成都七中九年级上期期中数学试卷
四川省成都市第七中学2024-—2025学年上学期10月月考九年级数学试题

四川省成都市第七中学2024-—2025学年上学期10月月考九年级数学试题一、单选题1.下列方程是一元二次方程的是()A .20ax bx c ++=B .320x x -=C .17x y+=D .227x x -=2.如图,在ABC V 中,90ACB ∠=︒,10AB =,点D 为斜边AB 上的中点,则CD 为()A .10B .3C .5D .43.把一元二次方程(1)(1)3x x x +-=化成一般形式,正确的是()A .2310x x --=B .2310x x -+=C .2310x x +-=D .2310x x ++=4.下列不属于菱形性质的是()A .四条边都相等B .两条对角线相等C .两条对角线互相垂直D .每一条对角线平分一组对角5.用配方法解一元二次方程时,首先把2650x x +-=化成()2x a b +=(a 、b 为常数)的形式,则a b +的值为()A .8B .11C .14D .176.如图,在矩形ABCD 中,点A 的坐标是()3,0-,点C 的坐标是()3,8,则BD 的长为().A .6B .8C .D .107.已知四边形ABCD 是平行四边形,下列说法正确的是()A .当AB BC =时,四边形ABCD 是矩形B .AC BD ⊥时,四边形ABCD 是菱形C .当90ABC ∠=︒时,四边形ABCD 是菱形D .当AC BD =时,四边形ABCD 是正方形8.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为2570m .若设道路的宽为m x ,则下面所列方程正确的是()A .2322202570x x x +⨯-=B .322203220570x x +⨯=⨯-C .(322)(20)3220570x x --=⨯-D .()()32220570x x --=二、填空题9.一元二次方程261x x =+的一次项系数是.10.关于x 一元二次方程220240x x m -+=有一个根是1x =,则m 的值是.11.如图,在平面直角坐标系中,O 是坐标原点,四边形OABC 是正方形,点A 的坐标为()3,4,则点B 的坐标为.12.如图,正方形ABCD 中,E 在BC 延长线上,AE ,BD 交于点F ,连接FC ,若32E ∠= ,那么BCF ∠的度数是.13.如图,以矩形ABCD 的顶点A 为圆心,AD 长为半径画弧交CB 的延长线于E ;过点D 作DF AE ∥交BC 于点F ,连接AF ,45AB AD ==,,则AF 的长是.三、解答题14.解方程:(1)2(1)4x -=;(2)2254x x -=;(3)()()2323x x +=+.15.如图,菱形ABCD 的两条对角线相交于点O ,若菱形的边长是28150x x -+=的一个根,且8AC =,求该菱形的面积.16.先化简,再求值:22121124a a a a -+⎛⎫+÷ ⎪--⎝⎭,其中a 是一元二次方程2560x x -+=的实数根.17.如图,在平行四边形ABCD 中,对角线AC 、BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若AB =2BD =,求OE 的长度.18.如图1,四边形ABCD 是平行四边形,延长AB 至点E ,使得BE AB =,连接BD 和CE .(1)若CB 平分DBE ∠,求证:四边形BECD 是菱形;(2)如图2,将CBE △沿直线BC 翻拆点E 刚好落在线段AD 的中点F 处,延长CF 与BA 的延长线相交于点H ,并且CF 和BD 交于点G ,试求线段CH 、FG 、GB 之间的数量关系;(3)如图3,将CBE △沿直线BC 翻折,点E 刚好落在线段AD 上的点F 处,若6AD =,3DC =,且2FD FA =,求DFC S 的面积.四、填空题19.已知a 为方程2360x x --=的一个根,则代数式2625a a -+的值为.20.如图,在ABC V 中,30A ∠=︒,90B Ð=°,6BC =,将ABC V 沿中位线DE 剪开后,把得到的两部分拼成一个平行四边形,所得到的平行四边形的周长是.21.如图,在菱形ABCD 中,∠B =60°,E ,H 分别为AB ,BC 的中点,G ,F 分别为线段HD ,CE 的中点.若线段FG 的长为2AB 的长为.22.定义:我们把形如0123111x x x x ++++⋯的数成为“无限连分数”.如果a 是一个无理数,那么a就可以展成无限连分数,例如:11212122=++++⋯,如果1111111x =++++⋯,则x =.23.如图,在菱形ABCD 中,60A ∠=︒,点M 是AD 边的中点,点N 是菱形内一动点,连接MN ,BN,且满足MN BN +=ABCD 面积的最大值为.五、解答题24.如图,用篱笆靠墙围成矩形花圃ABCD ,墙可利用的最大长度为15米,花圃一面利用墙,其余三面用篱笆围成,篱笆总长为24米.(1)若围成的花圃面积为40平方米时,求BC 的长;(2)围成的花圃面积能否为75平方米,如果能,请求BC 的长;如果不能,请说明理由.25.如图,在平面直角坐标系中,点A ,B 分别在x 轴,y 轴正半轴上,2AO BO =,点(3.0)C (A 点在C 点的左侧),连接AB ,过点A 作AB 的垂线,过点C 作x 轴的垂线,两条垂线交于点D ,已知ABO DAC △≌△,直线BD 交x 轴于点E .(1)求直线AD 的解析式;(2)延长BA 到点M ,交DC 的延长线于点N ,连接DM ,若DM DB =,求MN 的长;(3)如图2,在直线AD 上找一点G ,直线BD 上找一点P ,直线CD 上找一点Q ,使得四边形AQPG 是菱形,求出P 点的坐标.26.已知,四边形ABCD 是正方形,DEF 绕点D 旋转()DE AB <,90EDF ∠=︒,DE DF =,连接AE ,CF .(1)如图1,求证:ADE CDF V V ≌;(2)直线AE 与CF 相交于点G .①如图2,,BM AG ⊥于点M ,⊥BN CF 于点N ,求证:四边形BMGN 正方形;②如图3,连接BG ,若5AB =,3DE =,直接写出在DEF 旋转的过程中,线段BG 长度的最小值.。
四川省成都市第七中学初中学校2023-2024学年九年级(上)期末数学试卷(含解析)

2023-2024学年四川省成都七中初中学校九年级(上)期末数学试卷一、选择题(每小题4分,共32分)1.(4分)下列几何体中,从正面看和从左面看形状相同的几何体有( )A.1个B.2个C.3个D.4个2.(4分)下列说法正确的是( )A.菱形的对角线相等B.矩形的对角线相等且互相平分C.平行四边形是轴对称图形D.对角线互相垂直且相等的四边形是正方形3.(4分)方程5x2﹣1=4x的二次项系数和一次项系数分别为( )A.5和4B.5和﹣4C.5和﹣1D.5和14.(4分)两个矩形按如图所示方式放置,若∠1=150°,则∠2=( )A.15°B.30°C.45°D.60°5.(4分)如图,四边形ABCD是菱形,连接AC,BD交于点O,过点A作AE⊥BC,交BC 于点E,若AC=4,BD=6,则CE的长度是( )A.B.C.D.6.(4分)用如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率为( )A.B.C.D.7.(4分)如图,在平行四边形ABCD中,点E在边AD上,AE:DE=1:2,连接AC,BE 交于点F,则S△AEF:S△BCF=( )A.1:3B.1:4C.1:2D.1:98.(4分)函数和y=﹣kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是( )A.B.C.D.二、填空题(每小题4分,共20分)9.(4分)已知关于x的方程x2+2x+k=0有两个相等的实数根,则k的值是 .10.(4分)若A(x1,y1),B(x2,y2)都在函数的图象上,且y1>y2>0,则x1 x2(选填“>”,“<”或“=”).11.(4分)如图是一位同学用激光笔测量某古城墙高度的示意图.该同学将一个平面镜水平放置在点P处,从点A射入的光线经平面镜反射后刚好照到古城墙CD的顶端C处,已知AB⊥BD,测得AB=1.5m,BP=2m,DP=6m,则古城墙的高度CD是 米.12.(4分)如图,在平面直角坐标系中,△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,点B、B′的坐标分别为(8,2)、(16,4),若点A的坐标为(5,6),则点A′的坐标为 .13.(4分)如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为5cm2,则OC的长为 cm.三、解答题(共48分)14.(12分)解方程:(1)2x2+3=﹣7x;(2)x2﹣6x+2=0.15.(8分)已知关于x的一元二次方程x2﹣4x+c+3=0有两个不相等的实数根.(1)若该方程的一个实数根为﹣1,求另一个实数根;(2)若该方程的两个不相等的实数根为α和β,且,求c的值.16.(10分)我市某中学举行“中国梦•我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有 名,在扇形统计图中,表示“D等级”的扇形的圆心角为 度,图中m的值为 ;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出两名去参加市中学生演讲比赛,已知A等级中男生只有1名,请用画树状图或列表的方法求出所选学生恰是一男一女的概率.17.(8分)如图,已知△ABC∽△ACD.(1)若CD平分∠ACB,∠ACD=35°,求∠ADC的度数;(2)若AD=3,BD=5,求AC的长.18.(10分)如图,一次函数y=kx+b的图象与反比例函数的图象相交于点A (﹣1,6),与x轴交于点C,且∠ACO=45°.(1)求反比例函数与一次函数关系式;(2)点D是线段AC上一点,且∠AOD=45°,求出D点坐标;(3)在(2)的条件下,在x轴上找一点P,使△ODP的面积与△AOD的面积相等,直接写出点P的坐标.一、填空题(每小题4分,共20分)19.(4分)已知a,b是方程x2+x﹣1=0的两个根,则ab﹣2024a﹣2024b的值是 .20.(4分)如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=2,以C为圆心,BC的长为半径画弧交AC于点D,以A为圆心,AD的长为半径画弧交AB于点E,则= .21.(4分)如图,Rt△ABC中,∠C=90°,AC=4,BC=3,点P、Q分别为AB、BC上的动点,将△PQB沿PQ折叠,使点B们对应点D恰好落在边AC上,当△APD与△ABC 相似时,AP的长为 .22.(4分)如图,在平面直角坐标系中,Rt△AOB的边OA在y轴上,OB在x轴上,反比例函数y=(k≠0)与斜边AB交于点C、D,连接OD,若AC:CD=2:3,S△OBD=,则k的值为 .23.(4分)如图,在平面直角坐标系xOy中,点A,C分别在坐标轴上,且四边形OABC 是边长为3的正方形,反比例函数的图象与BC,AB边分别交于E,D两点,△DOE的面积为4,点P为y轴上一点,则PD+PE的最小值为 .二、解答题(共30分)24.(8分)某电商在“抖音”上直播带货,已知该产品的进货价为70元件,为吸引流量,该电商在直播中承诺自家商品价格永远不会超过99元/件,根据一个月的市场调研,商家发现当售价为110元/件时,日销售量为20件,售价每降低1元,日销售量增加2件.(1)求销售量y(件)与售价x(元/件)的函数关系式;(2)该产品的售价每件应定为多少,电商每天可盈利1200元?25.(10分)【基础巩固】(1)如图1,在四边形ABCD中,对角线BD平分∠ABC,∠ADB=∠DCB,求证:BD2=BA•BC;【尝试应用】(2)如图2,四边形ABCD为平行四边形,F在AD边上,AB=AF,点E在BA延长线上,连结EF,BF,CF,若∠EFB=∠DFC,BE=5,BF=6,求AD的长;【拓展提高】(3)如图3,在△ABC中,D是BC上一点,连结AD,点E,F分别在AD,AC上,连结BE,CE,EF,若DE=DC,∠BEC=∠AEF,BE=24,EF=10,,求的值.26.(12分)如图1,y=kx﹣3(k≠0)的图象与y轴交于点B,与反比例函数y=(x>0)的图象交于点A(8,1).(1)求一次函数和反比例函数的表达式;(2)点C是线段AB上一点(不与A,B重合),过点C作y轴的平行线与该反比例函数的图象交于点D,连接OC,OD,AD,当四边形OCAD的面积等于24时,求点C的坐标;(3)在(2)的前提下,将△OCD沿射线BA方向平移一定的距离后,得到△O′C′D ′,若点O的对应点O′恰好落在该反比例函数图象上,是否在此反比例函数图象上存在点M,使得∠O′CM=∠O′CC′,若存在,请直接写出M点的坐标;若不存在,请说明理由.2023-2024学年四川省成都七中初中学校九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题4分,共32分)1.(4分)下列几何体中,从正面看和从左面看形状相同的几何体有( )A.1个B.2个C.3个D.4个【分析】分别判断这四个几何体从正面看和从左面看的形状,进而求解.【解答】解:球从正面看和从左面看都是圆,形状相同;三棱柱从正面看是长方形,从左面看是三角形,形状不同;圆锥从正面看和从左面看都是三角形,形状相同;圆柱从正面看和从左面看都是长方形,形状相同;综上,从正面看和从左面看形状相同的几何体有3个;故选:C.【点评】本题考查了从不同方向看几何体,正确判断从正面看和从左面看的形状是关键.2.