2,3].由性质P可得1=f(2)[f(x)+f(4-x)],所以f(x)+f(4-x)≥2,因为f(x)≤1,f(4-x)≤1,所以f(x)+f(4-x)≤2,所以f(x)+f(4-x)=2,又f(x)≤1,f(4-x)≤1,所以f(x)=1,x∈[1,3],故选项C正确;对于D,有f=ff+f[f(x1)+f(x2)+f(x3)+f(x4)],故选项D错.故选ABD.13.①②解析由题可得函数f(x)=作出图象如图.则当点P与△ABC顶点重合时,即x的值分别是0,6,12,18时,f(x)取得最大值12,故①正确;又f(x)=f(18-x),所以函数f(x)的对称轴为x=9,故②正确;由图象可得,函数f(x)图象与y=kx+3的交点个数为6个,故方程有6个实根,故③错误.2.4.3利用导数证明问题及讨论零点个数必备知识精要梳理1.与e x、ln x有关的常用不等式的结论(1)由f(x)=e x图象上任一点(m,f(m))的切线方程为y-e m=e m(x-m),得e x≥e m(x+1)-m e m,当且仅当x=m时,等号成立.当m=0时,有e x≥x+1;当m=1时,有e x>e x.(2)由过函数f(x)=ln x图象上任一点(n,f(n))的切线方程为y-ln n=(x-n),得ln x≤x-1+ln n,当且仅当x=n时,等号成立.当n=1时,有ln x≤x-1;当n=e时,有ln x≤x.2.证明含参数的函数不等式,其关键在于将所给的不等式进行“改造”,得到“一平一曲”,然后运用导数求出“曲”的最值,将其与“平”进行比较即可.3.求解导数应用题宏观上的解题思想(1)借助导函数(正负)研究原函数(单调性);重点是把导函数先“弄熟悉”;(2)为了把导函数先“弄熟悉”采取的措施:①通分;②二次求导或三次求导;③能画出导函数草图是最好的!关键能力学案突破热点一利用导数证明不等式(多维探究)类型一单未知数函数不等式的证明【例1】已知函数f(x)=e x-ln(x+m).(1)略;(2)当m≤2时,证明f(x)>0.解题心得1.对于含有参数的一个未知数的函数不等式,其证明方法与不含参数的一个未知数的函数不等式证明大体一致.可以直接证明,也可以放缩后再证明,也可以分离参数后,利用导数求最值来证明.2.证法1与证法2中出现的x0的具体数值是无法求解的,只能求出其范围,我们把这种零点称为“隐性零点”.证法2比证法1简单,这是因为利用了函数单调性将命题e x-ln(x+m)>0加强为e x-ln(x+2)>0,转化为研究一个特例函数的问题,从而大大降低了题目的难度.证法2中,因为φ(x0)的表达式涉及、ln(x0+2),都是超越式,所以φ(x0)的值不好计算,由此,需要对“隐性零点”满足的式子=0进行变形,得到两个式子和ln(x0+2)=-x0,然后进行反代,从而将超越式转化为初等式.“反代”是处理“隐性零点”问题的常用策略.【对点训练1】已知函数f(x)=.(1)求曲线y=f(x)在点(0,-1)处的切线方程;(2)求证:当a≥1时,f(x)+e≥0.【例2】已知函数f(x)=x+.(1)略;(2)设函数g(x)=ln x+1,证明:当x∈(0,+∞)且a>0时,f(x)>g(x).解题心得欲证函数不等式f(x)>g(x)(x∈I,I是区间),设h(x)=f(x)-g(x)(x∈I),即证h(x)>0,为此研究h(x)的单调性,先求h'(x)的零点,根据零点确定h(x)在给定区间I的正负,若h(x)在区间I内递增或递减或先递减后递增,只须h(x)min>0(x∈I)(若h(x)min不存在,则须求函数h(x)的下确界),若h(x)在区间I内先递增后递减,只须区间I的端点的函数值大于或等于0;若h'(x)的零点不好求,可设出零点x0,然后确定零点的范围,进而确定h(x)的单调区间,求出h(x)的最小值h(x0),再研究h(x0)的正负.