绝对值不等式和不等式的证明

合集下载

绝对值不等式的证明及应用

绝对值不等式的证明及应用

绝对值不等式的证明及应用一、绝对值有关性质回顾:①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩②ab a b =,aa b b= (0)b ≠ ③22a a =④0a ≥ ⑤a a a -≤≤⑥x a a x a ≤⇔-≤≤ x a x a a ≥⇔≥≤-或 二、绝对值不等式:定理:绝对值三角不等式:a b a b a b-≤±≤+.(代数形式)a b a b a b -≤±≤+(向量形式)几何解释:三角形两边之和大于第三边,两边之差小于第三边.(0b a b ab +≤+≥取等号) 证明:方法一:()22+a b a b +≤, 2222+22a ab b a ab b +≤++, 22ab ab ≤,而22ab ab ≤显然成立,∴(0a b a b ab +≤+≥取等号)||||||a b a b +=====+||||||a b a b +===<==+方法二:(选修4-5证法) 当ab ≥0时, ||,ab ab =||,ab ab =-当ab <0时综上,a b a b +≤+ 0ab ≥当时,取等号, 方法三:(原人教版教材证法) ∵a a a -≤≤ ① b b b -≤≤ ②①+②:()a b a b a b -+≤+≤+, 逆用性质x a ≤得:a b a b +≤+推论1:123123.......n a a a a a a a +++≤++ ,当123,,,......n a a a a 都非正或都非负时。

a b a b -≤+.证明:方法一:当0a b -<时显然成立,当0a b -≥时,两边平方,()22a b a b-≤+, 222222a ab b a ab b -+≤++, 22ab ab -≤,而22ab ab -≤显然成立,∴a b a b -≤+,(当0ab <时取等号). 方法二:直接利用定理1a ab b a b b a b b =+-≤++-=++.当()()0a b b +-≥时,取等号.即()00a b b ab +≤⇒≤,取等号. 合在一起得:a b a b a b -≤+≤+.(当0ab ≤时左边取等号,当0ab ≥时右边取等号)(当0ab ≥时左边取等号, 当0ab ≤时左边取等号)证明:只需利用已有结论把a b a b a b -≤+≤+中的b 用b -代替即得到定理3.b ac b c -≤-+-证明:a b a c c b a c c b a c b c-=-+-≤-+-=-+-,(当()()0a c c b --≥时,取等号)几何解释:设A ,B ,C 为数轴上的3个点,分别表示数a ,b ,c ,则线段.CB AC AB +≤当且仅当C 在A ,B 之间时,等号成立。