(4分)下列说法正确的是( )A.菱形的对角线相等B.矩形的对角线相等且互相平分C.平行四边形是轴对称图形D.对角线互相垂直且相等的四边形是正方形【分析】利用平行四边形的性质,矩形的判定,菱形的性质,正方形的判定依次判断可求解.【解答】解:A、菱形的对角线互相垂直,故选项A不符合题意;B、矩形的对角线相等且互相平分,故选项B符合题意;C、平行四边形不一定是轴对称图形,故选项C不符合题意;D、对角线互相垂直且相等的四边形不一定是正方形,故选项D不符合题意;故选:B.【点评】本题考查了矩形的判定,平行四边形的性质,菱形的性质,正方形的判定等知识,灵活运用这些判定和性质解决问题是解题的关键.3.(4分)方程5x2﹣1=4x的二次项系数和一次项系数分别为( )A.5和4B.5和﹣4C.5和﹣1D.5和1【分析】根据一元二次方程的一般形式ax2+bx+c=0(a≠0),a、b、c分别叫二次项系数、一次项系数、常数项,选择答案即可.【解答】解:∵将方程5x2﹣1=4x整理得:5x2﹣4x﹣1=0,∴二次项系数为5,一次项系数为﹣4,故选:B.【点评】本题考查了一元二次方程的一般形式,理解一元二次方程的一般形式是解题的关键.4.(4分)两个矩形按如图所示方式放置,若∠1=150°,则∠2=( )A.15°B.30°C.45°D.60°【分析】根据各角度与直角的关系直接求解即可.【解答】解:由图可知∠3=180°﹣∠1=180°﹣150°=30°,因为四边形是矩形,即∠5=90°,所以∠4=90°﹣30°=60°,所以∠2=90°﹣60°=30°,故选:B.【点评】此题考查矩形的性质,解题关键是灵活使用直角和平角.5.(4分)如图,四边形ABCD是菱形,连接AC,BD交于点O,过点A作AE⊥BC,交BC 于点E,若AC=4,BD=6,则CE的长度是( )A.B.C.D.【分析】由菱形的性质推出AC⊥BD,OC=AC=2,OB=BD=3,由勾股定理求出BC==,由菱形的面积公式得到BC•AE=AC•BD,即可求出AE=,由勾股定理即可得到CE==.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OC=AC,OB=BD,∵AC=4,BD=6,∴OC=2,OB=3,∴BC==,∵AE⊥BC,∴菱形的面积=BC•AE=AC•BD,∴AE=×4×6,∴AE=,∴CE==.故选:C.【点评】本题考查菱形的性质,勾股定理,关键是由菱形的面积公式得到BC•AE=AC •BD,求出AE的长.6.(4分)用如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率为( )A.B.C.D.【分析】画树状图得出所有等可能的结果数和配得紫色的结果数,再利用概率公式可得出答案.【解答】解:根据两个转盘的形状,画树状图如下:共有9种等可能的结果,其中转到红色和蓝色的结果有5种,∴配得紫色的概率=,故选:D.【点评】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.7.(4分)如图,在平行四边形ABCD中,点E在边AD上,AE:DE=1:2,连接AC,BE 交于点F,则S△AEF:S△BCF=( )A.1:3B.1:4C.1:2D.1:9【分析】根据平行四边形得出AD∥BC,可证△AFE∽△CFB,再根据相似三角形的性质求解即可.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△AFE∽△CFB,∵AE:DE=1:2,∴AE:AD=1:3=AE:BC,∴△AFE与△CFB的相似比为1:3,∴S△AEF:S△BCF=1:9.故选:D.【点评】本题考查了平行四边形性质和相似三角形判定与性质,熟记相似三角形的面积比等于相似比的平方是解题的关键.8.(4分)函数和y=﹣kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是( )A.B.C.D.【分析】根据题目中函数的解析式,利用一次函数和反比例函数图象的特点解答本题.【解答】解:在函数(k≠0)和y=﹣kx+2(k≠0)中,当k>0时,函数(k≠0)的图象位于第一、三象限,函数y=﹣kx+2的图象位于第一、二、四象限,故选项A、B错误,选项D正确,当k<0时,函数(k≠0)的图象位于第二、四象限,函数y=﹣kx+2的图象位于第一、二、三象限,故选项C错误,故选:D.【点评】本题考查反比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用分类讨论的数学思想解答.二、填空题(每小题4分,共20分)9.(4分)已知关于x的方程x2+2x+k=0有两个相等的实数根,则k的值是 1 .【分析】先根据根的判别式△的值为0,进而得出等式求出即可.【解答】解:∵方程x2+2x+k=0有两个相等的实数根,∴Δ=b2﹣4ac=22﹣4×1×k=4﹣4k=0,解得:k=1,故答案为:1.【点评】本题主要考查了根的判别式,根据已知得出b2﹣4ac=0得出是解题关键.10.(4分)若A(x1,y1),B(x2,y2)都在函数的图象上,且y1>y2>0,则x1 < x2(选填“>”,“<”或“=”).【分析】先判断出点A、B在第三象限,再根据反比例函数的增减性判断.【解答】解:∵k=2024>0,y1>y2>0,∴点A、B在第一象限,且在同一象限内,y随x的增大而减小,∴x1<x2.故答案为:<.【点评】本题主要考查反比例函数图象上点的坐标特征,熟知反比例函数的增减性只指在同一象限内是解题的关键.11.(4分)如图是一位同学用激光笔测量某古城墙高度的示意图.该同学将一个平面镜水平放置在点P处,从点A射入的光线经平面镜反射后刚好照到古城墙CD的顶端C处,已知AB⊥BD,测得AB=1.5m,BP=2m,DP=6m,则古城墙的高度CD是 4.5 米.【分析】根据题意可得∠APB=∠CPD,根据垂直定义可得∠ABD=∠CDB=90°,从而可证△ABP∽△CDP,然后利用相似三角形的性质,进行计算即可解答.【解答】解:由题意得:∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,∴△ABP∽△CDP,∴=,∴=,∴CD=4.5,∴该古城墙的高度CD是4.5m,故答案为:4.5.【点评】本题考查了相似三角形的应用,熟练掌握相似三角形的判定与性质是解题的关键.12.(4分)如图,在平面直角坐标系中,△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,点B、B′的坐标分别为(8,2)、(16,4),若点A的坐标为(5,6),则点A′的坐标为 (10,12) .【分析】根据点B、B′的坐标求出△ABC和△A′B′C′的位似比,根据位似变换的性质计算,得到答案.【解答】解:∵△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,点B、B ′的坐标分别为(8,2)、(16,4),∴△ABC和△A′B′C′的位似比为1:2,∵点A的坐标为(5,6),∴点A′的坐标为(5×2,6×2),即(10,12),故答案为:(10,12).【点评】本题考查的是位似变换的概念和性质、坐标与图形性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k 或﹣k.13.(4分)如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为5cm2,则OC的长为 5 cm.【分析】四边形OACB的四条边都相等,则这个四边形是菱形.AB和OC是菱形OACB的两条对角线,则根据菱形的面积=AB×OC求解即可.【解答】解:根据作图方法,可得AC=BC=OA,∵OA=OB,∴OA=OB=BC=AC,∴四边形OACB是菱形.∵AB=2cm,四边形OACB的面积为5cm2,∴AB×OC=×2×OC=5,解得OC=5(cm).故答案为:5.【点评】本题侧重考查尺规作图,掌握四边相等的四边形是菱形、对角线相互垂直的四边形的面积是其两条对角线乘积的一半是解决此题的关键.三、解答题(共48分)14.(12分)解方程:(1)2x2+3=﹣7x;(2)x2﹣6x+2=0.【分析】(1)方程整理后,利用公式法求出解即可;(2)方程整理后,利用配方法求出解即可.【解答】解:(1)方程整理得:2x2+7x+3=0,这里a=2,b=7,c=3,∵Δ=49﹣24=25>0,∴x==,解得:x1=﹣3,x2=﹣;(2)方程整理得:x2﹣6x=﹣2,配方得:x2﹣6x+9=﹣2+9,即(x﹣3)2=7,开方得:x﹣3=±,解得:x1=3+,x2=3﹣.【点评】此题考查了解一元二次方程﹣公式法,以及配方法,熟练掌握各种解法是解本题的关键.15.(8分)已知关于x的一元二次方程x2﹣4x+c+3=0有两个不相等的实数根.(1)若该方程的一个实数根为﹣1,求另一个实数根;(2)若该方程的两个不相等的实数根为α和β,且,求c的值.【分析】(1)设另一个实数根为m,根据一元二次方程根与系数的关系可得﹣1+m=4,求出m的值即可;(2)根据一元二次方程根与系数的关系可得α+β=4,αβ=c+3,把变形为,然后代入即可.【解答】解:(1)设关于x的一元二次方程x2﹣4x+c+3=0另一个实数根为m,根据题意得:﹣1+m=4,∴m=5,即另一个实数根为5;(2)∵方程的两个不相等的实数根为α和β,∴α+β=4,αβ=c+3,∴,解得c=﹣4或1,当c=﹣4时,Δ=20>0;当c=1时,Δ=0(不符合题意,舍去).综上可得,c的值为﹣4.【点评】本题主要考查了一元二次方程根与系数的关系和根的判别式,解题的关键是理解题意,灵活运用所学知识解决问题.16.(10分)我市某中学举行“中国梦•我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有 20 名,在扇形统计图中,表示“D等级”的扇形的圆心角为 72 度,图中m的值为 40 ;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出两名去参加市中学生演讲比赛,已知A等级中男生只有1名,请用画树状图或列表的方法求出所选学生恰是一男一女的概率.【分析】(1)根据等级为A的人数除以所占的百分比求出总人数,用360°乘以D等级对应比例可得其圆心角度数,根据百分比的概念可得m的值;(2)求出等级B的人数,补全条形统计图即可;(3)列表得出所有等可能的情况数,找出符合条件的情况数,即可求出所求的概率.【解答】(1)解:根据题意得:总人数为:3÷15%=20(人),表示“D等级”的扇形的圆心角为;C等级所占的百分比为,所以m=40,故答案为:20,72,40.(2)解:等级B的人数为20﹣(3+8+4)=5(人),补全统计图,如图所示:(3)解:根据题意,列出表格,如下:男女1女2男女1、男女2、男女1男、女1女2、女1女2男、女2女1、女2共有6种等可能结果,其中恰是一男一女的有4种,所以恰是一男一女的概率为.【点评】此题考查了条形统计图,扇形统计图以及列表法与树状图法,弄清题意,从条形图和扇形图得到解题所需数据是解本题的关键.17.(8分)如图,已知△ABC∽△ACD.(1)若CD平分∠ACB,∠ACD=35°,求∠ADC的度数;(2)若AD=3,BD=5,求AC的长.【分析】(1)直接利用相似三角形的性质得出∠ACD=∠B,再结合已知条件得出答案;(2)利用相似三角形的性质得出=,进而得出答案.【解答】解:(1)∵△ABC∽△ACD,∴∠ACD=∠B,∵CD平分∠ACB,∠ACD=35°,∴∠ACD=∠DCB=∠B=35°,∴∠ADC=35°+35°=70°;(2)∵△ABC∽△ACD,∴=,∵AD=3,BD=5,∴=,解得:AC=2.【点评】此题主要考查了相似三角形的性质,正确掌握相似三角形的性质是解题关键.18.(10分)如图,一次函数y=kx+b的图象与反比例函数的图象相交于点A (﹣1,6),与x轴交于点C,且∠ACO=45°.(1)求反比例函数与一次函数关系式;(2)点D是线段AC上一点,且∠AOD=45°,求出D点坐标;(3)在(2)的条件下,在x轴上找一点P,使△ODP的面积与△AOD的面积相等,直接写出点P的坐标.【分析】(1)将A(﹣1,6)代入可求出k的值,作AE⊥x轴,交x轴于点E.则E(﹣1,0),EA=6,根据等腰直角三角形的性质得出CE=AE=6,即C(5,0),然后据待定系数法即可求得一次函数解析式;(2)设直线AC与y轴交于E,由(1)知直线AC的解析式为y=﹣x+5,过D作DF⊥x轴于F,求得CF=DF,设OF=x,则CF=5﹣x,根据勾股定理和相似三角形的性质即可得到结论;(3)过A作AP∥OD交x轴于P,则△ODP的面积与△AOD的面积相等,求得直线OD的解析式为y=x,设直线AP的解析式为y=x+b,得到直线AP的解析式为y=x+,解方程即可得到结论.【解答】解:(1)作AB⊥x轴于点B,由点A(﹣1,6)可知,m=﹣6,AB=6,OB=1.又∠ACO=45°,AB=CB,∴OC=5.即C(5,0),∴,∴,∴反比例函数的解析式为,一次函数关系式为y=﹣x+5;(2)设直线AC与y轴交于E,由(1)知直线AC的解析式为y=﹣x+5,∴E(0,5),C(5,0),∴OC=OE=5,过D作DF⊥x轴于F,∴CF=DF,设OF=x,则CF=5﹣x,∴OD2=OF2+DF2=x2+(5﹣x)2,CD=CF=(5﹣x),∵CE=OC=5,∴DE﹣CE﹣CD=5﹣(5﹣x)=x,∵AC=AB=6,∴AD=6﹣(5﹣x)=x,∵∠AOD=∠OED=45°,∠ADO=∠ODE,∴△ADO∽△ODE,∴,∴OD2=AD•DE,∴x2+(5﹣x)2=(x)×x,解得x=,∴OF=,DF=5﹣=,∴;(3)过A作AP∥OD交x轴于P,则△ODP的面积与△AOD的面积相等,∵;∴直线OD的解析式为y=x,∴设直线AP的解析式为y=x+b,∵点A(﹣1,6),∴6=﹣+b,∴b=,∴直线AP的解析式为y=x+,当y=0时,x=﹣,∴P(﹣,0),∴OP=,当点P在x轴的正半轴上时,P(,0),综上所述,P(,0)或(﹣,0).