【对点训练2】(2020全国Ⅱ,理21)已知函数f(x)=sin2x sin 2x.(1)讨论f(x)在区间(0,π)的单调性;(2)证明:|f(x)|≤;(3)设n∈N*,证明:sin2x sin22x sin24x…sin22n x≤.类型二双未知数函数不等式的证明【例3】已知函数f(x)=-x+a ln x(a∈R).(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:<a-2.解题心得对于两个未知数的函数不等式问题,其关键在于将两个未知数化归为一个未知数,常见的证明方法有以下4种:方法1:利用换元法,化归为一个未知数;方法2:利用未知数之间的关系消元,化归为一个未知数;方法3:分离未知数后构造函数,利用函数的单调性证明;方法4:利用主元法,构造函数证明.【对点训练3】(2020山东德州二模,21)已知函数f(x)=x2-ax+a ln 2x(a≠0).(1)若a<0时f(x)在[1,e]上的最小值是-ln 2,求a;(2)若a≥e,且x1,x2是f(x)的两个极值点,证明:f(x1)+f(x2)<)-2e(其中e为自然对数的底数).热点二判断、证明或讨论函数零点个数【例4】设函数f(x)=(x-1)e x-x2(其中k∈R).(1)略;(2)当k>0时,讨论函数f(x)的零点个数.解题心得有关函数的零点问题的解决方法主要是借助数形结合思想,利用导数研究函数的单调性和极值,利用函数的单调性模拟函数的图象,根据函数零点的个数的要求,控制极值点函数值的正负,从而解不等式求出参数的范围.【对点训练4】(2020湖南湘潭三模,理21)设函数f(x)=ln x,g(x)=.(1)当m=-1时,求函数F(x)=f(x)+g(x)的零点个数;(2)若∃x0∈[1,+∞),使得f(x0)<g(x0),求实数m的取值范围.热点三与函数零点有关的证明问题【例5】(2019全国Ⅰ,理20)已知函数f(x)=sin x-ln(1+x),f'(x)为f(x)的导数.证明:(1)f'(x)在区间存在唯一极大值点;(2)f(x)有且仅有2个零点.解题心得1.如果函数中没有参数,一阶导数求出函数的极值点,判断极值点大于0小于0的情况,进而判断函数零点的个数.2.如果函数中含有参数,往往一阶导数的正负不好判断,这时先对参数进行分类,再判断导数的符号,如果分类也不好判断,那么需要对一阶导函数进行求导,在判断二阶导数的正负时,也可能需要分类.【对点训练5】(2020安徽合肥二模,文21)已知函数f(x)=e x sin x.(e是自然对数的底数) (1)求f(x)的单调递减区间;(2)若函数g(x)=f(x)-2x,证明g(x)在(0,π)上只有两个零点.(参考数据:≈4.8)热点四利用导数解决存在性问题【例6】(2019全国Ⅲ,理20)已知函数f(x)=2x3-ax2+b.(1)讨论f(x)的单调性;(2)是否存在a,b,使得f(x)在区间[0,1]的最小值为-1且最大值为1?若存在,求出a,b的所有值;若不存在,说明理由.解题心得依据已知条件,判别某种数学对象是否存在的问题,由解答者去探索和确定,它的解法是:假设存在,直接推断,通过推理或计算,若推出合理的结果,则先前假设成立,对象存在;若推出矛盾,则否定先前假设,对象不存在.【对点训练6】(2020湖北名师联盟一模,文21)已知函数f(x)=ln x-ax2-x.