不等式与绝对值不等式的证明与推广积分应用

不等式与绝对值不等式的证明与推广积分应用

不等式与绝对值不等式的证明与推广积分应用不等式与绝对值不等式的证明与推广在数学中,不等式是一种数学语句,用于比较两个量的大小关系。

而绝对值不等式则是一种特殊的不等式形式,主要用于研究绝对值的性质。

本文将探讨不等式与绝对值不等式的证明方法,并展示它们在积分应用中的推广。

一、不等式的证明方法不等式的证明是数学推理的重要部分,通常有以下几种常见的证明方法。

1.1. 直接证明法直接证明法是最常见的证明方法。

我们通过推导和运算,利用已知条件和逻辑推理推导出不等式的结论。

例如,对于形如a > b的不等式,我们可以令c = a - b,然后通过运算得到c > 0的结果,证明a > b。

1.2. 反证法反证法是一种通过假设不等式的反面,然后证明其矛盾来得出结论的方法。

假设不等式的反面成立,然后推导出矛盾的结论,从而证明原不等式是正确的。

例如,对于形如a > b的不等式,我们可以假设a≤ b,然后通过运算得到矛盾的结果,从而证明a > b。

1.3. 数学归纳法数学归纳法是证明关于整数的不等式的有效方法。

它包括两个步骤:首先证明当n = 1时不等式成立,然后假设对于任意n,不等式都成立,再证明对于n + 1时不等式也成立。

通过这种递推的方式,可以证明不等式对于所有整数都成立。

二、绝对值不等式的证明方法绝对值不等式是一类特殊的不等式,其中含有绝对值符号。

在证明绝对值不等式时,我们通常利用绝对值的性质进行推导。

2.1. 基于定义的证明绝对值不等式的定义是:|a| ≤ b等价于 -b ≤ a ≤ b。

我们可以利用这个定义,根据不等式的特点进行推导,来证明绝对值不等式的成立。

2.2. 基于绝对值性质的证明绝对值具有非负性、可加性、三角不等式等性质,我们可以将这些性质应用于绝对值不等式的证明中。

例如,对于形如|a - b| ≥ c的不等式,我们可以利用绝对值的可加性和基本不等式来推导出结果。

三、不等式与绝对值不等式的推广积分应用不等式和绝对值不等式在积分应用中有着广泛的应用。

第一讲 不等式和绝对值不等式综合

第一讲 不等式和绝对值不等式综合

1 已知: 求函数y=x y=x( 3x) 1. 已知:0<x< ,求函数y=x(1-3x)的最大值 3 配凑成和成 , 分析一、 原函数式可化为: 分析一、 原函数式可化为:y=-3x2+x, 定值 利用二次函数求某一区间的最值
分析二、 分析二、 挖掘隐含条件
3x> ∵3x+1-3x=1为定值, ∵3x+1-3x=1为定值,且0<x<1 则1-3x>0; 为定值 3 1 3x> 可用均值不等式法 ∵0<x< ,∴1-3x>0 ∵0< 3 1 3x +1− 3x 2 1 1• ∴y=x( 3x) 3x( 3x) ∴y=x(1-3x)= 3x(1-3x)≤ ( )= 3 12
a,b, x, y ∈ R
+
x + y 的最小值 a b ay xb x 解: + y = ( x + y ) ⋅ 1 = ( x + y )( + ) = a + b + +
x y x y
a b , + =1 且 x y
ay xb ≥ a+b+2 ⋅ = ( a + b)2 x y
ay xb = 当且仅当 x y
当且仅当a = b = c时,等号成立.
(2)a + b + c为定值时
a + b + c ≥ 3 abc
3
a+b+c 3 abc ≤ ( ) 3 当且仅当a = b = c时,等号成立.
关于“平均数”的概念: 关于“平均数”的概念: 1.如果 a1 , a2 ,L , an ∈ R , n > 1且n ∈ N
3
2
3x=1当且仅当 3x=1-3x 即x=1 时 y

不等式与绝对值不等式的证明与推广

不等式与绝对值不等式的证明与推广

不等式与绝对值不等式的证明与推广一、不等式的基本概念在数学中,不等式是一个用不等号连接的数学表达式。

不等式的解集是使不等式成立的所有实数的集合。

二、不等式的证明方法不等式的证明方法主要有以下几种:1. 直接证明法:根据不等式的条件,逐步推导出结论。

2. 反证法:假设不等式不成立,通过推理得出矛盾结论,从而证明不等式的正确性。

3. 数学归纳法:通过证明基本情况成立,并假设对于任意正整数n不等式成立,推导出n+1情况也成立。

4. 变量代换法:将不等式中的变量用新的符号表示,通过代换变换,将问题转化为更简单的形式。

5. 极值法:通过证明不等式的导数或极限存在和性质,来推导出不等式的成立。

三、绝对值不等式的证明绝对值不等式是一种特殊的不等式形式,其一般形式为|a|≥b,其中a和b是实数。

绝对值不等式的证明方法也有一些特殊的技巧。

1. 分情况讨论法:根据绝对值的定义,将不等式分为正数和负数两种情况,分别讨论并证明成立。

2. 平方法:利用平方的性质,将绝对值平方后,得到一个普通的不等式,进而证明原绝对值不等式的成立。

3. 三角不等式法:利用三角不等式的性质,将绝对值拆分为两个变量之和的形式,再利用其他不等式证明方式进行推导。

四、不等式的推广不等式的推广是指从一个已知的不等式出发,通过引入新的参数或条件,得到一类类似的不等式。

1. Cauchy-Schwarz不等式的推广:不等式的基本形式为∑(ai*bi)≤√(∑(ai^2))*√(∑(bi^2)),其中ai和bi 为实数。

通过引入新的参数或条件,可以推广为更多变形的不等式,如对于n个实数的情况,不等式形式为∑(ai*bi)≤(∑(ai^2))^k*(∑(bi^2))^(1-k),其中k为实数。

2. AM-GM不等式的推广:AM-GM不等式的基本形式为(a1+a2+...+an)/n ≥ √(a1*a2*...*an),其中ai为正实数。

通过引入新的参数或条件,可以推广为更多变形的不等式,如对于n个实数的情况,不等式形式为(a1+a2+...+an)/n ≥((a1^k+a2^k+...+an^k)/n)^(1/k),其中k为实数。

人教版数学七年级下册第九章《不等式的性质及绝对值不等式》优课件

人教版数学七年级下册第九章《不等式的性质及绝对值不等式》优课件
方法 2:设 f(x)=x-1+x-2, 则 f(x)=-1,2x1≤+x3≤,2 x<1
2x-3,x>2 画出此函数的图象可知,f(x)≥1, ∴要使关于 x 的不等式x-1+x-2≤a2+a+1 的解 集为空集,则需 a2+a+1<1,解得-1<a<0.
规律总结
1.运用不等式的性质时,一定要注意不等式成立的条 件,若弱化了条件或强化了条件都可能得出错误的结论.使 用不等式性质解题时,要搞清性质成立的条件,明确各步推 理的依据,以防出现解题失误.
命题趋势
本单元的内容,是对必修5的补充和深化,预计2011年, 考查的重点一是绝对值不等式的解法;二是利用不等式的 性质求最值;三是柯西不等式和数学归纳法的应用.考查 知识面比较广,有一定的技巧.
使用建议
本单元内容是作为高考的选考内容,在考试中所占的 分值较少,但对提高同学们的逻辑思维能力、分析解决问 题的能力、数形结合的能力和抽象思维能力作用很大.为 此,在复习中建议注意以下几点:
【点评】 本例较好地体现了利用基本不等式求 最值时应充分考虑成立条件,即一正二定三等.不过 首先需由三点共线推出a、b的关系式,利用斜率公式 可得.
变 式 题 已 知 cos2α + cos2β + cos2γ = 1 , 则 sinαsinβsinγ 的最大值为________.
【思路】利用均值不等式求最值时,一定要注意 “一正二定三相等”,同时还要注意一些变形技巧, 积极创造条件利用均值不等式.常用的初等变形有均 匀裂项、增减项、配系数等. 利用均值不等式还可以证 明条件不等式,关键是如何恰当地利用好条件.本题 中目标函数为积式,而cos2α+cos2β+cos2γ=1为隐含 的条件等式,故需创造条件使各因式之和为定值.