【点评】本题是反比例函数的综合题,考查了待定系数法求解析式,等腰直角三角形的性质,相似三角形的判定和性质,反比例函数的性质等,解题关键是数形结合思想的应用.一、填空题(每小题4分,共20分)19.(4分)已知a,b是方程x2+x﹣1=0的两个根,则ab﹣2024a﹣2024b的值是 2023 .【分析】先根据根与系数的关系得到a+b=﹣1,ab=﹣1,再把ab﹣2024a﹣2024b变形为ab﹣2024(a+b),然后利用整体代入的方法计算.【解答】解:∵a,b是方程x2+x﹣1=0的两个根,∴a+b=﹣1,ab=﹣1,∴ab﹣2024a﹣2024b=ab﹣2024(a+b)=﹣1﹣2024×(﹣1)=2023.故答案为:2023.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,x1+x2=﹣,x1x2=.20.(4分)如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=2,以C为圆心,BC的长为半径画弧交AC于点D,以A为圆心,AD的长为半径画弧交AB于点E,则= .【分析】由作法得CD=CB=2,AE=AD,先利用勾股定理计算出AC=2,则AD=2﹣2,所以AE=2﹣2,再计算出BE=6﹣2,然后计算的值.【解答】解:由作法得CD=CB=2,AE=AD,∵∠ABC=90°,AB=4,BC=2,∴AC==2,∴AD=AC﹣CD=2﹣2,∴AE=2﹣2,∴BE=AB﹣AE=4﹣(2﹣2)=6﹣2,∴==.故答案为:.【点评】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.21.(4分)如图,Rt△ABC中,∠C=90°,AC=4,BC=3,点P、Q分别为AB、BC上的动点,将△PQB沿PQ折叠,使点B们对应点D恰好落在边AC上,当△APD与△ABC 相似时,AP的长为 或 .【分析】根据直角三角形的性质可得AB=5,当△APD与△ABC相似时,设AP=x,则PB=PD=5﹣x,分两种情况:①△APD∽△ABC,②△APD∽△ACB,分别列方程求解即可.【解答】解:∵Rt△ABC中,∠C=90°,AC=4,BC=3,∴,当△APD与△ABC相似时,∵点D始终在边AC上,根据折叠PB=PD,设AP=x,则PB=PD=5﹣x,∴分两种情况:①△APD∽△ABC,此时∠ADP=∠ACB=90°,∴,即,解得,∴,②△APD∽△ACB,此时∠APD=∠ACB=90°,∴,即,解得,∴,综上,AP的长为或,故答案为:或.【点评】本题考查了直角三角形的性质,相似三角形的判定,折叠的性质,熟练掌握这些性质是解题的关键,注意△APD与△ABC相似要分情况讨论.22.(4分)如图,在平面直角坐标系中,Rt△AOB的边OA在y轴上,OB在x轴上,反比例函数y=(k≠0)与斜边AB交于点C、D,连接OD,若AC:CD=2:3,S△OBD=,则k的值为 5 .【分析】过点D作DE⊥OA于点E,过点C做CF⊥OA于点F,设D(m,n),则DE=m,OE=n,利用相似三角形的判定与性质求得线段DE的长度,则点C的坐标可得,利用待定系数法求得直线AB的解析式,进而求得点B坐标,利用三角形的面积公式解答即可得出结论.【解答】解:过点D作DE⊥OA于点E,过点C做CF⊥OA于点F,如图,设D(m,n),则DE=m,OE=n,∵点D在反比例函数y=(k≠0)的图象上,∴k=mn.∵DE⊥OA,CF⊥OA,∴DE∥CF,∴△ACF∽△ADE,∴,∵AC:CD=2:3,∴AC:AD=2:5,∴,∴CF=m.∵点C在反比例函数y=(k≠0)的图象上,∴C(m,n),设直线AB的解析式为y=kx+b,∴,解得:,∴直线AB的解析式为y=x+n.令y=0,则x+n=0,∴x=m,∴B(m,0).∴OB=m.∵S△OBD=,∴OB•OE=,∴m•n=,∴mn=5,∴k=mn=5.故答案为:5.【点评】本题主要考查了反比例函数的图象与性质,待定系数法,相似三角形的判定与性质,三角形的面积,利用点的坐标表示出相应线段的线段是解题的关键.23.(4分)如图,在平面直角坐标系xOy中,点A,C分别在坐标轴上,且四边形OABC 是边长为3的正方形,反比例函数的图象与BC,AB边分别交于E,D两点,△DOE的面积为4,点P为y轴上一点,则PD+PE的最小值为 .【分析】根据正方形的性质得点D的横坐标为3,点E的纵坐标为3,进而得点D,点E,则AD=,CE=,BE=,BD=,再根据△DOE 的面积为4,得3×3﹣×3×﹣﹣×3×=4,由此求出k=3,则点D (3,1),点E(1,3),在BC的延长线上取一点M,使CM=CE,连接DM交y轴于点N,根据点E,M关于OC对称,得当点P与点N重合时,PE+PD的值的为最小,最小值为线段MD的长.然后在Rt△MBD中,由勾股定理求出MD的长即得PE+PD的最小值.【解答】解:∵四边形OABC为正方形,且边长为3,∴OA=AB=BC=OC=3,AB⊥OA,BC⊥OC,∠B=90°,∴点D的横坐标为3,点E的纵坐标为3,∵点D,E在反比例函数(k>0)的图象上,∴点D的坐标为,点E的坐标为,∴AD=,CE=,∴BE=BC﹣CE=,BD=AB﹣AD=,∵△DOE的面积为4,∴S△DOE=S正方形OABC﹣S△OAD﹣S△BDE﹣S△OCE=4,∴3×3﹣×3×﹣﹣×3×=4,整理得:,解得:k=3,或k=﹣3(不合题意,舍去),∴点D(3,1),点E(1,3),∴AD==1,CE=1,∴BD=2,BE=2在BC的延长线上取一点M,使CM=CE,连接DM交y轴于点N,如图所示:∵BC⊥OC,CM=CE=1,∴点E,M关于OC对称,∴当点P与点N重合时,PE+PD的值的为最小,最小值为线段MD的长.在Rt△MBD中,BD=2,BM=BC+CM=3+1=4,由勾股定理得:MD===.故答案为:.【点评】此题主要考查了反比例函数的图形,利用轴对称求最短路线,理解理解反比例函数图象上的点满足反比例函数的表达式,熟练掌握利用轴对称求最短路线的方法与技巧是解决问题的关键.二、解答题(共30分)24.(8分)某电商在“抖音”上直播带货,已知该产品的进货价为70元件,为吸引流量,该电商在直播中承诺自家商品价格永远不会超过99元/件,根据一个月的市场调研,商家发现当售价为110元/件时,日销售量为20件,售价每降低1元,日销售量增加2件.(1)求销售量y(件)与售价x(元/件)的函数关系式;(2)该产品的售价每件应定为多少,电商每天可盈利1200元?【分析】(1)利用日销售量=20+2×(110﹣售价),即可找出日销售量y(件)与售价x (元/件)的函数关系式;(2)利用电商每天销售该产品获得的利润=每件的销售利润×日销售量,可得出关于x 的一元二次方程,解之取其符合题意的值,即可得出结论.【解答】解(1)根据题意得:y=20+2(110﹣x)=﹣2x+240,∵该产品的进货价为70元/件,且该电商在直播中承诺自家商品价格永远不会超过99元/件,∴日销售量y(件)与售价x(元/件)的函数关系式为y=﹣2x+240(70≤x≤99);(2)根据题意得:(x﹣70)(﹣2x+240)=1200,解得:x1=90,x2=100(不符合题意,舍去).答:该产品的售价每件应定为90元.【点评】本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是根据题意找准等量关系,正确列出一元二次方程.25.(10分)【基础巩固】(1)如图1,在四边形ABCD中,对角线BD平分∠ABC,∠ADB=∠DCB,求证:BD2=BA•BC;【尝试应用】(2)如图2,四边形ABCD为平行四边形,F在AD边上,AB=AF,点E在BA延长线上,连结EF,BF,CF,若∠EFB=∠DFC,BE=5,BF=6,求AD的长;【拓展提高】(3)如图3,在△ABC中,D是BC上一点,连结AD,点E,F分别在AD,AC上,连结BE,CE,EF,若DE=DC,∠BEC=∠AEF,BE=24,EF=10,,求的值.【分析】(1)证明△ABD∽△DBC,根据相似三角形的性质即可得证;(2)根据平行四边形的性质得出∠AFB=∠FBC,∠DFC=∠FCB,进而证明△EBF∽△FBC,得出BC=,即可求解;(3)过点C作CM∥AD交EF的延长线于点M,证明△ECM∽△BCE,得出EM=16,继而证明△AFE∽△CFM,根据相似三角形的性质即可求解.【解答】(1)证明:∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DCB,∴△ABD∽△DBC,∴,∴BD2=BA•BC;(2)解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∴∠AFB=∠FBC,∠DFC=∠FCB,∵AB=AF,∴∠AFB=∠ABF,∴∠ABF=∠FBC,∵∠DFC=∠FCB,∠EFB=∠DFC,∴∠EFB=∠FCB,∴△EBF∽△FBC,∴,解得:BC=,∴AD=;(3)解:过点C作CM∥AD交EF的延长线于点M,∵∠AEF+∠CEF+∠DEC=180°,∠BEC+∠CBE+∠BCE=180°,∴∠CEF=180°﹣∠AEF﹣∠DEC,∠CBE=180°﹣∠BEC﹣∠BCE,∵DE=DC,∴∠DEC=∠DCE,∴∠CEF=∠CBE,∵CM∥AD,∴∠DEC=∠ECM,∵∠DEC=∠DCE,∴∠ECM=∠DCE,∴△ECM∽△BCE,∴,∵BE=12,∴EM=16,∵EF=10,∴FM=16﹣10=6,∵CM∥AD,∴△AFE∽△CFM,∴.【点评】本题考查了相似三角形的性质与判定,掌握相似三角形的性质与判定是解题的关键.26.(12分)如图1,y=kx﹣3(k≠0)的图象与y轴交于点B,与反比例函数y=(x>0)的图象交于点A(8,1).(1)求一次函数和反比例函数的表达式;(2)点C是线段AB上一点(不与A,B重合),过点C作y轴的平行线与该反比例函数的图象交于点D,连接OC,OD,AD,当四边形OCAD的面积等于24时,求点C的坐标;(3)在(2)的前提下,将△OCD沿射线BA方向平移一定的距离后,得到△O′C′D ′,若点O的对应点O′恰好落在该反比例函数图象上,是否在此反比例函数图象上存在点M,使得∠O′CM=∠O′CC′,若存在,请直接写出M点的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法即可解决问题;(2)设C(a,a﹣3)(0<a<8),则D(a,),根据四边形的面积构建方程即可解决问题;(3)分两种情况:当点M位于∠OCC′内部时,延长CN交反比例函数于M;当点M 位于∠O′CC′外部时,作O′N'⊥CM'于N′,连接NN′,分别求解即可.【解答】解:(1)把点A(8,1)分别代入y=kx﹣3和y=中,得,1=8k﹣3,1=,解得:k=,m=8,∴一次函数的表达式为y=x﹣3,反比例函数的表达式为y=;。
2024年最新人教版九年级数学(上册)期中考卷及答案(各版本)

2024年最新人教版九年级数学(上册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4y = 7B. 2x 3y = 5C. 4x + 5y = 9D. 5x 6y = 84. 下列各式中,正确的是()A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + b^2 = c^2D. a^2 b^2 = c^25. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab +b^2 C. (a + b)^2 = a^2 2ab + b^2 D. (a b)^2 = a^2 + 2ab +b^26. 下列各式中,正确的是()A. (a + b)(c + d) = ac + ad + bc + bdB. (a b)(c d) =ac ad bc + bd C. (a + b)(c d) = ac + ad bc bd D. (ab)(c + d) = ac ad + bc bd7. 下列各式中,正确的是()A. a^3 + b^3 = (a + b)(a^2 ab + b^2)B. a^3 b^3 = (a b)(a^2 + ab + b^2)C. a^3 + b^3 = (a b)(a^2 ab + b^2)D.a^3 b^3 = (a + b)(a^2 + ab + b^2)8. 下列各式中,正确的是()A. a^4 b^4 = (a + b)(a^2 ab + b^2)B. a^4 b^4 = (a b)(a^2 + ab + b^2)C. a^4 b^4 = (a + b)(a^2 + ab + b^2)D. a^4 b^4 = (a b)(a^2 ab + b^2)9. 下列各式中,正确的是()A. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3B. (a b)^3 =a^3 3a^2b + 3ab^2 b^3 C. (a + b)^3 = a^3 3a^2b + 3ab^2 + b^3 D. (a b)^3 = a^3 + 3a^2b 3ab^2 b^310. 下列各式中,正确的是()A. (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4B. (a b)^4 = a^4 4a^3b + 6a^2b^2 4ab^3 + b^4C. (a + b)^4 = a^4 4a^3b + 6a^2b^2 + 4ab^3 + b^4D. (a b)^4 = a^4 + 4a^3b6a^2b^2 4ab^3 + b^4二、填空题(每题4分,共40分)11. 若一个数的平方根是±3,则这个数是_________。