(1)若函数f(x)在[1,+∞)上单调递增,求实数a的取值范围;(2)若函数f(x)在x=1处的切线平行于x轴,是否存在整数k,使不等式x[f(x)+x-1]>k(x-2)在x>1时恒成立?若存在,求出k的最大值;若不存在,请说明理由.2.4.3利用导数证明问题及讨论零点个数关键能力·学案突破【例1】解(1)略.(2)证法1:f(x)定义域为(-m,+∞),f'(x)=e x-,f″(x)=e x+>0,其中f″(x)是f'(x)的导函数,则f'(x)在(-m,+∞)上单调递增.又因为当x→-m+时,f'(x)→-∞,当x→+∞时,f'(x)→+∞,所以f'(x)=0在(-m,+∞)上有唯一的实根x0,当-m<x<x0时,f'(x)<0,当x>x0时,f'(x)>0,所以f(x)在(-m,x0)上单调递减,在(x0,+∞)上单调递增,所以当x=x0时,f(x)取得最小值.由f'(x0)=0可得=0,即ln(x0+m)=-x0,于是f(x0)=-ln(x0+m)=+x0=+x0+m-m≥2-m.当x<2时,f(x0)>0;当m=2时,等号成立的条件是x0=-1,但显然f(-1)=e-1-ln(-1+2)=-0≠0.所以等号不成立,即f(x0)>0.综上所述,当m≤2时,f(x)≥f(x0)>0.证法2:当m≤2,x∈(-m,+∞)时,ln(x+m)≤ln(x+2),于是f(x)≥e x-ln(x+2),所以只要证明φ(x)=e x-ln(x+2)>0,x∈(-2,+∞).φ'(x)=e x-,φ″(x)=e x+>0,其中φ″(x)是φ'(x)的导函数.于是φ'(x)在(-2,+∞)上单调递增.又因为φ'(-1)=-1<0,φ'(0)=1->0,所以φ'(x)=0在(-2,+∞)上有唯一的实根x0,且x0∈(-1,0).当-2<x<x0时,φ'(x)<0,当x>x0时,φ'(x)>0,所以φ(x)在(-2,x0)上单调递减,在(x0,+∞)上单调递增,所以当x=x0时,φ(x)取得最小值.由φ'(x0)=0可得=0,即ln(x0+2)=-x0,于是φ(x0)=-ln(x0+2)=+x0=>0,于是φ(x)≥φ(x0)>0.综上所述,当m≤2时,f(x)>0.证法3:当m≤2,x∈(-m,+∞)时,ln(x+m)≤ln(x+2),于是f(x)≥e x-ln(x+2),所以只要证明e x-ln(x+2)>0(x>-2),就能证明当m≤2时,f(x)>0.由ln x≤x-1(x>0)可得ln(x+2)≤x+1(x>-2).又因为e x≥x+1(x∈R),且两个不等号不能同时成立,所以e x>ln(x+2),即e x-ln(x+2)>0(x>-2),所以当m≤2时,f(x)>0.对点训练1解(1)f'(x)=,因为(0,-1)在曲线y=f(x)上,且f'(0)=2,所以切线方程为y-(-1)=2(x-0),即2x-y-1=0.(2)f(x)+e≥0+e≥0⇔ax2+x-1+e x+1≥0.当a≥1时,ax2+x-1+e x+1≥x2+x-1+e x+1,因为e x≥1+x(x∈R),所以e x+1≥2+x,所以x2+x-1+e x+1≥x2+x-1+(2+x)=(x+1)2≥0.所以当a≥1时,f(x)+e≥0.【例2】解(1)略.(2)令h(x)=f(x)-g(x)=x+-ln x-1(x>0),h'(x)=1-,设p(x)=x2-x-a=0,函数p(x)的图象的对称轴为x=∵p(1)=1-1-a=-a<0,设p(x)=0的正根为x0,∴x0>1,由对称性知,p(x)=0的另一根小于0,h(x)在(0,x0)上为减函数,在(x0,+∞)上为增函数,h(x)min=h(x0)=x0+-ln x0-1=x0+-ln x0-1=2x0-ln x0-2,令F(x)=2x-ln x-2(x>1),F'(x)=2->0恒成立,所以F(x)在(1,+∞)上为增函数.