高中数学中的不等式与绝对值

高中数学中的不等式与绝对值

高中数学中的不等式与绝对值在高中数学中,不等式和绝对值是重要的概念和工具。

它们在解决实际问题、证明数学定理以及推导其他数学结论时起到了至关重要的作用。

本文将介绍不等式和绝对值的定义、性质,以及它们在数学中的应用。

一、不等式的定义和性质不等式是指含有大小关系的数学表达式,通常用不等号(<、>、≤、≥)表示。

【举例】通过以下例子来了解不等式的定义和性质:1. x + 2 > 5:表示x加上2的和大于5。

2. 3x - 4 ≤ 10:表示3x减去4的差小于或等于10。

不等式可通过一系列的代数运算进行求解。

在运算过程中,需要遵守不等式的运算规则:1.相同的不等式符号(<、>、≤、≥)可同时加减一个相同的数,不等式不会改变。

2.相同的不等式符号可同时乘或除一个正数,不等式不会改变。

但如果是乘或除一个负数,不等式符号会颠倒。

3.两个不等式可相加或相减,不等式的符号不变。

但需要注意运算过程中的符号规定,以确保不等式成立。

二、绝对值的定义和性质绝对值是指一个数到原点的距离,通常用 "|" 符号表示。

绝对值始终是非负的。

【举例】通过以下例子来了解绝对值的定义和性质:1. |3| = 3:绝对值3等于3。

2. |-5| = 5:绝对值-5等于5。

对于任意实数x和y,绝对值具有以下性质:1.非负性质:|x| ≥ 0,绝对值始终是非负的。

2.零绝对值性质:|x| = 0 当且仅当 x = 0。

3.同号绝对值等式:|xy| = |x|·|y| 当且仅当 x、y同号。

4.异号绝对值等式:|xy| = -|x|·|y| 当且仅当 x、y异号。

5.三角不等式:|x+y| ≤ |x| + |y|,任意两个数之和的绝对值小于等于它们绝对值之和。

三、不等式与绝对值的应用1.求解不等式:不等式与绝对值经常被用来求解数学问题。

例如,求解一个含有不等式的方程,确定一个变量的取值范围等。

绝对值函数和绝对值不等式

绝对值函数和绝对值不等式典型例题:【过关习题4】1.【2018年学考选考十校联盟,☆☆】已知a,b是实数,则“|a|≤1且|b|≤1”是“|a+b|+|a-b|≤2”的.A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.【2018年绍兴高三适应性考试,,☆☆】已知a>0,函数f(x)=|x2+|x-a|-3|在区间[-1,1]上的最大值是2,则a=.3.【2018年温州二模,17,,☆☆☆】已知f(x)=x2-ax,|f(f(x))|≤1在[1,2]上恒成立,则实数a的最大值为.4.【2017年绍兴诸暨二模,,☆☆☆☆】已知函数f(x)=|x2+ax+b|在区间[0,c]内的最大值为M(a,b∈R,c>0为常数)且存在实数a,b,使得M取最小值2,则a+b+c=.5.【☆☆】设正实数x,y,则|x-y|+的最小值为.6.【2017年杭州二模,10,☆☆】设函数f(x)=x2+ax+b(a、b∈R)的两个零点为x1、x2,若|x1|+|x2|≤2,则.A.|a|≥1B.|b|≤1C.|a+2b|≥2D.|a+2b|≤27.【2017年浙江4月份学考,☆☆】已知a,b∈R,a≠1,则|a+b|+的最小值为.8.【2017年浙江绍兴市柯桥中学5月质检,8,☆☆】已知x,y∈R,则.A.若|x2+y|+|x-y2|≤1,则B.若|x2-y|+|x-y2|≤1,则C.若|x+y2|+|x2-y|≤1,则D.若|x+y2|+|x2+y|≤1,则9.【2016年浙江高考,8,☆☆☆】已知实数a、b、c,下面四个选项中正确的是.A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100B.若|a2+b+c|+|a2+b-c|≤1,则a2+b2+c2<100C.若|a+b+c2|+|a+b-c2|≤1,则a2+b2+c2<100D.若|a2+b+c|+|a+b2-c|≤1,则a2+b2+c2<10010.【2017年杭州高级中学最后一模,17,☆☆】设实数x,y,z满足则|x|+|y|+|z|的最大值为.11.【2017年浙江名校协作体,7,☆】设f(x)=|2x-1|,若f(x)≥对任意的a≠0恒成立,则x的取值范围为.12.【2016年浙江样卷,☆】已知f(x)=ax2+bx+c,a、b、c∈R,且a≠0,记M(a,b,c)为|f(x)|在[0,1]上的最大值,则的最大值是.13.【☆☆】设函数f(x)=|x2+ax+b|,若对任意的实数a、b,总存在x0∈[0,4]使得f(x0)≥m成立,则实数m的取值范围是.14.【2017年浙江缙云、富阳、长兴联考,☆☆☆】已知函数f(x)=-x3-3x2+x,记M(a,b)为函数g(x)=|ax+b-f(x)|(a>0,b∈R)在[-2,0]上的最大值,则M(a,b)的最小值为.15.【2017年杭州一模,9,☆☆☆】设函数f(x)=x2+ax+b,记M为函数y=|f(x)|在[-1,1]上的最大值,N为|a|+|b|的最大值,则.A.若M=,则N=3B.若M=,则N=3C.若M=2,则N=3D.若M=3,则N=316.【2017年诸暨,☆☆☆】设函数f(x)=|ax+2+b|,若对任意的x∈[0,4],函数f(x)≤恒成立,则a+2b=.17.