四川省成都七中实验学校2015届九年级上学期期中考试 数学试题(含答案)

4.若某商品的原价为100元,连续两次涨价x %后的售价为120元,则下面所列方程正确的是( )A 、2100(1)120x -=%B 、2100(1)120x +=%C 、2100(12)120x +=%D 、22100(1)120x +=%5.如右图是三个反比例函数x k y 1=,xk y 2=,x k y 3=在x 轴上方的图象,由此观察得到1k 、2k 、3k 的大小关系为( )A. 321k k k >>B. 123k k k >>C. 132k k k >>D. 213k k k >>6.如图,AD ⊥CD ,AB =13,BC =12,CD =3,AD =4,则sinB= ( )A 、513 B 、1213 C 、35 D 、457.在下列命题中真命题是( )A 、两条对角线相等的四边形是矩形B 、两条对角线互相垂直的四边形是菱形C 、两条对角线互相平分的四边形是平行四边形D 、两条对角线互相垂直且相等的四边形是正方形8.成都市为了解决街道路面问题,需在中心城区重新铺设一条长3000米的路面,实施施工Oyxxky 1=xk y 2=xk y 3=BD CA时“ ”,设实际每天....铺设路面x 米,则可得方程153000103000=--xx ,根据此情景,题中用“ ” 表示的缺失的条件应补为( ) A 、 每天比原计划多铺设10米,结果延期15天才完成; B 、 每天比原计划少铺设10米,结果延期15天才完成; C 、 每天比原计划多铺设10米,结果提前15天才完成;D 、 每天比原计划少铺设10米,结果提前15天才完成;9.形如的式子叫做二阶行列式,它的运算法则用公式表示=ad -bc , 则计算4231-的结果为( ) 依此法A 、-10B 、10C 、2D 、-210.如图4,边长为2正方形ABCD 绕点A 逆时针旋转45度后得到正方形D C B A ''',边C B ''与DC 交于点O ,则四边形OD B A '的周长..是( ) A 、24B 、6C 、22D 、2+22二、填空题:(每小题3分,共12分) 图411. 在Rt △ABC 中,090C ∠=,5tan 12A =,则sinB 的值为 。
2022-2023学年四川省成都七中九年级(上)期中数学试卷

2022-2023学年四川省成都七中九年级(上)期中数学试卷一.选择题(每小题4分,共32分)1.(4分)若,则=()A.B.C.D.2.(4分)用配方法解一元二次方程x2﹣4x﹣3=0,下列变形结果正确的是()A.(x﹣2)2=1B.(x﹣2)2=7C.(x﹣4)2=1D.(x﹣4)2=73.(4分)如图,在菱形ABCD中,对角线AC、BD交于点O,已知AO=3,OB=6,则菱形ABCD的面积是()A.9B.18C.36D.724.(4分)如图,AD∥BE∥CF,若AB=2,AC=5,EF=6,则DE的长度是()A.4B.9C.D.5.(4分)在一个不透明的盒子中装有a个球,这些球除颜色外无其他差别,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在0.2左右,则a的值约为()A.12B.15C.18D.206.(4分)若△ABC与△DEF相似,且对应边的比为2:3,则△ABC与△DEF的周长比为()A.2:5B.2:3C.4:9D.4:257.(4分)如图,△ABC∽△ACP,若∠A=60°,∠APC=75°,则∠B的大小为()A.40°B.45°C.60°D.75°8.(4分)某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1560张相片,如果全班有x名学生,根据题意,列出方程为()A.x(x+1)=1560B.2x(x+1)=1560C.x(x﹣1)=1560D.二、填空题(每题4分,共20分)9.(4分)四条线段a,b,c,d是成比例线段,其中b=3cm,c=4cm,d=5cm,则a=cm.10.(4分)已知关于x的一元二次方程5x2+kx﹣6=0的一个根是2,则它的另一个根是.11.(4分)如图,小益利用标杆EF测量旗杆AB的高度,测得小益的身高CD=1.6米,标杆EF=2.4米,DF=1米,BF=9米,则旗杆AB的高度是米.12.(4分)若线段AB=6cm,点C是线段AB的一个黄金分割点(AC>BC),则AC的长为cm(结果保留根号).13.(4分)如图,在菱形ABCD中,AC与BD相交于点O,AB的垂直平分线EF交AC于点F,连接DF,若∠BAD=80°,则∠DFO的度数为.三.解答题(共48分)14.(12分)解下列一元二次方程:(1)x2+12x+27=0;(2);(3)(2x+3)2=4(2x+3).15.(8分)已知关于x的方程x2+(3﹣2k)x+k2+1=0的两个实数根分别是x1、x2.(1)求k的取值范围.(2)若两个根x1、x2满足2x1x2﹣x1﹣x2=9,求k的值.16.(8分)某厂有一批可降解的外卖餐盒准备出售,现从中随机抽取一部分外卖餐盒,根据这些餐盒的价格(单位:元)分别绘制了如图1,图2所示的扇形统计图和条形统计图,相同价格的餐盒除颜色外均相同.请根据相关信息,解答下列问题.(1)随机抽取的外卖餐盒的数量为个;图中a的值为;b的值为;(2)在这组数据中,价格为2元的外卖餐盒颜色如下:2个白色,1个红色,1个黄色,现从这4个餐盒中随机抽取2个外卖餐盒,请利用画树状图的方法求抽到一个白色餐盒和一个红色餐盒的概率.17.(10分)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC,且DE=AC,连接AE、CE,(1)求证:四边形OCED为矩形.(2)若菱形ABCD中DB=6,AC=8,求AE的长.18.(10分)在等边△ABC中,点D是BC的中点,点E为AC上一点,将线段DE绕点D逆时针方向旋转60°得线段DF,(1)如图1,当DF与AB交于点G时,求证:BD2=BG•EC;(2)如图2,在(1)的条件下,连接FE交AB于点H,当时,求AH:HG:GB;(3)若AB=4,当点E在线段AC上运动时,△BDF能否成为直角三角形,若能,请求出此时DF的值,若不能,请说明理由.四.填空题(每题4分,共20分)19.(4分)已知:=k,则k=.20.(4分)已知关于x的一元二次方程x2+bx+c=0,从﹣1,2,3三个数中任取一个数,作为方程中b的值,再从剩下的两个数中任取一个数作为方程中c的值,能使该一元二次方程有实数根的概率是.21.(4分)如图,四边形ABCD和AEFG都是正方形,点E是AB边上一个动点,点G在AD边上,AB=3cm,连接BF,CF,若△BCF恰为等腰三角形,则AE的长为cm.22.(4分)如图,△ABC和△AGF是等腰直角三角形,∠BAC=∠G=90°,△AGF的边AF,AG交边BC 于点D,E.若AD=4,AE=3,则的值是.23.(4分)如图,在矩形ABCD中,AB=4,AD=8,点E,F分别在边AD,BC上,且AE=3,沿直线EF翻折,点A的对应点A'恰好落在对角线AC上,点B的对应点为B',点M为线段AA'上一动点,则的最小值为.五.解答题(共30分)24.(8分)某超市于今年年初以20元/件的进价购进一批商品,当商品售价为40元/件时,一月份销售了250件.二、三月份该商品十分畅销,销售量持续走高.在售价不变的基础上,三月份的销售量达到了360件.(1)求二、三月份销售量的月平均增长率.(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每件每降价1元,销售量增加3件.当每件商品降价多少元时,商场获利5625元?25.(10分)在平面直角坐标系中,点A坐标为(0,4),点B坐标为(8,0),连接AB,过点A作AC⊥AB交x轴于点C,点D是线段AO上的一动点,延长CD交线段AB于点E.(1)求直线AB的函数表达式及点C的坐标;(2)当点D在何处时,可以使S△BCE=2S△ACE,求此时的点D的坐标;(3)如图2,在平面直角坐标系上是否存在点F,使得以点A,D,E,F为顶点的四边形是菱形?若存在,请求出点F的坐标;若不存在,请说明理由.26.(12分)已知矩形ABCD,点E为线段BC上的一点,连接AE,过点B作线段AE的垂线分别交线段AE,CD交于点G,F,延长CG交边AB于点M.(1)如图1,若四边形ABCD是正方形,且点M为边AB的中点,①求证:BE=CF;②若正方形ABCD的边长为2,求证:;(2)如图2,若GC平分∠FGE,若,求的值.。
2023-2024学年四川省成都七中育才学校九年级(上)期末数学试卷+答案解析

2023-2024学年四川省成都七中育才学校九年级(上)期末数学试卷一、选择题:本题共8小题,每小题4分,共32分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.如图所示的几何体,其主视图是()A.B.C.D.2.反比例函数的图象经过点,下列各点在此反比例函数图象上的是()A. B. C. D.3.若关于x的方程有一个根为2,则m的值为()A.0B.1C.2D.34.如图,在中,D,E分别是AB,AC上的点,,若,,则BC等于()A.4B.5C.6D.75.如图,在矩形ABCD中,对角线AC,BD相交于点O,,,则矩形ABCD的周长为()A.12B.16C.D.6.如图是李老师制作的一个可以自由转动的转盘,如表是某同学收集的一组统计数据:转动转盘的次数1002003004005006007008009001000落在“蓝色”的次数306192118151182207242269302蓝色部分的圆心角最有可能是()A.B.C.D.7.12月18日23时59分,甘肃临夏州积石山县发生级地震.面对突发灾情,某公司积极募捐资金,支持当地开展灾害救援救助及灾后重建工作.第1天募捐到资金万元,第2天、第3天募捐资金连续增长,第3天募捐到的资金为万元.设该公司这两天募捐资金平均每天的增长率为x,则所列方程正确的是()A. B.C. D.8.数学课本上有这样一段表述:“在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数,所对应的图形与原图形….”请利用这一规律解答下面问题:已知,,且,若,,则PQ的长为()A.4B.6C.9D.12二、填空题:本题共10小题,每小题4分,共40分。
9.若,则______.10.关于x的一元二次方程有两个不相等的实数根,则k的取值范围是__________.11.七巧板是一种古老的中国传统智力游戏.在如图所示的七巧板中,若正方形ABCD的边长为4,则正方形EFGH的边长为______.12.若点,都在反比例函数的图象上,则,的大小关系为______.13.如图,已知线段,分别以点A,B为圆心,以5cm为半径画弧,两弧相交于点C,D,连接AC,BC,AD,BD,则四边形ACBD的面积为______.14.已知a,b是方程的两根,则______.15.如图,在正方形ABCD中,点E是AB边上一点,且,连接CE交对角线BD于点若,则BF的长为______.16.如图,点A在反比例函数的图象上,点B在反比例函数的图象上,连接AB,且轴.点是x轴上一点,连接PA,PB,若,,则PB与y轴交点C的坐标为______.17.如图1,在中,,点D在BC上,沿直线AD翻折使点B落在AC上的处;如图2,折叠,使点A与点D重合,折痕为若,则的值为______.18.已知,数轴上从左到右有三点A,B,C,它们在数轴上对应的数分别为a,b,均不为整数,且,为正整数在点A与点B之间的所有整数依次记为,,…,;在点B与点C之间的所有整数分别记为,,,…,若,则k的值为______.三、解答题:本题共8小题,共78分。
四川省成都市九年级(上)期中数学试卷(含解析)