又∵F(1)=2-0-2=0,∴F(x)>0,即h(x)min>0,故当x∈(0,+∞)时,f(x)>g(x).对点训练2(1)解f'(x)=cos x(sin x sin2x)+sin x(sin x sin2x)'=2sin x cos x sin2x+2sin2x cos2x=2sin x sin3x.当x时,f'(x)>0;当x时,f'(x)<0.所以f(x)在区间单调递增,在区间单调递减.(2)证明因为f(0)=f(π)=0,由(1)知,f(x)在区间[0,π]的最大值为f,最小值为f=-而f(x)是周期为π的周期函数,故|f(x)|(3)证明由于(sin2x sin22x…sin22n x=|sin3x sin32x…sin32n x|=|sin x||sin2x sin32x…sin32n-1x sin2n x||sin22n x|=|sin x||f(x)f(2x)…f(2n-1x)||sin22n x|≤|f(x)f(2x)…f(2n-1x)|,所以sin2x sin22x…sin22n x【例3】解(1)函数f(x)的定义域为(0,+∞),f'(x)=--1+=-①若a≤0,则f'(x)<0,f(x)在(0,+∞)上单调递减.②若Δ=a2-4≤0,即0<a≤2时,f'(x)≤0,f(x)在(0,+∞)上单调递减.③若Δ=a2-4>0,即a>2时,由f'(x)>0,可得<x<,由f'(x)<0,可得0<x<或x>,所以f(x)在上单调递减,在上单调递增.综上所述,当a≤2时,f(x)在(0,+∞)上单调递减;当a>2时,f(x)在0,,,+∞上单调递减,在上单调递增.(2)证法1:由(1)知,f(x)存在两个极值点,则a>2.因为x1,x2是f(x)的两个极值点,所以x1,x2满足x2-ax+1=0,所以x1+x2=a,x1x2=1,不妨设0<x1<1<x2.==--1+=-2+, 于是<a-2⇔-2+<a-2<1<1⇔2ln x2+-x2 <0.构造函数g(x)=2ln x+-x,x>1,由(1)知,g(x)在(1,+∞)上单调递减,所以g(x)<g(1)=0,所以原不等式获证.证法2:由(1)知,f(x)存在两个极值点,则a>2.因为x1,x2是f(x)的两个极值点,所以x1,x2满足x2-ax+1=0,不妨设0<x1<1<x2,则x2-x1=,x1x2=1.==--1+=-2-,于是<a-2⇔-2-<a-2⇔ln lnln设t=,则a=,构造函数φ(t)=t-ln(+t),t>0,则φ'(t)=1-=1->0,所以φ(t)在(0,+∞)上单调递增,于是φ(t)>φ(0)=0,原不等式获证.证法3:仿照证法1,可得<a-2<1,设0<x1<1<x2,因为x1x2=1, 所以<1ln x1-ln x2>ln,令t=(0,1),构造函数h(t)=2ln t+-t,由(1)知,h(t)在(0,1)上单调递减,所以h(t)>h(1)=0,原不等式获证.对点训练3解(1)f(x)定义域是(0,+∞),f'(x)=-a+令g(x)=x2-2ax+2a,对称轴x0=a<0,因为1>a,g(1)=1>0,所以当x∈[1,e]时,g(x)>0,即f'(x)=>0.所以f(x)在[1,e]上单调递增.f(x)min=f(1)=-a+a ln2=-ln2,解得a=-1.(2)由f(x)有两个极值点x1,x2,则f'(x)=0在(0,+∞)有2个不相等的实根,即x2-2ax+2a=0在(0,+∞)有2个不相等的实根, 则解得a>2.x1+x2=2a,x1x2=2a,=(x1+x2)2-2x1x2=4a2-4a.