人教版七年级上册数学《期中检测试卷》含答案

合集下载

人教版七年级上册数学期中试卷及答案【完整版】

人教版七年级上册数学期中试卷及答案【完整版】

人教版七年级上册数学期中试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为( ) A .12 B .7+7 C .12或7+7 D .以上都不对2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣194.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱5.点A 在数轴上,点A 所对应的数用21a +表示,且点A 到原点的距离等于3,则a 的值为( )A .2-或1B .2-或2C .2-D .16.如图,若AB ∥CD ,CD ∥EF ,那么∠BCE =( )A .∠1+∠2B .∠2-∠1C .180°-∠1+∠2D .180°-∠2+∠17.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒8.6的相反数为( )A .-6B .6C .16-D .16 9.已知23a b =(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b 10.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.绝对值不大于4.5的所有整数的和为________.3.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.分解因式:23m m -=________.5364 的平方根为________.6.若实数a 、b 满足a 2b 40+-=,则2a b=_______. 三、解答题(本大题共6小题,共72分)1.解下列方程:(1)37615=-y (2)21136x x ++-=2 (3)0.430.20.5x x +--=﹣1.62.已知关于x、y的方程组354526x yax by-=⎧⎨+=-⎩与2348x yax by+=-⎧⎨-=⎩有相同的解,求a、b的值.3.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.4.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l 异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.小明同学三次到某超市购买A、B两种商品,其中仅有一次是有折扣的,购买数量及消费金额如下表:类别次数购买A商品数量(件)购买B商品数量(件)消费金额(元)第一次 4 5 320第二次 2 6 300第三次 5 7 258解答下列问题:(1)第次购买有折扣;(2)求A、B两种商品的原价;(3)若购买A、B两种商品的折扣数相同,求折扣数;(4)小明同学再次购买A、B两种商品共10件,在(3)中折扣数的前提下,消费金额不超过200元,求至少购买A商品多少件.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、A5、A6、D7、B8、A9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、03、70.4、(3)m m-5、±26、1三、解答题(本大题共6小题,共72分)1、(1)y=3;(2)x=113;(3)x=﹣3.2.2、149299 ab⎧=⎪⎪⎨⎪=⎪⎩3、略4、(1)详略;(2)∠ABC=∠DEF,∠ACB=∠DFE,略.5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)三(2)A:30元/件,B:40元/件(3)6 (4)7件。