四川省成都市九年级(上)期中数学试卷一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.下面四组线段中,不能成比例的是()A.a=2,b=3,c=4,d=6 B.a=1,b=,c=,d=C.a=2,b=5,c=,d=D.a=1,b=,c=,d=102.一元二次方程x2=2x的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣23.等腰三角形的两条边长分别为3,6,那么它的周长为()A.15 B.12 C.12或15 D.不能确定4.如图,空心圆柱的左视图是()A.B.C.D.5.如图是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点B.△ABC三边的中垂线的交点C.△ABC三条高所在直线的交点D.△ABC三条角平分线的交点6.如图,DE是△ABC的中位线,若BC的长为3cm,则DE的长是()A.2cm B.1.5cm C.1.2cm D.1cm7.直角三角形两直角边的长分别为x,y,它的面积为3,则y与x之间的函数关系用图象表示大致是()A.B.C.D.8.由于国家出台对房屋的限购令,我省某地的房屋价格原价为8400元/米2,通过连续两次降价a%后,售价变为6000元/米2,下列方程中正确的是()A.8400(1﹣a%2)=6000 B.6000(1﹣a%2)=8400C.8400(1+a%)2=6000 D.8400(1﹣a%)2=60009.在行程问题中,路程s(千米)一定时,速度v(千米/时)关于时间t(小时)的函数关系的大致图象是()A.B.C.D.10.已知点A的坐标是(2,1),以坐标原点O为位似中心,像与原图形的位似比为2,则点A′的坐标为()A.()B.(4,2)C.(1,)或(﹣1,)D.(4,2)或(﹣4,﹣2)二、填空题(本题有6小题,每小题3分,共18分)11.已知反比例函数y=的图象经过点(2,5),则k=.12.请写出一个符合下列条件的反比例函数解析式:(1)反比例函数的比例系数k是无理数;(2)图象的一个分支在第二象限.13.方程x2+6x+3=0的两个实数根为x1,x2,则+=.14.如图,在△ABC中,AB=BC,∠B=120°,AB的垂直平分线交AC于点D.若AC=6cm,则AD=cm.15.定义新运算“*”.规则:a*b=a(a≥b)或者a*b=b(a<b)如1*2=2,(﹣3)*2=2.若x2+x ﹣1=0的根为x1、x2,则x1*x2的值为:.16.如图,在反比例函数y=(x>0)的图象上,有点P1,P2,P3,P4,它们的横坐标依次为1,2,3,4.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,则S1+S2+S3=.三、解答题(本题有4小题,共52分)17.(20分)(1)x2+3x+1=0 (2)(2x﹣1)2=x(3x+2)﹣7(3)x2=2x+12 (4)(x﹣3)2=2(3﹣x)18.(10分)已知关于x的一元二次方程x2+4x+m﹣1=0.(1)请你为m选取一个合适的整数,使得到的方程有两个不相等的实数根;(2)设x1、x2是(1)中你所得到的方程的两个实数根,求:﹣x1﹣x2+x1x2的值.19.(10分)某公司组织部分员工到一博览会的A、B、C、D、E五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.请根据统计图回答下列问题:(1)将条形统计图和扇形统计图在图中补充完整;(2)若A馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若小明抽得的数字比小华抽得的数字大,门票给小明,否则给小华.”请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平?20.(12分)已知:在菱形ABCD中,O是对角线BD上的一动点.(1)如图甲,P为线段BC上一点,连接PO并延长交AD于点Q,当O是BD的中点时,求证:OP=OQ;(2)如图乙,连接AO并延长,与DC交于点R,与BC的延长线交于点S.若AD=4,∠DCB=60°,BS=10,求AS和OR的长.一、填空题:(每小题4分,共20分)21.(4分)设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x12+3x1x2+x22的值为.22.(4分)如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB 向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过秒,四边形APQC 的面积最小.23.(4分)如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数(k为常数,且k>0)在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F 作FN⊥x轴于N,直线EM与FN交于点C.若(m为大于l的常数).记△CEF的面积为S1,△OEF的面积为S2,则=.(用含m的代数式表示)24.(4分)已知一个三角形的两条直角边的长恰好是方程2x2+mx+3=0的两个根,且这个直角三角形的斜边长是3,则m的值是.25.(4分)如图,△P1OA1,△P2A1A2,△P3A2A3…△P n A n﹣1A n都是等腰直角三角形,点P1、P2、P3…P n都在函数y=(x>0)的图象上,斜边OA1、A1A2、A2A3…A n﹣1A n都在x轴上.则点A10的坐标是.二、解答题26.(8分)如图,已知反比例函数的图象经过点(,8),直线y=﹣x+b经过该反比例函数图象上的点Q(4,m).(1)求上述反比例函数和直线的函数表达式;(2)设该直线与x轴、y轴分别相交于A、B两点,与反比例函数图象的另一个交点为P,连接0P、OQ,求△OPQ的面积.27.(10分)如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形;(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式.28.(12分)有这样一个问题:探究同一坐标系中系数互为倒数的正、反比例函数y=x与y=(k≠0)的图象性质.小明根据学习函数的经验,对这两个函数当k>0时的图象性质进行了探究.设函数y=x与y=图象的交点为A、B.下面是小明的探究过程:(1)如图所示,若已知A的坐标为(﹣2,﹣1),则B点的坐标为.(2)若A的坐标为(﹣k,﹣1),P点为第一象限内双曲线上不同于点B的任意一点.①设直线PA交x轴于点M,直线PB交x轴于点N.求证:PM=PN.证明过程如下:设P(m,),直线PA的解析式为y=ax+b(a≠0).则解得所以,直线PA的解析式为.请把上面的解答过程补充完整,并完成剩余的证明.②当P点坐标为(1,k)(k≠1)时,判断△PAB的形状,并用k表示出△PAB的面积.参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.下面四组线段中,不能成比例的是()A.a=2,b=3,c=4,d=6 B.a=1,b=,c=,d=C.a=2,b=5,c=,d=D.a=1,b=,c=,d=10【分析】根据成比例线段的概念,对选项进行一一分析,即可得出答案.【解答】解:A、2×6=3×4,能成比例;B、1×=×,能成比例;C、5×≠2×,不能成比例;D、1×10=×,能成比例;不能成比例的是C.故选:C.【点评】此题考查了成比例线段的概念.在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段.2.一元二次方程x2=2x的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣2【分析】利用因式分解法即可将原方程变为x(x﹣2)=0,即可得x=0或x﹣2=0,则求得原方程的根.【解答】解:∵x2=2x,∴x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴一元二次方程x2=2x的根x1=0,x2=2.故选:C.【点评】此题考查了因式分解法解一元二次方程.题目比较简单,解题需细心.3.等腰三角形的两条边长分别为3,6,那么它的周长为()A.15 B.12 C.12或15 D.不能确定【分析】根据等腰三角形的性质和三角形的三边关系,可求出第三条边长,即可求得周长;【解答】解:∵当腰长为3时,3+3=6,显然不成立;∴腰长为6,∴周长为6+6+3=15.故选:A.【点评】本题考查了等腰三角形的性质和三角形的三边关系定理,三角形两边之和大于第三边,三角形两边之差小于第三边.4.如图,空心圆柱的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的棱都应表现在左视图中.【解答】解:圆柱的左视图是矩形,里面有两条用虚线表示的看不到的棱,故选:C.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图;注意看得到的棱画实线,看不到的棱画虚线.5.如图是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点B.△ABC三边的中垂线的交点C.△ABC三条高所在直线的交点D.△ABC三条角平分线的交点【分析】由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到边的距离相等,可知是△ABC三条角平分线的交点.由此即可确定凉亭位置.【解答】解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC三条角平分线的交点.故选:D.【点评】本题主要考查的是角的平分线的性质在实际生活中的应用.主要利用了到线段的两个端点的距离相等的点在这条线段的垂直平分线上.6.如图,DE是△ABC的中位线,若BC的长为3cm,则DE的长是()A.2cm B.1.5cm C.1.2cm D.1cm【分析】三角形中位线的性质:三角形的中位线平行于第三边,且等于第三边的一半;本题利用定理计算即可.【解答】解:∵DE是△ABC的中位线,∴DE=BC,∵BC的长为3cm,∴DE=1.5.故选:B.【点评】本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.7.直角三角形两直角边的长分别为x,y,它的面积为3,则y与x之间的函数关系用图象表示大致是()A.B.C.D.【分析】根据题意有:xy=3;故y与x之间的函数图象为反比例函数,且根据xy实际意义x、y应大于0,其图象在第一象限;故可判断答案为C.【解答】解:∵xy=3,∴y=(x>0,y>0).故选:C.【点评】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.8.由于国家出台对房屋的限购令,我省某地的房屋价格原价为8400元/米2,通过连续两次降价a%后,售价变为6000元/米2,下列方程中正确的是()A.8400(1﹣a%2)=6000 B.6000(1﹣a%2)=8400C.8400(1+a%)2=6000 D.8400(1﹣a%)2=6000【分析】通过连续两次降价a%后,我省某地的房屋价格原价为8400元/米2,售价变为6000元/米2,可列方程.【解答】解:设连续两次降价a%,8400(1﹣a%)2=6000.故选:D.【点评】本题考查增长率问题,知道经过两次变化,知道变化前和变化后的结果,从而可列方程.9.在行程问题中,路程s(千米)一定时,速度v(千米/时)关于时间t(小时)的函数关系的大致图象是()A.B.C.D.【分析】根据路程=速度×时间列出函数关系式,根据相应的函数关系式画出图象.【解答】解:根据题意得,s=vt,v=,由于s一定,∴速度v(千米/时)是时间t(小时)的反比例函数,由于t>0.故选:A.【点评】本题考查了反比例函数的应用及反比例函数的图象,要注意实际问题中自变量的取值范围.10.已知点A的坐标是(2,1),以坐标原点O为位似中心,像与原图形的位似比为2,则点A′的坐标为()A.()B.(4,2)C.(1,)或(﹣1,)D.(4,2)或(﹣4,﹣2)【分析】根据已知可画出符合条件的两个图形,再根据图中点的位置写出坐标.【解答】解:如图,则点A′的坐标为(4,2)或(﹣4,﹣2).故选:D.【点评】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.二、填空题(本题有6小题,每小题3分,共18分)11.已知反比例函数y=的图象经过点(2,5),则k=10.【分析】将点(2,5)代入即可得出k.【解答】解:∵反比例函数y=的图象经过点(2,5),∴k=10.故答案为10.【点评】本题考查了用待定系数法求反比例函数的解析式,是基础知识要熟练掌握.12.请写出一个符合下列条件的反比例函数解析式:(1)反比例函数的比例系数k是无理数;(2)图象的一个分支在第二象限.【分析】根据图象的分支在第二象限,所以可以判断k<0;再根据k是无理数,可以得到反比例函数的比例系数.【解答】解:设函数解析式为y=,因为图象的分支在第二象限,所以可以判断k<0;又因为k是无理数,所以可以得到k=﹣,﹣,﹣…,答案不唯一.故答案可以为y=﹣.【点评】此题是一道开放题,考查了用待定系数法构造反比例函数的能力,是一道好题.13.方程x2+6x+3=0的两个实数根为x1,x2,则+=10.【分析】先根据根与系数的关系得到x1+x2=﹣6,x1•x2=3,再利用完全公式变形得到+=,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=﹣6,x1•x2=3,所以+====10.故答案为10.【点评】本题考查了根与系数的关系:设x1,x2为一元二次方程ax2+bx+c=0(a≠0)的两根,则有如下关系:x1+x2=﹣,x1•x2=.14.如图,在△ABC中,AB=BC,∠B=120°,AB的垂直平分线交AC于点D.若AC=6cm,则AD=2cm.【分析】连接BD,根据三角形的内角和定理和等腰三角形性质求出DC=2BD,根据线段垂直平分线的性质求出AD=BD,即可求出答案.【解答】解:连接BD.∵AB=BC,∠ABC=120°,∴∠A=∠C=(180°﹣∠ABC)=30°,∴DC=2BD,∵AB的垂直平分线是DE,∴AD=BD,∴DC=2AD,∵AC=6,∴AD=×6=2,故答案为:2.【点评】本题主要考查对等腰三角形的性质,含30度角的直角三角形,线段的垂直平分线,三角形的内角和定理等知识点的理解和掌握,能求出AD=BD和DC=2BD是解此题的关键.15.定义新运算“*”.规则:a*b=a(a≥b)或者a*b=b(a<b)如1*2=2,(﹣3)*2=2.若x2+x ﹣1=0的根为x1、x2,则x1*x2的值为:.【分析】首先解方程求得方程的两个解,根据a*b=a(a≥b)或者a*b=b(a<b)可以得到:x1*x2的值是两个根中的最大的一个.【解答】解:解方程x2+x﹣1=0x==.∵a*b=a(a≥b)或者a*b=b(a<b)∴x1*x2=.故答案为:.