当a≥e时,f(x1)+f(x2)-)+2e=a ln(4x1x2)-a(x1+x2)-)+2e=a ln8a-2a2-(4a2-4a)+2e=a ln8a-3a2+a+2e(a≥e).令g(a)=a ln8a-3a2+a+2e(a≥e),g'(a)=ln8a-6a+2(a≥e),令h(a)=g'(a)=ln8a-6a+2,h'(a)=-6=,当a≥e时,h'(a)<0,所以h(a)在[e,+∞)单调递减.所以h(a)≤h(e).即g'(a)≤g'(e)=ln8e-6e+2=(1+3ln2)-6e+2=3ln2-6e+3<3-6e+3=6-6e<0,所以g(a)在[e,+∞)单调递减,g(a)≤g(e)=eln8e-3e2+3e=e(1+3ln2)-3e2+3e=e(3ln2-3e+4)<e(3-3e+4)=e(7-3e)<0,所以g(a)<0,所以原不等式成立.【例4】解(1)略.(2)函数f(x)的定义域为R,f'(x)=e x+(x-1)e x-kx=x e x-kx=x(e x-k),当0<k≤1时,令f'(x)>0,解得x<ln k或x>0.∴f(x)在(-∞,ln k)和(0,+∞)上单调递增,在[ln k,0]上单调递减.由f(0)=-1,当x∈(-∞,0)时,f(x)≤f(x)max=f(ln k)=(ln k-1)k-ln2k=-[(ln k-1)2+1]<0,此时f(x)无零点,当x∈[0,+∞)时,f(2)=e2-2k≥e2-2>0.又f(x)在[0,+∞)上单调递增,∴f(x)在[0,+∞)上有唯一的零点,∴函数f(x)在定义域(-∞,+∞)上有唯一的零点.②当k>1时,令f'(x)>0,解得x<0或x>ln k,∴f(x)在(-∞,0)和(ln k,+∞)上单调递增,在[0,ln k]上单调递减.当x∈(-∞,ln k)时,f(x)≤f(x)max=f(0)=-1<0,此时f(x)无零点.当x∈[ln k,+∞)时,f(ln k)<f(0)=-1<0,f(k+1)=k e k+1-=k e k+1-.令g(t)=e t-t2,t=k+1>2,则g'(t)=e t-t,g″(t)=e t-1,∵t>2,g″(t)>0,g'(t)在(2,+∞)上单调递增,g'(t)>g'(2)=e2-2>0,∴g(t)在(2,+∞)上单调递增,得g(t)>g(2)=e2-2>0,即f(k+1)>0.∴f(x)在[ln k,+∞]上有唯一的零点,故函数f(x)在定义域(-∞,+∞)上有唯一的零点.综合①②可知,当k>0时,函数f(x)在定义域(-∞,+∞)上有且只有一个零点.对点训练4解(1)F(x)=ln x-,即F(x)=ln x+(x>0),则F'(x)=,令F'(x)=0,解得x=当x,F'(x)<0,F(x)在上单调递减;当x∈,+∞,F'(x)>0,F(x)在上单调递增.所以当x=时,F(x)min=F-ln2.因为-ln2=ln-ln2<0,所以F(x)min<0.又F=-2+>0,F(e)=1+>0,所以F F<0,F(e)·F<0,所以F(x)分别在区间上各存在一个零点,函数F(x)存在两个零点.(2)假设f(x)≥g(x)对任意x∈[1,+∞)恒成立,即ln x-0对任意x∈[1,+∞)恒成立.令h(x)=ln x-(x≥1),则h'(x)=①当m≤2,即2x-m≥0时,则h'(x)≥0且h'(x)不恒为0,所以函数h(x)=ln x-在区间[1,+∞)上单调递增.又h(1)=ln1-=0,所以h(x)≥0对任意x∈[1,+∞)恒成立.