【浙江省绍兴市2017届高三二模,17,☆☆☆】已知对任意实数x都有|a cos2x+b sin x+c|≤1恒成立,则|a sin x+b|的最大值为.18.【浙江省嘉兴市2016届高三教学质量测试(二),14,☆☆】设max{a,b}=,已知x,y∈R,m+n=6,则F=max的最小值为.19.【☆☆】已知f(x)=ax2+bx+c(a≠0),若对任意的|x|≤1,都有|f(x)|≤1,则|a|+|b|+|c|的最大值为.20.【2014年湖南高考,☆☆】在直角平面坐标系xOy中,O为原点,A(-1,0),B(0,),C(3,0),动点D满足||=1,则|++|的最大值为.21.【浙江省2017年预赛,10,☆☆☆】已知f(x)=若方程f(x)+2+|f(x)-2|-2ax-4=0有三个不等的实数根x1,x2,x3,且x1<x2<x3,若x3-x2=2(x2-x1),则a=.22.【2006年辽宁,☆】已知函数f(x)=(sin x+cos x)-|sin x-cos x|,则f(x)的值域为.23.【2008年江西,☆】函数y=tan x+sin x-|tan x-sin x|在区间内的图像是.24.【浙江省绍兴市2015年高三教学质量调测,15,☆☆☆】当且仅当x∈(a,b)∪(c,d)(b≤c)时,函数f(x)=2x2+x+2的图像在函数g(x)=|2x+1|+|x-t|的下方,则b-a+d-c的取值范围为. 25.【2016高考浙江文数,☆☆】已知平面向量a,b,|a|=1,|b|=2,a·b=1.若e为平面单位向量,则|a·e|+|b·e|的最大值是______.26.【2014年四川预赛,9,☆☆】已知a、b为实数,对任何满足0≤x≤1的实数x,都有|ax+b|≤1成立,则|20a+14b|+|20a-14b|的最大值是.27.【2014年黑龙江预赛,14,☆☆】已知f(x)=g(x)=|x-k|+|x-1|,若对任意的x1,x2∈R,都有f(x1)≤g(x2)成立,则实数k的取值范围为.28.【2014年全国联赛,3,☆☆】若函数f(x)=x2+a|x-1|在[0,+∞)上单调递增,则实数a的取值范围是.29.【2015年湖北预赛,1,☆☆】若对任意实数x,|x+a|+|x+1|≤2a恒成立,则实数a的最小值为.30.【2016年山东预赛,1,☆☆☆】方程x=|x-|x-6||的解为.31.【2016年陕西预赛,12,☆☆】设x∈R,则函数f(x)=|2x-1|+|3x-2|+|4x-3|+|5x-4|的最小值为.32.【2016年浙江预赛,11,☆☆☆】设a∈R,方程||x-a|-a|=2恰有三个不同的实数根,则a=.33.【1982年全国,4,☆☆】由曲线|x-1|+|y-1|=1确定的曲线所围成的图形的面积是.A.1B.2C.πD.434.【2017年江苏预赛,5,,☆☆】定义区间[x1,x2]的长度为x2-x1.若函数y=|log2x|的定义域为[a,b],值域为[0,2],则区间[a,b]的长度的最大值和最小值的差为.35.【2018年浙江预赛,8,☆】设f(x)=|x+1|+|x|-|x-2|,则f(f(x))+1=0有个不同的解.36.【2015年全国,6,☆☆】在平面直角坐标系xOy中,点集K={(x,y)|(|x|+3|y|-6)(3|x|+|y|-6)≤0}所对应的平面区域的面积为.37.【2008年湖南预赛,9,☆☆☆】在平行直角坐标系中,定义点P(x1,y1),Q(x2,y2)之间的“直角距离”为d(P,Q)=|x1-x2|+|y1-y2|.若C(x,y)到点A(1,3)、B(6,9)的“直角距离”相等,其中实数x、y满足0≤x≤10,0≤y≤10,则所有满足条件点C的轨迹的长度之和为.38.【2014年湖北预赛,4,☆☆】在直角坐标系中,曲线|x-1|+|x+1|+|y|=3围成的图形的面积是.39.【2017年金华十校期末调研考试,9,☆☆】设x、y∈R,下列不等式成立的是.A.1+|x+y|+|xy|≥|x|+|y|B.1+2|x+y|≥|x|+|y|C.1+2|xy|≥|x|+|y|D.|x+y|+2|xy|≥|x|+|y|40.【2017年绍兴市高三教学质量调测,9,☆☆☆】记min{x,y}=设f(x)=min{x2,x3},则.A.存在t>0,|f(t)+f(-t)|>f(t)-f(-t)B.存在t>0,|f(t)-f(-t)|≥f(t)-f(-t)C.存在t>0,|f(1+t)+f(1-t)|>f(1+t)+f(1-t)D.存在t>0,|f(1+t)-f(1-t)|>f(1+t)-f(1-t)41.【浙江省2016届高三下学期第二次五校联考(理),18,☆☆☆】已知函数f(x)=ax2+bx+c,g(x)=c|x|+bx+a,对任意x∈[-1,1],|f(x)|≤.(I)求|f(2)|的取值范围;(II)证明:对任意的x∈[-1,1],都有|g(x)|≤142.【浙江省嘉兴市2016届高三期末考试,20,☆☆☆】已知函数f(x)=-x2+2bx+c,,设函数g(x)=|f(x)|在区间[-1,1]上的最大值为M.(I)若b=2,试求出M;(II)若M≥k对任意的b,c恒成立,试求出k的最大值.43.【2016四川预赛,16,☆☆☆☆】已知a为实数,函数f(x)=|x2-ax|-ln x,请讨论函数f(x)的单调性.。