【点评】本题主要考查了一元二次方程的解法,关键是理解a*b=a(a≥b)或者a*b=b(a<b).16.如图,在反比例函数y=(x>0)的图象上,有点P1,P2,P3,P4,它们的横坐标依次为1,2,3,4.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,则S1+S2+S3=.【分析】根据反比例函数的几何意义,可知图中所构成的阴影部分的总面积正好是从点P1向x轴、y轴引垂线构成的长方形面积减去最下方的长方形的面积,据此作答.【解答】解:由题意,可知点P1、P2、P3、P4坐标分别为:(1,2),(2,1),(3,),(4,).解法一:∵S1=1×(2﹣1)=1,S2=1×(1﹣)=,S3=1×(﹣)=,∴S1+S2+S3=1++=.解法二:∵图中所构成的阴影部分的总面积正好是从点P1向x轴、y轴引垂线构成的长方形面积减去最下方的长方形的面积,∴1×2﹣×1=.故答案为:.【点评】本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.三、解答题(本题有4小题,共52分)17.(20分)(1)x2+3x+1=0(2)(2x﹣1)2=x(3x+2)﹣7(3)x2=2x+12(4)(x﹣3)2=2(3﹣x)【分析】(1)利用公式法求解即可;(2)整理后,利用分解因式法求解即可;(3)利用公式法求解即可;(4)利用分解因式法求解即可.【解答】解:(1)x2+3x+1=0,∵a=1,b=3,c=1,△=9﹣4×1×1=5,∴x==,∴x1=,x2=;(2)(2x﹣1)2=x(3x+2)﹣7,整理得:x2﹣6x+8=0,(x﹣4)(x﹣2)=0,∴x﹣4=0或x﹣2=0,∴x1=4,x2=2;(3)x2=2x+12,x2﹣2x﹣12=0,∵a=1,b=﹣2,c=﹣12,△=(﹣2)2﹣4×1×(﹣12)=56,∴x==±,∴x1=+,x2=﹣;(4)(x﹣3)2=2(3﹣x),(x﹣3)2+2(x﹣3)=0,(x﹣3)(x﹣3+2)=0,∴x﹣3=0或x﹣1=0,∴x1=3,x2=1.【点评】此题考查了解一元二次方程﹣因式分解法,公式法,熟练掌握各种解法是解本题的关键.18.(10分)已知关于x的一元二次方程x2+4x+m﹣1=0.(1)请你为m选取一个合适的整数,使得到的方程有两个不相等的实数根;(2)设x1、x2是(1)中你所得到的方程的两个实数根,求:﹣x1﹣x2+x1x2的值.【分析】(1)根据一元二次方程根的判别式的意义得到当△>0时,方程有两个不相等的实数根,即有42﹣4(m﹣1)>0,解得m<5,在此范围内m可取1;(2)把m=1代入原方程得到方程整理为x2+4x=0,根据根与系数的关系得x1+x2=﹣4,x1•x2=0,再变形﹣x1﹣x2+x1x2得到﹣(x1+x2)+x1x2,然后利用整体思想计算即可.【解答】解:(1)当△>0时,方程有两个不相等的实数根,即42﹣4(m﹣1)>0,解得m<5,所以m可取1;(2)当m=1时,方程整理为x2+4x=0,则x1+x2=﹣4,x1•x2=0,则﹣x1﹣x2+x1x2=﹣(x1+x2)+x1x2=﹣(﹣4)+0=4.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程根的判别式.19.(10分)某公司组织部分员工到一博览会的A、B、C、D、E五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.请根据统计图回答下列问题:(1)将条形统计图和扇形统计图在图中补充完整;(2)若A馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若小明抽得的数字比小华抽得的数字大,门票给小明,否则给小华.”请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平?【分析】(1)A展馆的门票数除以它所占的百分比,算出门票总数,乘以B展馆门票所占的百分比即为B展馆门票数;C所占的百分比等于整体1减去其余百分比;(2)列举出所有情况,看小明抽得的数字比小华抽得的数字大的情况占所有情况的多少即可求得小明赢的概率,进而求得小明赢的概率,比较即可. 【解答】解:(1)B 展馆门票的数量=20÷10%×25%=50(张);C 所占的百分比=1﹣10%﹣25%﹣10%﹣40%=15%.(2)画树状图或列表格法. 小华抽到的数字小明抽到的数字12341 (1,1) (1,2) (1,3) (1,4)2 (2,1) (2,2) (2,3) (2,4)3 (3,1) (3,2) (3,3) (3,4) 4(4,1)(4,2)(4,3)(4,4)共有16种可能的结果,且每种结果的可能性相同,其中小明可能获得门票的结果有6种,分别是(2,1),(3,1),(3,2),(4,1),(4,2),(4,3). ∴小明获得门票的概率, 小华获得门票的概率.∵P 1<P 2,∴这个规则对双方不公平.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是放回实验.解决本题的关键是得到相应的概率,概率相等就公平,否则就不公平.20.(12分)已知:在菱形ABCD中,O是对角线BD上的一动点.(1)如图甲,P为线段BC上一点,连接PO并延长交AD于点Q,当O是BD的中点时,求证:OP=OQ;(2)如图乙,连接AO并延长,与DC交于点R,与BC的延长线交于点S.若AD=4,∠DCB=60°,BS=10,求AS和OR的长.【分析】(1)求简单的线段相等,可证线段所在的三角形全等,即证△ODQ≌△OBP.(2)首先求AS的长,要通过构建直角三角形求解;过A作BC的垂线,设垂足为T,在Rt△ABT 中,易证得∠ABT=∠DCB=60°,又已知了斜边AB的长,通过解直角三角形可求出AT、BT的长;进而可在Rt△ATS中,由勾股定理求出斜边AS的值;由于四边形ABCD是菱形,则AD∥BC,易证得△ADO∽△SBO,已知了AD、BS的长,根据相似三角形的对应边成比例线段可得出OA、OS的比例关系式,即可求出OA、OS的长;同理,可通过相似三角形△ADR和△SCR求得AR、RS的值;由OR=OS﹣RS即可求出OR的长.【解答】(1)证明:∵四边形ABCD为菱形,∴AD∥BC.∴∠OBP=∠ODQ∵O是BD的中点,∴OB=OD在△BOP和△DOQ中,∵∠OBP=∠ODQ,OB=OD,∠BOP=∠DOQ∴△BOP≌△DOQ(ASA)∴OP=OQ.(2)解:如图,过A作AT⊥BC,与CB的延长线交于T.∵ABCD是菱形,∠DCB=60°∴AB=AD=4,∠ABT=60°∴在Rt△ATB中,AT=AB sin60°=TB=AB cos60°=2∵BS=10,∴TS=TB+BS=12,在Rt△ATS中,∴AS=.∵AD∥BS,∴△AOD∽△SOB.∴,则,∴∵AS=,∴OS=AS=.同理可得△ARD∽△SRC.∴,则,∴,∴.∴OR=OS﹣RS=.【点评】此题考查了菱形的性质、全等三角形及相似三角形的判定和性质;(2)中能够正确的构建出直角三角形,求出AS的长是解答此题的关键.一、填空题:(每小题4分,共20分)21.(4分)设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x12+3x1x2+x22的值为7.【分析】根据根与系数的关系,可求出x1+x2以及x1x2的值,然后根据x12+3x1x2+x22=(x1+x2)2+x1x2进一步代值求解.【解答】解:由题意,得:x1+x2=3,x1x2=﹣2;原式=(x1+x2)2+x1x2=9﹣2=7.故答案为:7.【点评】熟记一元二次方程根与系数的关系是解答此类题的关键.22.(4分)如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB 向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过3秒,四边形APQC的面积最小.【分析】根据等量关系“四边形APQC的面积=三角形ABC的面积﹣三角形PBQ的面积”列出函数关系求最小值.【解答】解:设P、Q同时出发后经过的时间为ts,四边形APQC的面积为Smm2,则有:S=S△ABC﹣S△PBQ==4t2﹣24t+144=4(t﹣3)2+108.∵4>0∴当t=3s时,S取得最小值.故答案为:3.【点评】本题考查了函数关系式的求法以及最值的求法.23.(4分)如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数(k为常数,且k>0)在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F 作FN⊥x轴于N,直线EM与FN交于点C.若(m为大于l的常数).记△CEF的面积为S1,△OEF的面积为S2,则=.(用含m的代数式表示)【分析】根据E,F都在反比例函数的图象上得出假设出E,F的坐标,进而得出△CEF的面积S1以及△OEF的面积S2,进而比较即可得出答案.【解答】解:方法一:过点F作FG⊥y轴于点G,∵S=S△MEO+S△OEF=+S△OEF,四边形MEFO又∵S四边形MEFO=S梯形MEFG+S△FGO=S梯形MEFG+,∴S△OEF=S梯形MEFG=S2,则=,又∵CF=MG,∴,由=,得:=,∵OB∥NC,∴==,则=,∴=.方法二:如图2,过点F作FD⊥BO于点D,EW⊥AO于点W,∵,∴=,∵ME•EW=FN•DF,∴=,∴=,设E点坐标为:(x,my),则F点坐标为:(mx,y),∴△CEF的面积为:S1=(mx﹣x)(my﹣y)=(m﹣1)2xy,∵△OEF的面积为:S2=S矩形CNOM﹣S1﹣S△MEO﹣S△FON,=MC•CN﹣(m﹣1)2xy﹣ME•MO﹣FN•NO,=mx•my﹣(m﹣1)2xy﹣x•my﹣y•mx,=m2xy﹣(m﹣1)2xy﹣mxy,=(m2﹣1)xy,=(m+1)(m﹣1)xy,∴==.故答案为:.【点评】此题主要考查了反比例函数的综合应用以及三角形面积求法,根据已知表示出E,F的点坐标是解题关键.24.(4分)已知一个三角形的两条直角边的长恰好是方程2x2+mx+3=0的两个根,且这个直角三角形的斜边长是3,则m的值是﹣4.【分析】根据根与系数的关系,求出两根之积与两根之和的值,再根据勾股定理列出直角三角形三边之间的关系式,然后将此式化简为两根之积与两根之和的形式,最后代入两根之积与两根之和的值进行计算.【解答】解:设方程2x2+mx+3=0的两个根为:x1,x2,根据题意得:+=32,即﹣2x1x2=9,x1+x2=﹣,x1x2=,即﹣3=9,解得:m=4或﹣4,∵x1+x2=﹣>0,∴m=﹣4,故答案为:﹣4.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.25.(4分)如图,△P1OA1,△P2A1A2,△P3A2A3…△P n A n﹣1A n都是等腰直角三角形,点P1、P2、P3…P n都在函数y=(x>0)的图象上,斜边OA1、A1A2、A2A3…A n﹣1A n都在x轴上.则点A10的坐标是(4,0).【分析】由于△P1OA1是等腰直角三角形,可知直线OP1的解析式为y=x,将它与y=联立,求出方程组的解,得到点P1的坐标,则A1的横坐标是P1的横坐标的两倍,从而确定点A1的坐标;由于△P1OA1,△P2A1A2都是等腰直角三角形,则A1P2∥OP1,直线A1P2可看作是直线OP1向右平移OA1个单位长度得到的,因而得到直线A1P2的解析式,同样,将它与y=联立,求出方程组的解,得到点P2的坐标,则P2的横坐标是线段A1A2的中点,从而确定点A2的坐标;依此类推,从而确定点A10的坐标.【解答】解:过P1作P1B1⊥x轴于B1,易知B1(2,0)是OA1的中点,∴A1(4,0).可得P1的坐标为(2,2),∴P1O的解析式为:y=x,∵P1O∥A1P2,∴A1P2的表达式一次项系数相等,将A1(4,0)代入y=x+b,∴b=﹣4,∴A1P2的表达式是y=x﹣4,与y=(x>0)联立,解得P2(2+2,﹣2+2).仿上,A2(4,0).P3(2+2,﹣2+2),A3(4,0).依此类推,点A n的坐标为(4,0)故点A10的坐标是(4,0).故答案为:(4,0).【点评】本题的关键是找出求P点坐标的规律,以这个规律为基础求出P10的横坐标,进而求出A10的横坐标的值,从而可得出所求的结果.二、解答题26.(8分)如图,已知反比例函数的图象经过点(,8),直线y=﹣x+b经过该反比例函数图象上的点Q(4,m).(1)求上述反比例函数和直线的函数表达式;(2)设该直线与x轴、y轴分别相交于A、B两点,与反比例函数图象的另一个交点为P,连接0P、OQ,求△OPQ的面积.【分析】(1)把点(,8)代入反比例函数,确定反比例函数的解析式为y=;再把点Q(4,m)代入反比例函数的解析式得到Q的坐标,然后把Q的坐标代入直线y=﹣x+b,即可确定b的值;(2)把反比例函数和直线的解析式联立起来,解方程组得到P点坐标;对于y=﹣x+5,令y=0,求出A点坐标,然后根据S△OPQ=S△AOB﹣S△OBP﹣S△OAQ进行计算即可.【解答】解:(1)把点(,8)代入反比例函数,得k=×8=4,∴反比例函数的解析式为y=;又∵点Q(4,m)在该反比例函数图象上,∴4•m=4,解得m=1,即Q点的坐标为(4,1),而直线y=﹣x+b经过点Q(4,1),∴1=﹣4+b,解得b=5,∴直线的函数表达式为y=﹣x+5;(2)联立,解得或,∴P点坐标为(1,4),对于y=﹣x+5,令y=0,得x=5,∴A点坐标为(5,0),∴S△OPQ=S△AOB﹣S△OBP﹣S△OAQ=×5×5﹣×5×1﹣×5×1=.