故m≤2不符合题意;②当m>2时,令h'(x)=<0,得1≤x<;令h'(x)=>0,得x>所以函数h(x)=ln x-在区间上单调递减,在区间上单调递增,所以h<h(1)=0,即当m>2时,存在x0≥1,使h(x0)<0,即f(x0)<g(x0).故m>2符合题意.综上可知,实数m的取值范围是(2,+∞).【例5】解(1)设g(x)=f'(x),则g(x)=cos x-,g'(x)=-sin x+当x时,g'(x)单调递减,而g'(0)>0,g'<0,可得g'(x)在区间内有唯一零点,设为α.则当x∈(-1,α)时,g'(x)>0;当x时,g'(x)<0.所以g(x)在区间(-1,α)内单调递增,在区间内单调递减,故g(x)在区间内存在唯一极大值点,即f'(x)在区间内存在唯一极大值点.(2)f(x)的定义域为(-1,+∞).(ⅰ)当x∈(-1,0]时,由(1)知,f'(x)在区间(-1,0)内单调递增,而f'(0)=0,所以当x∈(-1,0)时,f'(x)<0,故f(x)在区间(-1,0)内单调递减.又f(0)=0,从而x=0是f(x)在区间(-1,0]上的唯一零点.(ⅱ)当x时,由(1)知,f'(x)在区间(0,α)内单调递增,在区间内单调递减,而f'(0)=0,f'<0,所以存在,使得f'(β)=0,且当x∈(0,β)时,f'(x)>0;当x时,f'(x)<0.故f(x)在区间(0,β)内单调递增,在区间内单调递减.又f(0)=0,f=1-ln1+>0,所以当x时,f(x)>0.从而,f(x)在区间上没有零点.(ⅲ)当x时,f'(x)<0,所以f(x)在区间内单调递减.而f>0,f(π)<0,所以f(x)在区间上有唯一零点.(ⅳ)当x∈(π,+∞)时,ln(x+1)>1,所以f(x)<0,从而f(x)在区间(π,+∞)内没有零点.综上,f(x)有且仅有2个零点.对点训练5解(1)f(x)=e x sin x,定义域为R.f'(x)=e x(sin x+cos x)=e x sin x+.由f'(x)<0得sin<0,解得2kπ+<x<2kπ+(k∈Z).∴f(x)的单调递减区间为2kπ+,2kπ+(k∈Z).(2)∵g'(x)=e x(sin x+cos x)-2,∴g″(x)=2e x cos x,g″(x)是g'(x)的导函数.∵x∈(0,π),∴当x时,g″(x)>0;当x ∈,π时,g″(x)<0.∴g'(x)在上单调递增,在上单调递减,又∵g'(0)=1-2<0,g'-2>0,g'(π)=-eπ-2<0,∴g'(x)在(0,π)上图象大致如图.∴∃x1,x2,使得g'(x1)=0,g'(x2)=0,且当x∈(0,x1)或x∈(x2,π)时,g'(x)<0;当x∈(x1,x2)时,g'(x)>0.∴g(x)在(0,x1)和(x2,π)上单调递减,在(x1,x2)上单调递增.∵g(0)=0,∴g(x1)<0.∵g-π>0,∴g(x2)>0.又∵g(π)=-2π<0,由零点存在性定理得,g(x)在(x1,x2)和(x2,π)内各有一个零点,∴函数g(x)在(0,π)上有两个零点.【例6】解(1)f'(x)=6x2-2ax=2x(3x-a).令f'(x)=0,得x=0或x=若a>0,则当x∈(-∞,0)时,f'(x)>0;当x时,f'(x)<0.故f(x)在(-∞,0),单调递增,在单调递减;若a=0,f(x)在(-∞,+∞)单调递增;若a<0,则当x(0,+∞)时,f'(x)>0;当x时,f'(x)<0.故f(x)在,(0,+∞)单调递增,在单调递减.(2)满足题设条件的a,b存在.(ⅰ)当a≤0时,由(1)知,f(x)在[0,1]单调递增,所以f(x)在区间[0,1]的最小值为f(0)=b,最大值为f(1)=2-a+b.