人教版数学七年级上册《期中检测试卷》附答案解析

人教版数学七年级上册《期中检测试卷》附答案解析

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. -2019的相反数是( ) A. 2019B. -2019C.12019D. 12019-2. 在整数集合{-3、-2、-1、0、 1、2、3、4、5、6)中选取两个整数填入“6⨯=-"口内,使等式成立,则选取后填入的方法有( ). A. 2种B. 4种C. 6种D. 8种3. 中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( ) A. 91.210⨯个B. 91210⨯个C. 101.210⨯个D. 111.210⨯个4. 下列说法中, 正确的是( ) .A. 单项式223x y-.的系数是-2,次数是3 B. 单项式a 的系数是1,次数是0C. 2341x y x -+-是三次三项式,常数项是1 D. 单项式32abπ-.的次数是2.系数为32π- 5. 某超市老板先将进价a 元排球提高20%出售80个,后又按进价出售剩下的20个,则该超市出售这100个排球的利润(利润=总售价-总进价)是( ). A. 1.6a 元B. 16a 元C. 80a 元D. 96a 元6. 有理数a, b, c 在数轴上的对应点的位置如图所示,且|a|<|b|, 则该数轴的原点位置不可能( ).A. 在a 的左边B. 在a 、c 之间.C. 在c 、b 之间D. 在b 的右边二、填空题(每题3分,满分18分,将答案填在答题纸上)7. 计算: 2019(1)(1)-+-= ________.8. 化简: a+3a+5a+7a =__________.9. 设a 与b 互为相反数,c 与d 互为倒数,比较大小则: 2019()a b --______2020()cd - (填>、=、<). 10. 若x+2y=3, 则代数式3x+6y+2的值是__________.11. 写出两个只含字母x 的二次二项式,使它们的和为x+1,满足要求的多项式可以是: _________、_________.12. 已知a 、b 是有理数,若|a|=3,b 2=4,则a+b 的所有值为_____________.三、计算题(本大题共4小题,每小题4分,共16分)13. 9(14)(7)15--+--;14. 21|5|10.8274⎛⎫⎛⎫-÷-⨯⨯- ⎪ ⎪⎝⎭⎝⎭:15. 1171(36)1296⎛⎫-⨯--⎪⎝⎭ 16. ()2295(3)(2)2+⨯---÷-四、化简(本大题共4小题,每小题4分,共16分)17. 2267946a b a b +-+-+; 18. 52(45)3(34)x x y x y -++- 19. ()()22222351a b ababa b --++;20. ()2242422()x xy x y xy y ⎡⎤---++⎣⎦.五、解答题(本大题共2小题,每小题6分,共12分)21. 如图所示,小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各题: (1)若从中抽出2张卡片,且这2个数字的差最小,应如何抽取?最小值是多少? (2)若从中抽出2张卡片,且这2个数字的积最大,应如何抽取?最小值是多少?(3)若从中抽出4张卡片,运用加、减、乘、除、乘方、括号等运算符号,使得结果24.请写出运算式.(只需写出一种)22. 定义:若a+b=2,则称a 与b 是关于1的平衡数. (1)直接填写:①3与_ 是关于1的平衡数: :②1-x 与________是关于 1平衡数(用含x 的代数式表示); (2)若()22234a x x x =-++,()22342b x x x x ⎡⎤=--++⎣⎦,先化简a. b,再判断a 与b 是否是关于1的平衡数.六、解答题(本大题共2小题,每小题10分,共20分)23. 已知: 5335P x x x =++,42246Q x x =++.(1)当x=1和-1时,分别求P ,Q 的值;(2)当x=19时,P 的值为a, Q 的值为b ,当x=-19时,分别求P, Q 的值(用含a ,b 的代数式表示);(3)当x=m 时,P, Q 的值分别为c, d; 当x=-m 时,P, Q 的值分别为e, f,则在c ,d, e, f 四个有理数中,以下判断正确的是 (只要填序号即可).①有两个相等的正数;②有两个互为相反数;③至多有两个正数;④至少有两个正数;⑤至多有一个负数;⑥至少有一个负数.24. 如图,这是网上盛传的一个关于数学的诡辩问题截图,表1是它的示意表.我们一起来解答“为什么多出了元”.表1花去剩余(1)为了解释“剩余金额总计”与“我手里有100元”无关,请按要求填写表2中的空格.表2表3(2)如表3中,直接写出以下各代数式的值:①a b c d +++= ;②a x += ;③a b y ++= ;④a b c z +++= ;(3)如表3中,,a b c d 、、都是正整数,则的最大值等于 ;最小值等于 .由此可以知道“为什么多出了元”只是一个诡辩而已.(4)我们将“花去”记为“”,“剩余”记为“”,请在表4中将表1数据重新成号.答案与解析一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. -2019的相反数是( ) A. 2019B. -2019C.12019D. 12019-【答案】A 【解析】 【分析】根据只有符号不同的两个数是互为相反数解答即可. 【详解】解:-2019的相反数是2019. 故选A .【点睛】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.2. 在整数集合{-3、-2、-1、0、 1、2、3、4、5、6)中选取两个整数填入“6⨯=-"的口内,使等式成立,则选取后填入的方法有( ). A. 2种 B. 4种C. 6种D. 8种【答案】C 【解析】 【分析】根据有理数乘法法则选取即可.【详解】解:由题意可知,326-⨯=-,2(3)6⨯-=-,236,3(2)6,166,6(1)6,填入的方法有6种,故选C.【点睛】本题考查了有理数的乘法运算,熟练掌握运算法则是解题关键.3. 