不等式和绝对值不等式


小结:理解并熟练掌握基本不等式及 其应用,特别要注意利用基本不等式 求最值时, 一定要满足“一正二定三 相等”的条件。
作业:课本P10第7、8、10题,第11题为选
做题。
3、三个正数的算术-几何平均不等式
abc 3 定理3 如果a, b, c R,那么 abc,当且仅 3 当a b c时,等号成立。 即:三个正数的算术平均不小于它们的几何平均。
a b (1)若c>a>b>0,则 (真命题) c a c b 1 1 (2)若a>b, ,则a>0,b<0。 (真命题) a b
例5、已知f(x)=ax2+c,且-4≤f(1)≤-1,-1≤f(2)≤5, 求f(3)的取值范围。 f(3)的取值范围是[-1, 20]
例6、已知a>0,a2-2ab+c2 =0,bc>a2,试比较a、b、c 的大小。 解:因为bc>a2>0,所以b、c同号;又a2+c2=2ab>0,且
第一讲 不等式和绝对值不等式 1、不等式
1、不等式的基本性质:
a a b, b c ①、对称性: b b a 传递性:_________ a c
②、 a b, c R ,a+c>b+c
③、a>b, c 0 , 那么ac>bc;
a>b,
c 0 ,那么ac<bc
a b
两个正数的算术平均不小于它们的几何平均。
例3 求证:(1)在所有周长相同的矩形中,正方形的面 积最大;(2)在所有面积相同的矩形中,正方形的周长 最短。
结论:已知x, y都是正数。(1)如果积xy是定值p, p 那么当x=y时,和x+y有最小值2 ;(2)如果 和x+y是定值s,那么当x=y时,积xy有最大值 1 2 s 4

第一讲 不等式和绝对值不等式 知识归纳 课件(人教A选修4-5)


对于不等式恒成立求参数范围问题,常见类型及其解法
如下:
(1)分离参数法:
运用“f(x)≤a⇔f(x)max≤a,f(x)≥a⇔f(x)min≥a”可解决恒成立
中的参数范围问题.
(2)更换主元法:
不少含参不等式恒成立问题,若直接从主元入手非常 困难或不可能时,可转换思维角度,将主元与参数互换,
常可得到简捷的解法.
5 ②当- ≤x≤2 时, 2 3 原不等式变形为 2-x-2x-5>2x,解得 x<- . 5 5 3 ∴解集为{x|- ≤x<- }. 2 5 ③当 x>2 时,原不等式变形为 x-2-2x-5>2x, 7 解得 x<- ,∴原不等式无解. 3 3 综上可得,原不等式的解集为{x|x<- }. 5
2|≤1+2|y-2|+2≤5,即|x-2y+1|的最大值为5.
答案:5
3.(2011· 陕西高考)若不等式|x+1|+|x-2|≥a对任意x∈R 恒成立,则a的取值范围是________.
解析:令 f(x)=|x+1|+|x-2|= -2x+1x≤-1, 3-1<x<2, 2x-1x≥2, ∴f(x)≥3. ∵|x+1|+|x-2|≥a 对任意 x∈R 恒成立,∴a≤3.
[解析]
x+3z 由 x-2y+3z=0 得 y= , 2
2 2 y2 x +9z +6xz 6xz+6xz 则xz= ≥ =3, 4xz 4xz
当且仅当 x=3z 时取“=”.
[答案]
3ቤተ መጻሕፍቲ ባይዱ
1 1 1 [例 3] 设 a, c 为正实数, b, 求证:3+ 3+ 3+abc≥2 3. a b c 1 [证明]因为 a,b,c 为正实数,由平均不等式可得 3+ a