此时a,b满足题设条件当且仅当b=-1,2-a+b=1,即a=0,b=-1.(ⅱ)当a≥3时,由(1)知,f(x)在[0,1]单调递减,所以f(x)在区间[0,1]的最大值为f(0)=b,最小值为f(1)=2-a+b.此时a,b满足题设条件当且仅当2-a+b=-1,b=1,即a=4,b=1.(ⅲ)当0<a<3时,由(1)知,f(x)在[0,1]的最小值为f=-+b,最大值为b或2-a+b.若-+b=-1,b=1,则a=3,与0<a<3矛盾.若-+b=-1,2-a+b=1,则a=3或a=-3或a=0,与0<a<3矛盾.综上,当且仅当a=0,b=-1或a=4,b=1时,f(x)在[0,1]的最小值为-1,最大值为1.对点训练6解(1)∵函数f(x)在[1,+∞)上单调递增,∴f'(x)=-ax-1≥0在[1,+∞)上恒成立.∴a,∴当x=2时,有最小值-,∴a≤-(2)∵f'(x)=-ax-1,∴f'(1)=1-a-1=-a.∵函数f(x)在x=1处的切线平行于x轴,∴a=0,∴f(x)=ln x-x.∵不等式x[f(x)+x-1]>k(x-2)在x>1时恒成立,∴x ln x-x>k(x-2)在x>1时恒成立,即x ln x-(k+1)x+2k>0在x>1时恒成立,令g(x)=x ln x-(k+1)x+2k,x>1,∴g'(x)=ln x-k,当k≤0时,g'(x)>0在(1,+∞)上恒成立, 即g(x)在(1,+∞)上单调递增,g(x)>g(1)=k-1>0,则k>1,矛盾,当k>0时,令g'(x)>0,解得x>e k,令g'(x)<0,解得1<x<e k, ∴g(x)在(1,e k)单调递减,在(e k,+∞)单调递增.∴g(x)min=g(e k)=k e k-(k+1)e k+2k=2k-e k>0,令h(k)=2k-e k,k>0,则h'(k)=2-e k,∵当k<ln2时,h'(k)>0,函数h(k)单调递增,当k>ln2时,h'(k)<0,函数h(k)单调递减,∴h(k)max=h(ln2)=2ln2-2=2(ln2-1)<0,∴不存在整数k使得2k-e k>0恒成立.综上所述不存在满足条件的整数k.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0<f′(3)<f(3)-f(2)<f′(2),故选 C. 答案:C 3. (2017·兰州诊断考试)曲线 y=x +11 在点 P(1,12)处的切线与两坐标轴围成三角形 的面积是( )
3
75 A.75 B. 2 1/8
27 C.27 D. 2 解析:本题考查导数的求法、导数的几何意义与直线的方程.依题意得 y′=3x ,y′|x
新高考数学二轮复习专题二函数与导数课时作业五导数的简单应用 理
[授课提示:对应学生用书第 79 页] 1.(2017·陕西宝鸡质检二)曲线 f(x)=xlnx 在点(e,f(e))(e 为自然对数的底数)处 的切线方程为( A.y=ex-2 C.y=ex+2 ) B.y=2x+e D.y=2x-e
解析:本题考查导数的几何意义以及直线的方程.因为 f(x)=xlnx,故 f′(x)=lnx +1,故切线的斜率 k=f′(e)=2,因为 f(e)=e,故切线方程为 y-e=2(x-e),即 y=2x -e,故选 D. 答案:D 2.(2017·四川名校一模)已知函数 f(x)的图象如图,f′(x)是 f(x)的导函数,则下列 数值排序正确的是( )
0
答案:A
2/8
1 2 6.函数 f(x)= x -lnx 的最小值为( 2
)
A.