【点评】本题考查了点在图象上,点的横纵坐标满足图象的解析式以及求两个图象交点的方法(转化为解方程组);也考查了利用面积的和差求图形面积的方法.27.(10分)如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形;(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式.【分析】(1)根据矩形的性质和勾股定理得到AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,根据相似三角形的性质得到AP=t=,②当AP=AO=t=5,于是得到结论;(2)过点O作OH⊥BC交BC于点H,已知BE=PD,则可求△BOE的面积;可证得△DFQ∽△DOC,由相似三角形的面积比可求得△DFQ的面积,从而可求五边形OECQF的面积.【解答】解:(1)∵在矩形ABCD中,AB=6cm,BC=8cm,∴AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,∴AM=AO=,∵∠PMA=∠ADC=90°,∠PAM=∠CAD,∴△APM∽△ACD,∴=,∴AP=t=,②当AP=AO=t=5,∴当t为或5时,△AOP是等腰三角形;(2)过点O作OH⊥BC交BC于点H,则OH=CD=AB=3cm.由矩形的性质可知∠PDO=∠EBO,DO=BO,又得∠DOP=∠BOE,∴△DOP≌BOE,∴BE=PD=8﹣t,则S△BOE=BE•OH=×3(8﹣t)=12﹣t.∵FQ∥AC,∴△DFQ∽△DOC,相似比为=,∴=,∵S△DOC=S矩形ABCD=×6×8=12cm2,∴S△DFQ=12×=,∴S=S△DBC﹣S△BOE﹣S△DFQ=×6×8﹣(12﹣t)﹣=﹣t2+t+12;五边形OECQF∴S与t的函数关系式为S=﹣t2+t+12;【点评】本题考查了矩形的性质,角平分线的性质,相似三角形的判定和性质,图形面积的计算,全等三角形的判定和性质,正确的识别图形是解题的关键.28.(12分)有这样一个问题:探究同一坐标系中系数互为倒数的正、反比例函数y=x与y=(k≠0)的图象性质.小明根据学习函数的经验,对这两个函数当k>0时的图象性质进行了探究.设函数y=x与y=图象的交点为A、B.下面是小明的探究过程:(1)如图所示,若已知A的坐标为(﹣2,﹣1),则B点的坐标为(k,1).(2)若A的坐标为(﹣k,﹣1),P点为第一象限内双曲线上不同于点B的任意一点.①设直线PA交x轴于点M,直线PB交x轴于点N.求证:PM=PN.证明过程如下:设P(m,),直线PA的解析式为y=ax+b(a≠0).则解得﹣1所以,直线PA的解析式为y=x+﹣1..。
2023-2024学年四川省成都市九年级上学期期中数学试题
2023-2024学年四川省成都市九年级上学期期中数学试题1.下列方程中,关于x的一元二次方程是()A.B.C.D.2.如图,已知直线,直线、与、、分别交于点、、和、、,,,,()A.7B.7.5C.8D.4.53.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.4.如图,已知四边形是平行四边形,下列结论不正确的是()A.当时,它是菱形B.当时,它是菱形C.当时,它是矩形D.当时,它是正方形5.两个不透明盒子里分别装有3个标有数字3,4,5的小球,它们除数字不同外其他均相同,小华从两个盒子里各随机摸1个球,摸到的两个球上的数字之和为奇数的概率是()A.B.C.D.6.关于x的一元二次方程kx2+2x+1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k≥﹣1C.k≠0D.k<1且k≠0 7.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请个队参赛,则满足的关系式为()A.B.C.D.8.如图,在▱ABCD中,E是AB的中点,EC交BD于点F,则△BEF与△DCB的面积比为()A.B.C.D.9.若,则______.10.已知-1是方程的一个根,则m=______,另一根为______.11.已知点M为线段的黄金分割点,且,若,则____.12.如图,在中,,于点,,,则______.13.如图,AB//GH//CD,点H在BC上,AC与BD交于点G,AB=2,CD=3,则GH的长为___.14.(1)计算:;(2)用配方法解方程:.15.如图,在平面直角坐标系中,的顶点坐标分别为,,.(1)作出关于轴的轴对称图形;(2)以原点为位似中心,在轴的右侧画出的一个位似,使它与的相似比为2:1,并分别写出点,的对应点,的坐标;(3)请直接写出的面积为______.16.初三年级“黄金分割项目活动”展示,为了解全体初三年级同学的活动成绩,抽取了部分参加活动的同学的成绩进行统计后,分为“优秀”,“良好”,“一般”,“较差”四个等级,并根据成绩绘制成如图两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应扇形的圆心角为度,并将条形统计图补充完整.(2)如果学校初三年级共有340名学生,则参加“黄金分割项目活动”比赛成绩良好的学生有人.(3)此次活动中有四名同学获得满分,分别是甲,乙,丙,丁,现从这四名同学中挑选网名同学参加校外举行的“黄金分割项目活动”展示,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.17.某天小明和小亮去某影视基地游玩,当小明给站在城楼上的小亮照相时发现他自己的眼睛、凉亭顶端、小亮头顶三点恰好在一条直线上(如图).已知小明的跟晴离地面米,凉亭顶端离地面米,小明到凉亭的距离为米,凉亭离城楼底部的距离为米,小亮身高为米.请根据以上数据求出城楼的高度.18.已知,如图所示的四边形ABCD为菱形,AC、BD交于O,AF⊥BC于F,交于点E.(1)求证:(2)求证:;(3)过点E作,若,交于点G,若菱形ABCD的面积为,求的长.19.若实数满足,则______.20.对于任意实数a、b,定义:a◆b=a2+ab+b2.若方程(x◆2)﹣5=0的两根记为m、n,则m2+n2=_____.21.有7张正面分别标有,,,0,1,2,3的不透明卡片,它们除数字不同外,其余相同,现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,则使关于的分式方程有正整数解的概率为______.22.如图,在中,,,,点在直线上运动,连接,在的右侧作,为的中点,连接,则的最小值为______.23.在中,,,,一动点在线段上,以,为边作矩形,直线与直线,的交点分别为,,当是等腰三角形时,该三角形的腰长为______.24.成都大运会开幕式于2023年7月28日在成都东安湖体育公园举行,大运会吉祥物为“蓉宝”,“蓉宝”的样子和形态,充分诠释了成都的新时代特点和城市魅力,吸引了无数人们的目光,因而“蓉宝”手办特别惹人喜爱.(1)据市场调研发现,某工厂今年7月份共生产500个“蓉宝”手办,为增大生产量,该工厂平均每月生产量增长率相同,9月份该工厂生产了720个“蓉宝”手办,求该工厂平均每月生产量增长率是多少?(2)已知某商店“蓉宝”手办平均每天可销售20个,每个盈利40元,在每个降价幅度不超过10元的情况下,每下降2元,则每天可多售10件,如果每天要盈利1440元,则每个“蓉宝”手办应降价多少元?25.[基础巩固](1)如图1,在四边形中,对角线平分,求证:;[尝试应用](2)如图2,四边形为平行四边形,F在边上,,点E在延长线上,连接、、,若,求的长;[拓展提高](3)如图3,E是内部一点,F为边上一点,连接,已知,,求的值.26.直角三角形在平面直角坐标系中的位置如图所示,,的长是方程的两个根().将绕原点O顺时针旋转得到,点的对应点为,连接.点E从点D出发,以每秒个单位长度的速度沿着射线运动,设点E运动的时间为t秒,过点E作轴于点F,以为斜边向左作等腰直角三角形,连接.(1)求点的坐标;(2)设的面积为,求S与t的关系式;(3)在平面内是否存在点H,使以C,D,G,H为顶点的四边形为正方形?若存在,请直接写出点H的坐标;若不存在,请说明理由.。
成都七中九年级数学试卷
成都七中九年级数学试卷1、下列各角终边在第三象限的是()[单选题] *A. 60°B. 390°C. 210°(正确答案)D. -45°2、21.|x|>3表示的区间是()[单选题] *A.(-∞,3)B.(-3,3)C. [-3,3]D. (-∞,-3)∪(3,+ ∞)(正确答案)3、46、在直角三角形ABC中,,,则的三条高之和为()[单选题] * A.8.4B.9.4(正确答案)C.10.4D.11.4、若10?=3,10?=2,则10的值为( ) [单选题] *A. 5B. 6(正确答案)C. 8D. 95、2.如果规定收入为正,那么支出为负,收入2元记作,支出5元记作().[单选题] *A.5元B. -5元(正确答案)C .-3元D. 7元6、下列计算正确的是( ) [单选题] *A. (-a)·(-a)2·(-a)3=-a?B. (-a)·(-a)3·(-a)?=-a?C. (-a)·(-a)2·(-a)?=a?D. (-a)·(-a)?·a=-a?(正确答案)7、下列表示正确的是()[单选题] *A、0={0}B、0={1}C、{x|x2 =1}={1,-1}(正确答案)D、0∈φ8、1、如果P(ab,a+b)在第四象限,那么Q(a,﹣b)在()[单选题] *A.第一象限B.第二象限(正确答案)C.第三象限D.第四象限9、20.如图,OC是∠AOB的平分线,OD是∠BOC的平分线,那么下列各式中正确的是()[单选题] *21.A.∠COD=∠AOBB.∠AOD=∠AOBC.∠BOD=∠AODD.∠BOC=∠AOD(正确答案)10、x? ?1·()=x? ?1,括号内应填的代数式是( ) [单选题] *A. x? ?1B. x? ?1C. x2(正确答案)D. x11、由数字1、2、3、4、5可以组成多少个不允许有重复数字的三位数?()[单选题]*A、125B、126C、60(正确答案)D、12012、16.“x2(x平方)-4x-5=0”是“x=5”的( ) [单选题] *A.充分不必要条件B.必要不充分条件(正确答案)C.充要条件D.既不充分也不必要条件13、30°角是()[单选题] *A、第一象限(正确答案)B、第一象限C、第三象限D、第四象限14、3.如图,OC为∠AOB内的一条射线,下列条件中不能确定OC平分∠AOB的()[单选题] *A.∠AOC=∠BOCB.∠AOC+∠COB=∠AOB(正确答案)C.∠AOB=2∠BOCD.15、f(x)=-2x+5在x=1处的函数值为()[单选题] *A、-3B、-4C、5D、3(正确答案)16、x+2=3的解为()[单选题] *A. x=1(正确答案)B. x=2C. x=3D. x=417、37、已知A(3,﹣2),B(1,0),把线段AB平移至线段CD,其中点A、B分别对应点C、D,若C(5,x),D(y,0),则x+y的值是()[单选题] *A.﹣1B.0C.1(正确答案)D.218、下列说法有几种是正确的()(1)空间三点确定一个平面(2)一条直线和直线外一点确定一个平面(3)两条直线确定一个平面(4)两条平行直线确定一个平面[单选题] *A、1B、2(正确答案)C、3D、419、已知二次函数f(x)=2x2-x+2,那么f(0)的值为()。
成都七中数学考试题及答案
成都七中数学考试题及答案成都七中作为中国四川省内知名的重点中学,其数学考试题目通常具有较高的难度和创新性。
以下是一套模拟的成都七中数学考试题及答案,仅供参考。
一、选择题(每题4分,共20分)1. 下列哪个选项不是实数集R的子集?A. 有理数集QB. 整数集ZC. 无理数集D. 复数集C答案:D2. 若函数\( f(x) = x^2 - 4x + 4 \),则\( f(2) \)的值为:A. 0B. 4C. 8D. -4答案:A3. 已知三角形ABC的三个内角分别为A、B、C,若\( \sin A + \sinB + \sinC = 2 \),则三角形ABC的类型是:A. 直角三角形B. 等边三角形C. 等腰三角形D. 钝角三角形答案:B4. 一个圆的半径为1,圆心到直线的距离为0.5,那么直线与圆的位置关系是:A. 相离B. 相切C. 相交D. 直线经过圆心答案:B5. 已知等差数列的前n项和为S,若\( S_{10} = 100 \),且\( a_1 = 2 \),则第10项\( a_{10} \)的值为:A. 12B. 14C. 16D. 18答案:A二、填空题(每题5分,共15分)6. 若\( \cos \alpha = \frac{4}{5} \),且\( \alpha \)为锐角,则\( \sin \alpha = \frac{3}{5} \)。
7. 一个长方体的长、宽、高分别为a、b、c,若体积为120,且a=4b,则c的值为\( \frac{15}{b} \)。
8. 已知\( e^x = 3 \),则\( x = \ln 3 \)。
三、解答题(共65分)9.(15分)证明:若\( a, b, c \)为正数,且\( a + b + c = 1 \),则\( \sqrt{a} + \sqrt{b} + \sqrt{c} \leq \frac{3}{2} \)。
证明:略10.(20分)已知函数\( f(x) = \ln(x) + x^2 \),求\( f(x) \)在区间[1, e]上的最大值和最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20.(3分)(2007•安顺)如图,已知正方形ABCD的边长为2.如果将 线段BD绕着点B旋转后,点D落在CB的延长线上的D′点处,那么 tan∠BAD′等于 _________ .