高中数学 第一讲 不等式和绝对值不等式 1.2 绝对值不

1.2.2 绝对值不等式的解法课堂导学三点剖析一、绝对值不等式的典型类型和方法(一) 【例1】 解下列不等式: (1)1<|x+2|<5; (2)|3-x|+|x+4|>8.解析:(1)法一:原不等式⇔⎩⎨⎧<<--<->⇔⎩⎨⎧<+<->+⇔⎩⎨⎧<+>+.37,31525125|2|1|2|x x x x x x x 或 故原不等式的解集为{x|-1<x<3或-7<x<-3}.法二:原不等式⎩⎨⎧<--<<+⎩⎨⎧<+<≥+⇔521,02521,02x x x x 或, ⇔⎩⎨⎧-<<--<⎩⎨⎧<<--≥⇔37,231,2x x x x 或-1<x<3或-7<x<-3.∴原不等式的解集为{x|-1<x<3或-7<x<3}.(2)法一:原不等式⎩⎨⎧>++-<<-⎩⎨⎧>---≤⇔,843,34843,4x x x x x x 或⎩⎨⎧>≥⎩⎨⎧><<-⎩⎨⎧>---≤⇔⎩⎨⎧>++-≥.72,387,34821,4843,3x x x x x x x x 或或或 ∴x>27或x<29-. ∴原不等式的解集为{x|x<29-或x>27}.法二:将原不等式转化为|x-3|+|x+4|-8>0,构造函数y=|x-3|+|x+4|-8,即y=⎪⎩⎪⎨⎧≥-<<---≤--.3,72,34,1,492x x x x作出函数的图象如图.从图象可知当x>27或x<29-时,y>0,故原不等式的解集为{x|x>27或x<29-}. 温馨提示在本例中主要利用了绝对值的概念,|x|<a(或|x|>a)的解集以及数形结合的方法,这些方法都是解绝对值不等式的典型方法. 各个击破 类题演练1 解下列不等式:(1)|432-x x|≤1; (2)|x+3|-|2x-1|>2x+1.解析:(1)原不等式⎩⎨⎧≥+-±≠⇔⎪⎩⎪⎨⎧-≤≠-⇔016172)4(904242222x x x x x x ⇔⎩⎨⎧≥≤±≠⇔161222x x x 或-1≤x≤1或x≤-4或x≥4. 故原不等式的解集为{x|-1≤x≤1或x≤-4或x≥4}. (2)由x+3=0,得x 1=-3, 由2x-1=0,得x 2=21. ①当x<-3时,不等式化为x-4>2x+1,解得x>10,而x<-3,故此时无解; ②当-3≤x<21时,不等式化为3x+2>2x +1,解得x>52-,这时不等式的解为52-<x<21;③当x≥21时,不等式化为-x+4>2x +1,即x<2,这时不等式的解为21≤x<2.综合上述,原不等式的解集为{x|52-<x<2}.变式提升1(1)解不等式|x 2-5x+5|<1.解析:不等式可化为-1<x 2-5x+5<1,即⎪⎩⎪⎨⎧->+-<+-.155,15522x x x x解之,得1<x<2或3<x<4.所以原不等式的解集为{x|1<x<2或3<x<4}.(2)求使不等式|x-4|+|x-3|<a 有解的a 的取值范围. 解法一:将数轴分为(-∞,3),[3,4],(4,+∞)三个区间. 当x<3时,得(4-x)+(3-x)<a,x>27a -有解条件为27a-<3,即a>1; 当3≤x≤4,得(4-x)+(x-3)<a,即a>1; 当x>4时,得(x-4)+(x-3)<a,则x<27+a有解条件为27+a >4.∴a>1. 以上三种情况中任何一个均可满足题目要求,故是它们的并集,即仍为a>1.解法二:设数x 、3、4在数轴上对应的点分别为P 、A 、B,由绝对值的几何意义,原不等式即求|PA|+|PB|<a 成立.因为|AB|=1,故数轴上任一点到A 、B 距离之和大于(等于)1,即|x-4|+|x-3|≥1,故当a>1时,|x-4|+|x-3|<a 有解.另外,本题还可利用绝对值不等式性质求函数的最值方法处理: ∵|x -4|+|x-3|=|x-4|+|3-x| ≥|x -4+3-x|=1,∴a 的取值范围是a>1.二、绝对值不等式的典型类型和方法(二)【例2】 解不等式|x 2-9|≤x+3.解析:方法一:原不等式⎪⎩⎪⎨⎧+≤-≥-⇔39,0922x x x ⎪⎩⎪⎨⎧+≤-≥-39,0922x x x 或 由①得x=-3或3≤x≤4,由②得2≤x<3,∴原不等式解集是{x|2≤x≤4或x=-3}.方法二:原不等式⎪⎩⎪⎨⎧≤≤--≤-≥⇔⎩⎨⎧+≤-≤+-≥+⇔433339)3(032x x x x x x x x ⇔或2≤x≤4. ∴原不等式的解集为{x|x=-3或2≤x≤4}. 温馨提示对于|f(x)|≤g(x)型的不等式,通常有两种思路,一种是利用绝对值的意义,将其转化为f(x)≥0,⎩⎨⎧≤-<⎩⎨⎧≤≥).()(,0)()()(,0)(x g x f x f x g x f x f 或 另一种则是转化为⎩⎨⎧≤≤-≥)()()(,0)(x g x f x g x g 来求.当然也可直接转化为-g(x)≤f(x)≤g(x)来解(为什么?