1 2
B.1
C.0 D.不存在
1 x -1 解析: ∵f′(x)=x- = , 且 x>0.令 f′(x)>0, 得 x>1; 令 f′(x)<0, 得 0<x<1.∴f(x) x x 1 1 在 x=1 处取得最小值,且 f(1)= -ln1= . 2 2 答案:A 7.已知 m 是实数,函数 f(x)=x (x-m),若 f′(-1)=-1,则函数 f(x)的单调递增 区间是 ( 4 )
2 1
1-x2,x∈[-1, x2-1,x∈[1,2]
,则2 f(x)dx 的
-1
A. + C. +
解析: f(x)dx=
-1
-1
1 1 3 2 1-x dx+ (x -1)dx= π ×1 + x -x 2 3 1
2 2 1 2
2

π 4 + ,故 2 3
x
解析:由题意,知 f(0)=0,且 f′(x)=e -3,当 x∈(-∞,ln3)时,f′(x)<0,当
x
x∈(ln3,+∞)时,f′(x)>0,所以函数 f(x)在(-∞,ln3)上单调递减,在(ln3,+∞)
上单调递增,结合图象知只有选项 D 符合题意,故选 D. 答案:D
4 2 10.(2017·第一次诊断性检测)已知曲线 C1:y =tx(y>0,t>0)在点 M ,2处的切线 t
与曲线 C2:y=e A.4e C. e 4
2 2
x+1
+1 也相切,则 t 的值为(
)
B.4e e D. 4
t t t 4 解析: 由 y= tx, 得 y′= , 则切线斜率为 k= , 所以切线方程为 y-2= x- , 4 4 t 2 tx
即 y= x+1.设切线与曲线 y=e 4
=1 2
=3,因此该切线方程是 y-12=3(x-1),即 3x-y+9=0,该切线与两坐标轴的交点坐
1 27 标分别是(0,9),(-3,0),所求三角形的面积等于 ×9×3= ,故选 D. 2 2 答案:D 4.(2017·湘中名校高三联考)设 f(x)= 值为( π 2 π 4 ) 4 π B. +3 3 2 4 π D. +3 3 4
A.0<f′(2)<f′(3)<f(3)-f(2) B.0<f′(3)<f′(2)<f(3)-f(2) C.0<f′(3)<f(3)-f(2)<f′(2) D.0<f(3)-f(2)<f′(2)<f′(3) 解析:如图:
f′(3)、 f(3) - f(2)
f
-f 3-2
、 f′(2)分别表示直线 n , m , l 的斜率,故
t
x+1
+1 的切点为(x0,y0).由 y=e
x+1
+1,得 y′=e
x+1
,则
由 ex0 + 1 = , 得 切 点 坐 标 为 ln -1, +1 , 故 切 线 方 程 又 可 表 示 为 y - - 1 = 4 4 4 4 4
t
t
t

t
t
x-lnt+1,即 y=tx-tlnt+t+1,所以由题意,得-tlnt+t+1=1,即 lnt=2,解得 4 4 4 4 2 4 4 2 4
F F
2 2 2
4
f
e )
x
x
,若 F(x)
=-2, =c,

b=c, b=4,
∴f(x)=(x+2) ≥0,
2
f(x)min=0.
3/8
答案:C 9 .(2017·第一次模拟 ) 函数 f(x) = e - 3x - 1(e 为自然对数的底数 ) 的图象大致是 ( )
2 2
A.- ,0 3
B.0, 3
4

4
C.-∞,- ,(0,+∞) 3

D.-∞,- ∪(0,+∞) 3
解析: 因为 f′(x)=3x -2mx, 所以 f′(-1)=3+2m=-1, 解得 m=-2.所以 f′(x) =3x +4x. 4 2 由 f′(x)=3x +4x>0,解得 x<- 或 x>0, 3 4 即 f(x)的单调递增区间为-∞,- ,(0,+∞),故选 C. 3 答案:C 8.(2017·柳州二模)已知函数 f(x)=x +bx+c(b,c∈R),F(x)= 的图象在 x=0 处的切线方程为 y=-2x+c,则函数 f(x)的最小值是( A.2 B.1 C.0 D.-1 2x+b 2-2x-b 解析:∵f′(x)=2x+b,∴F(x)= x ,F′(x)= ,又 F(x)的图象在 x=0 x e e 处的切线方程为 y=-2x+c,∴
选 A. 答案:A 5.由曲线 y=x 和曲线 y= x围成的一个叶形图如图所示,则图中阴影部分面积为 ( )
2
A. C.
Байду номын сангаас
1 3 B. 3 10 1 1 D. 4 5
2
y=x , 解析:由 y= x,
x=0, 解得 y=0, x=1, 或 y=1,
1 2 所以阴影部分的面积为1 ( x-x )dx= .选 A. 3
相关文档
最新文档