三、解答下列各题: 21.计算: . 22.解下列方程: ①﹣3x2﹣4x+4=0 ②2x2﹣5x+3=0(用配方法)
四、作图题: 23.在下面指定位置画出此实物图的三种视图.
24.如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线 段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.
(1)试确定路灯的位置(用点P表示);(2)在图中画出表示大树高 的线段; (3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大
28.某校A位于工地O的正西方向,且OA=200m,一辆货车从O点出 发,以每秒5米的速度沿北偏西53°方向行驶,已知货车的噪声污染半径 为130m.试问学校是否在货车噪声污染范围内?若不存在,请说明理 由?若存在,为了清除噪声对学校影响,计划在公路旁修筑一段隔音 墙.请你计算隔音墙至少需要多长.(只需考虑声音的直线传播)(已 知sin53°=0.80,sin37°=0.60,tan37°=0.75) 七、解答下列各题:
×3×2﹣ ×3×1=3﹣ = .
17.(3分)已知y=y1﹣y2,y1与x成反比例,y2与(x﹣2)成正比 例,并且当x=3时,y=5;当x=1时,y=﹣1.则y与x的函数关系为 _________ . 18.(3分)如图,A、B是函数 的图象上关于原点О对称的任意两点,AC平行于y轴,BC平行于x轴, △ABC的面积为S,则S= _________ . 19.(3分)(2004•上海)某山路坡面坡度i=1: ,沿此山路向上前进200米,升高了 _________ 米.
∴BC= =50(m), ∴CD=2BC=100(m) ∴隔音墙至少需要100米.
七、解答下列各题: 29.解:(1)如图,过A作AE⊥x轴于E点, 在Rt△OAE中,tan∠AOC= , ∴ = ,即OE=2AE, ∵OA2=OE2+AE2,OA= , ∴4AE2+AE2=5,解得AE=1, ∴OE=2, ∴A点坐标为(﹣2,1), 把A(﹣2,1)代入反比例函数 得k=﹣2, ∴反比例函数的解析式为y=﹣ ; 把B(
,m)代入y=﹣ 得 m=﹣2,解得m=﹣4, ∴点B的坐标为( ,﹣4), 把A(﹣2,1)、B( ,﹣4)分别代入y=ax+b得,﹣2a+b=1, a+b=﹣4,解得a=﹣2,b=﹣3, ∴一次函数的解析式为y=﹣2x﹣3; (2)一次函数值大于反比例函数值的x的取值范围为x>﹣ 2或0<x< ; (3)对于y=﹣2x﹣3,令x=0,则y=﹣3, ∴D点坐标为(0,﹣3), ∴S△AOB=S△AOD+S△BOD= ×3×2+ ×3× =
+3=0, 2(x﹣ )2= , (x﹣ )2= , 解得x﹣ =± , ∴x1= + = ,x2=﹣ + =1. 四、作图题: 23.在下面指定位置画出此实物图的三种视图. 解:
24.解:(1)如图所示,点P即为所求作的路灯的位置; (2)如图所示,LM为表示大树的线段; (3)如图所示,LD与AB不相交,所以小明能否看见大 树; (4)如图,设人影的长为x米, 根据题意得,QB=20﹣14=6米, = , 解得x=1.5米,经检验,x=1.5是方程的解, 即人影长尾1.5米.
∴tan30°= ∴3x= (x+32) x= =16( +1)米 答:断裂部分长16( +1)米. 注:依照不同的计算式也可得 .
28.解:如图,过点A作AB⊥OM于点B, ∵∠MON=53°, ∴∠AOM=90°﹣53°=37度. 在Rt△ABO中, ∵sin∠AOB= , ∴AB=AO•sin∠AOB=200×sin37°≈120(m). ∵120m<130m. ∴教室A在拖拉机的噪声污染范围内. 根据题意,在OM上取C,D两点,连接AC,AD,使 AC=AD=130m, ∵AB⊥OM, ∴B为CD的中点,即BC=DB,
21.解:原式=2× + +|2×1﹣2 | =2 +( +1)+2 ﹣2 =5 +1. 22.解下列方程: 解:①﹣3x2﹣4x+4=0, 3x2+4x﹣4=0, (3x﹣2)(x+2)=0, ∴3x﹣2=0,x+2=0, 解得x1= ,x2=﹣2; ②2x2﹣5x+3=0, 2(x2﹣ x+ )﹣
13.(3分)如果函数 是反比例函数,则其图象在第 _________ 象限,函数值y随x的减小 而 _________ . 14.(3分)如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN 交AC于D,连接BD,若cos∠BDC=
,则BC的长为 _________ . 15.(3分)已知α为锐角,且2cos(90°﹣α)﹣ =0,tanα= ______. 16.(3分)某商品连续两次降价10%后的价格为a,该商品的原价为 ____ .
9.(3分)已知A(x1,﹣3)、B(x2,﹣1)、C(x3,2)在函数 的图象上,则x1、x2、x3的大小关系为( ) A. x1<x3<x2 B. x3<x2<x1 C. x1<x2<x3 D. x3<x1<x2 10.(3分)一棵大树在一次强台风中于离地面5米处折断倒下,倒下部 分与地面成30°夹角,这棵大树在折断前的高度为( ) A. 10米 B. 15米 C. 25米 D. 30米 二、填空题 11.(3分)若方程(m﹣1)x2﹣ x=3是关于x的一元二次方程,则m的取值范围为 _________ . 12.(3分)如果方程2x(kx﹣4)﹣x2﹣6=0有实数根,则k的最小整数 是 _________ .
7.(3分)如图,在高为2m,坡角为30°的楼梯上铺地毯,地毯的长度 至少应为( ) A. 4m B. 6m C. 4 m D.(2+2 )m
Hale Waihona Puke 8.(3分)小明将一张矩形纸片ABCD沿CE折叠,B点恰好落在AD边 上,设此点为F,若AB:BC=4:5,则cos∠DFC的值为( ) A. B. C. D.
.
30.解:(1)∵y1=x+m与y2= 过点C(﹣1,2), ∴m=3,k=﹣2, ∴y1=x+3,y2=﹣ ; (2)由题意得
, 解得 或 ∴D点坐标为(﹣2,1); (3)∵直线AB的解析式为y1=x+3, ∴A(﹣3,0) ∴OA=3, ∵C(﹣1,2),D(﹣2,1) ∴S△OCD=S△OAC﹣S△OAD=
4.(3分)在△ABC中,∠C=90°,如果tanA= ,则sinB=( ) A. B.
C.
D.
5.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,已知 AC= ,BC=2,则sin∠BCD=( ) A. B. C. D.
6.(3分)下列一元二次方程中,没有实数根的是( ) A. x2+2x﹣1=0 B. x2+2 C. D. ﹣x2+x+2=0 x+2=0
树; (4)设路灯距地面8米,小明身高1.6米在距离灯的底部20米处,沿NF 所在的直线走14米到达点B时,求人影的长.
五、解答下列各题: 25.某公司向银行贷款20万元资金,约定两年到期时一次性还本付息, 利息是本金的12%,该公司利用这笔贷款经营,两年到期时除还清贷款 的本金和利息外,还盈余6.4万元,若在经营期间每年比上一年资金增 长的百分数相同,试求这个百分数.
②求D点坐标; ③求△OCD的面积.
2011-2012学年四川省成都市七中九年级(上)期 中数学试卷 参考答案与试题解析
一、选择题 1.A 2.B 3.D 4.C 5.B 6.C 7.D 8.B 9.D 10.B 二、填空题 11. m≠1且m≥0 . 12. 0 . 13. 二、四 , 减小 . 14. 4 . 15. . 16. . 17. y= +4x﹣8 . 18. 4 . 19. 10 . 20. . 三、解答下列各题:
26.已知关于x的方程x2﹣(k+2)x+2k=0. ①小明同学说:无论k取何实数,方程总有实数根,你认为他说的有道 理吗? ②若等腰三角形的一边a=1,另两边b、c恰好是这个方程的两个根,求 △ABC的周长和面积.
六、完成下列各题: 27.(2005•青海)如图所示,一人工湖的对岸有一条笔直的小路,湖 上原有一座小桥与小路垂直相通,现小桥有一部分已断裂,另一部分完 好.站在完好的桥头A测得路边的小树D在它的北偏西30°,前进32米到 断口B处,又测得小树D在它的北偏西45°,请计算小桥断裂部分的长. (结果用根号表示)
29.如图,一次函数y=ax+b的图象与反比例函数
的图象交于A、B两点,与x轴交于点C.已知OA= ,tan∠AOC= ,点B的坐标为( ,m). ①求反比例函数和一次函数的解析式; ②利用图象,写出一次函数值大于反比例函数值的x的取值范围; ③求△AOB的面积. 30.如图,已知直线y1=x+m与x轴、y轴分别交于A、B,与双曲线 (x<0)分别交于点C、D.且C点的坐标为(﹣1,2). ①求直线AB及双曲线的解析式;
五、解答下列各题: 25.解:设这个百分数为x, 20×(1+x)2=20+20×12%+6.4, (1+x)2=1.44, ∵1+x>0,
∴1+x=1.2, ∴x=20%. 答:这个百分数为20%. 26. 解:(1)∵△=(k+2)2﹣4×1×2k=k2+4k+4﹣8k=k2﹣ 4k+4=(k﹣2)2≥0, ∴方程无论k取何值,总有实数根, ∴小明同学的说法合理; (2)①当b=c时,则△=0, 即(k﹣2)2=0, ∴k=2, 方程可化为x2﹣4x+4=0, ∴x1=x2=2, 而b=c=2, ∴C△ABC=5,S△ABC= ; ②当b=a=1, ∵x2﹣(k+2)x+2k=0. ∴(x﹣2)(x﹣k)=0, ∴x=2或x=k, ∵另两边b、c恰好是这个方程的两个根, ∴k=1, ∴c=2, ∵a+b=c, ∴不满足三角形三边的关系,舍去; 综上所述,△ABC的周长为5. 六、完成下列各题: 27.解:延长AB交小路于C,设BC=x ∵∠CBD=45°AC⊥DC ∴BC=CD=x 在Rt△DAC中,∠DAC=30°,AC=x+32