请同学们思考). 类题演练2解不等式|2x-1|>3x.解析:①当x<0时,原不等式显然成立;②当x≥0时,两端平方,得(2x-1)2>9x 2,即5x 2+4x-1<0,解之,得-1<x<51, ∴0≤x<51. 由①②知原不等式的解集为{x|x<51}. 变式提升2(1)解不等式|x 2-3x+2|>x 2-3|x|+2.解析:在同一坐标系内分别画出函数y=|x 2-3x+2|和y=x 2-3|x|+2=|x|2-3|x|+2的图象(如图所示).由图可知,原不等式的解集为{x|x<0或1<x<2}. (2)解不等式|x+1|(x-1)≥0. 解析:1° x+1=0,适合不等式;2° x+1≠0,则|x+1|>0,故原不等式等价于x-1≥0,∴x≥1,显然x+1≠0. ∴原不等式的解集为{x|x≥1或x=-1}. 三、绝对值不等式的证明【例3】 设f(x)=ax 2+bx+c,当|x|≤1时,总有|f(x)|≤1,求证:当|x|≤2时,|f(x)|≤7. 证明:由于f(x)是二次函数,|f(x)|在[-2,2]上的最大值只能是|f(2)|,|f(-2)|或|f(a b 2-)|,故只要证明|f(2)|≤7,|f(-2)|≤7;当|a b 2-|≤2时,有|f(ab 2-)|≤7. 由题意有|f(0)|≤1,|f(-1)|≤1,|f(1)|≤1.由⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=--+=⎪⎩⎪⎨⎧+-=-++==).0()],1()1([21)],0(2)1()1([21,)1(,)1(,)0(f c f f b f f f a c b a f c b a f c f 得∴|f(2)|=|4a+2b+c|=|3f(1)+f(-1)-3f(0)|≤3|f(1)|+|f(-1)|+3|f(0)|≤3+1+3=7, |f(-2)|=|4a-2b+c|=|f(1)+3f(-1)-3f(0)|≤|f(1)|+3|f(-1)|+3|f(0)|≤1+3+3=7. ∵|b|=21|f(1)-f(-1)|≤21(|f(1)|+|f(-1)|)≤21(1+1)=1, ∴当|ab2-|≤2时,|f(a b 2-)|=|a b ac 442-|=|c a b 42-|=|c a b 2-·2b |≤|c|+|a b 2|·2||b ≤1+2×21=2<7.因此当|x|≤2时,|f(x)|≤7.类题演练3已知f(x)=x 2+ax+b(x 、a 、b∈R ,a 、b 是常数),求证:|f(1)|、|f(2)|、|f(3)|中至少有一个不小于21. 证明:假设|f(1)|、|f(2)|、|f(3)|全都小于21,即有|f(1)|<21,|f(2)|<21,|f(3)|<21. 于是|f(1)+f(3)-2f(2)|≤|f(1)|+|f(3)|+2|f(2)|<21+21+2×21=2.又f(1)+f(3)-2f(2)=2,二者产生矛盾,故|f(1)|、|f(2)|、|f(3)|中至少有一个不小于21. 变式提升3已知函数f(x)=ax+b,满足|x|≤1,a 2+b 2=1,求证:|f(x)|≤2.证法一:|f(x)|≤2⇔2-≤f(x)≤2⇔f(x)min ≥2-且f(x)max ≤2.若a>0,则f(x)max =f(1)=a+b≤2)(222=+b a ,f(x)min =f(-1)=-a+b≥2])[(222-=+--b a . 若a=0,则f(x)=b 且b 2=1, ∴|f(x)|≤2.若a<0,则f(x)max =f(-1)=-a+b≤2)(222=+b a ,f(x)min =f(1)=a+b≥2)(222-=+-b a . 综上,知不等式成立. 证法二:|f(x)|2-(2)2=(ax+b)2-2(a 2+b 2)=a 2x 2+b 2+2abx-2(a 2+b 2)≤a 2+b 2+2abx-2(a 2+b 2)=2abx-a 2-b 2≤2abx -a 2x 2-b 2=-(ax-b)2≤0, ∴|f(x)|≤2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝对值不等式和不等式的证明
【2011⋅新课标全国理,24】选修4—5:不等式选讲
设函数()3f x x a x =-+,其中0a >. (Ⅰ)当1a =时,求不等式()32f x x ≥+的解集; (Ⅱ)若不等式()0f x ≤的解集为{|1}x x ≤-,求a 的值.
【评注】对含含绝对值的题目,关键是去绝对值,取绝对值的方法可以平方,也可以通过分类讨论,平方时注意不等式平方的条件,分类讨论时要做到不重不漏.
【2010⋅新课标全国理,24】选修4-5,不等式选讲设函数
()241f x x =-+
(Ⅰ)画出函数()y f x =的图像
(Ⅱ)若不等式()f x ≤ax 的解集非空,求a 的取值范围。

【解析】
(Ⅰ)由于
252()23x x f x x -+<⎧=⎨
-≥⎩,,x 2则函数()y f x =的图像如图所示。

(Ⅱ)由函数()y f x =与函数y ax =的图像可知,当且仅当
1
2a ≥
或2a <-时,函数()y f x =与函数y ax =的图像有交
点。

故不等式()f x ax ≤的解集非空时,a 的取值范围为
()122⎡⎫
-∞-+∞⎪⎢⎣⎭,
,。

命题意图:本题主要考查含有绝对值的函数图象与性质以及不等式问题,考查利用数形结合解决问题的能力.
4.用参数配方法讨论柯西不等式的一般情况:∑i =1
n
a i 2
·∑i =1
n
b i 2
≥∑i =1
n
c i 2
.
5.用向量递归方法讨论排序不等式.
6.了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题.
7.会用数学归纳法证明贝努利不等式: (1+x )n >1+nx (x >-1,n 为正整数). 了解当n 为实数时贝努利不等式也成立.
8.会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值.
解集.
S4 这些解集的并集就是原不等式的解集. 解法2:构造函数f (x )=|x -a |+|x -b |-c ,写出f (x )的分段解析式作出图象,找出使f (x )≤0(或f (x )≥0)的x 的取值范围即可.
解法3:利用绝对值的几何意义求解,|x -a |+|x -b |表示数轴上点P (x )到点A (a )、B (b )距离的和.关键找出到A 、B 两点距离之和为c 的点,“≤”取中间,“≥”取两边.
注意这里c ≥|a -b |,若c <|a -b |,则|x -a |+|x -b |≤c 的解集为∅,|x -a |+|x -b |≥c 的解集为R.
若a >b >n >0,m >0,则
b -n a -n <b a <b +m
a +m
. 3、不等式的证明方法
(1)比较法:依据a >b ⇔a -b >0,a <b ⇔a -b <0来证明不等式的方法称作比较法.
1.一般形式:
设a 1、a 2、…、a n 、b 1、b 2、…、b n 为实数,则(a 12+a 22+…+a n 2)12(b 12+b 22+…+b n 2)1
2
≥|a 1b 1
+a 2b 2+…+a n b n |.
其中等号成立⇔a 1b 1=a 2
b 2=…=a n b n
(当某b j =0时,认为a j =0,j =1,2,…,n ).
【方法技巧提炼】
1.绝对值三角不等式定理的应用
对于绝对值三角不等式定理:|a |-|b |≤|a ±b |≤|a |+|b |,要从以下两个方面深刻理解: (1)两端的等号成立的条件在解题时经常用到,特别是用此定理求函数的最大(小)值时. (2)该定理可以推广为|a +b +c |≤|a |+|b |+|c |,也可强化为||a |-|b ||≤|a ±b |≤|a |+|b |,它们经常用于含绝对值的不等式的推证. 例1 f (x )=|3-x |+|x -2|的最小值为________. 解析:∵|3-x |+|x -2|≥|3-x +(x -2)|=1, ∴f (x )min =1.
2.绝对值不等式的解法
(1)形如|x +a |±|x -b |≥c 不等式的解法常用零点分段讨论法,其步骤为:
①求零点;②划分区间、去绝对值号;③分别解去掉绝对值的不等式;④取每个结果的并集,特别注意在分段时不要漏掉区间的端点值.
(2)上述不等式也可用|x -a 1|±|x -a 2|的几何意义去求解集. 3.绝对值不等式的证明
含绝对值不等式的证明题主要分两类:一类是比较简单的不等式,往往可通过公式法、平方法、换元法等去掉绝对值转化为常见的不等式证明题,或利用绝对值三角不等式性质定理:||a |-|b ||≤|a ±b |≤|a |+|b |,通过适当的添、拆项证明;另一类是综合性较强的函数型含绝对值的不等式,往往可考虑利用一般情况成立则特殊情况也成立的思想,或利用一元二次方程的根的分布等方法来证明.
【新题预测演练】
1.【2012年河北省普通高考模拟考试】
选修4—5:不等式选讲
已知函数()|1||3|f x x x =-++.
(Ⅰ)求x 的取值范围,使()f x 为常函数;
(Ⅱ)若关于x 的不等式()0f x a -≤有解,求实数a 的取值范围.
【解析】:
(Ⅰ)22,3
()1|3|4,3122,1x x f x x x x x x --<-⎧⎪
=-++=-≤≤⎨⎪+>⎩
………..4分
则当[3,1]x ∈-时,)(x f 为常函数. ………..5分 (Ⅱ)由(1)得函数()f x 的最小值为4, ………..8分 则实数a 的取值范围为4a ≥. …..10分
3.【河南省2012年普通高中毕业班高考适应性测试】
选修4—5:不等式选讲 设函数()|31| 3.f x x ax =-++
(1)若a=1,解不等式()5f x ≤;
(2)若函数()f x 有最小值,求实数a 的取值范围。

(Ⅰ)1a =时,()|31|3f x x x =-++.
(),
,22250.
250a a x x x a x x a x ⎧⎧
<≥⎪⎪⎨
⎨⎪⎪--+≤-+≤⎩⎩或 ---------------------7分 即,,22.73a a x x a a x x ⎧⎧
≥<⎪⎪⎪⎪⎨⎨⎪⎪≤≤-⎪⎪⎩⎩
或 因为0a >,所以不等式组的解集为,3a x x ⎧⎫
≤-⎨⎬⎩⎭
由题设可得13
a
-
=-,故 3.a =---------------------------10分
(II )若关于x 不等式()230f x t +-≤有解,求参数t 的取值范围. 解:
(Ⅰ)f (x )=⎩⎪⎨⎪⎧-x +3,x <-3,
-3x -3,-3≤x ≤0,x -3,x >0.
如图,函数y =f (x )的图象与直线y =7相交于
横坐标为x 1=-4,x 2=10的两点, 由此得S =[-4,10]. …6分 (Ⅱ)由(Ⅰ)知,f (x )的最小值为-3, 则不等式f (x )+|2t -3|≤0有解必须且只需-3+|2t -3|≤0, 解得0≤t ≤3,
所以t 的取值范围是[0,3].
…10分
7.【2012年河南郑州高中毕业年级第一次质量预测】
选修4-5:不等式选讲
10
-4 O
7 x
y
-3
6 -
3
已知函数()()R a x a x x f ∈---=12.
(Ⅱ)若关于x 的不等式)(x f >a 恒成立,求实数a 的取值范围.。

相关文档
最新文档