中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( ) A. 91.210⨯个B. 91210⨯个C. 101.210⨯个D. 111.210⨯个【答案】C 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】120亿个用科学记数法可表示为:101.210⨯个. 故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,为整数,表示时关键要正确确定的值以及的值. 4. 下列说法中, 正确的是( ) .A. 单项式223x y-.的系数是-2,次数是3 B. 单项式a 的系数是1,次数是0C. 2341x y x -+-是三次三项式,常数项是1 D. 单项式32abπ-.的次数是2.系数为32π- 【答案】D 【解析】 【分析】根据单项式系数、次数的定义和多项式系数、次数、项数的定义进行判断.【详解】解:A. 单项式223x y-的系数是23-,次数是3,故该选项错误;B. 单项式a 的系数是1,次数是1,故该选项错误;C. 2341x y x -+-是三次三项式,常数项是-1,故该选项错误;D. 单项式32abπ-的次数是2,系数为32π-,正确, 故选D.【点睛】本题考查了的单项式和多项式的相关概念,熟练掌握系数、次数、项数的定义是解题关键.5. 某超市老板先将进价a元的排球提高20%出售80个,后又按进价出售剩下的20个,则该超市出售这100个排球的利润(利润=总售价-总进价)是( ).A. 1.6a元B. 16a 元C. 80a元D. 96a元【答案】B【解析】【分析】由于按进价出售剩下的20个排球,故只需计算按进价提高20%出售的80个排球所得的利润即可.【详解】解:由题意得,该超市出售这100个排球的利润为:20%a×80=16a,故选B.【点睛】本题考查了列代数式,弄清题意,正确列出代数式是解题关键.6. 有理数a, b, c在数轴上的对应点的位置如图所示,且|a|<|b|,则该数轴的原点位置不可能( ).A. 在a的左边B. 在a、c之间.C. 在c、b之间D. 在b的右边【答案】D【解析】【分析】根据绝对值的意义结合数轴判断即可.【详解】解:∵|a|<|b|,∴a到原点的距离小于b到原点的距离,∴该数轴的原点位置不可能在b的右边,故选D.【点睛】本题考查了数轴和绝对值,正确理解绝对值的意义是解题关键.二、填空题(每题3分,满分18分,将答案填在答题纸上)7. 计算: 2019-+-= ________.(1)(1)【答案】0【解析】【分析】根据有理数的乘方法则进行计算即可. 【详解】解:2019(1)(111)0-+-=-=, 故答案为0.【点睛】本题考查了有理数的乘方运算,熟练掌握运算法则是解题关键. 8. 化简: a+3a+5a+7a =__________. 【答案】16a 【解析】 【分析】根据合并同类项法则计算即可.【详解】解:a+3a+5a+7a=(1+3+5+7)a=16a , 故答案为16a.【点睛】本题考查了合并同类项:将同类项的系数相加,所得的结果作为系数,字母和字母的指数不变. 9. 设a 与b 互为相反数,c 与d 互为倒数,比较大小则: 2019()a b --______2020()cd - (填>、=、<).【答案】< 【解析】 【分析】根据相反数和倒数的定义得到a+b=0,cd=1,然后求出2019()a b --和2020()cd -的值,再进行比较即可.【详解】解:∵a 与b 互相反数,c 与d 互为倒数, ∴a+b=0,cd=1, ∴20190()a b -=+,20201()cd -=,∴2019()a b --<2020()cd -,故答案为<.【点睛】本题考查了相反数和倒数的定义以及有理数的乘方运算,熟练掌握运算法则是解题关键. 10. 若x+2y=3, 则代数式3x+6y+2的值是__________. 【答案】11 【解析】 【分析】将所求代数式变形,然后整体代入即可.【详解】解:∵x+2y=3,∴3x+6y+2=3(x+2y)+2=9+2=11,故答案为11.【点睛】本题考查了代数式求值,注意整体思想的应用.11. 写出两个只含字母x的二次二项式,使它们的和为x+1,满足要求的多项式可以是: _________、_________.【答案】(1). x2+1(2). -x2+x【解析】【分析】让写出的两个二次二项式的二次项系数互为相反数,其中一个多项式有常数项1,另一个多项式有一次项x即可.【详解】解:由题意可得:满足要求的多项式可以是x2+1,-x2+x(答案不唯一),故答案为x2+1,-x2+x(答案不唯一).【点睛】本题考查了多项式系数、次数的定义以及整式的加减运算,根据运算法则得到满足要求的多项式的特点是解题关键.12. 已知a、b是有理数,若|a|=3,b2=4,则a+b的所有值为_____________.【答案】土1或士5【解析】【分析】首先根据绝对值和平方根的性质求出a,b,然后分情况计算即可.【详解】解:∵|a|=3,b2=4,∴a=±3,b=±2,当a=3,b=2时,a+b=5,当a=-3,b=2时,a+b=-1,当a=3,b=-2时,a+b=1,当a=-3,b=-2时,a+b=-5,∴a+b的所有值为:±1或±5,故答案为±1或±5.【点睛】本题考查了绝对值和平方根的性质,根据绝对值和平方根的性质求出a,b是解题关键.三、计算题(本大题共4小题,每小题4分,共16分)13. 9(14)(7)15--+--; 【答案】1 【解析】 【分析】根据有理数的加减运算法则进行计算. 【详解】解:原式=9+14-7-15=1.【点睛】本题考查了有理数的加减运算,熟练掌握运算法则是解题关键. 14. 21|5|10.8274⎛⎫⎛⎫-÷-⨯⨯- ⎪ ⎪⎝⎭⎝⎭: 【答案】7 【解析】 【分析】首先根据绝对值的性质化简,然后根据有理数的乘除运算法则进行计算. 【详解】解:原式=21510.8274⎛⎫⎛⎫÷-⨯⨯- ⎪ ⎪⎝⎭⎝⎭=9495754⎛⎫⎛⎫÷-⨯⨯- ⎪ ⎪⎝⎭⎝⎭=7495954⨯⨯⨯= 7. 【点睛】本题考查了有理数的乘除运算,熟练掌握运算法则是解题关键. 15. 1171(36)1296⎛⎫-⨯-- ⎪⎝⎭【答案】1 【解析】 【分析】用乘法分配律进行计算即可. 【详解】解:原式=-33+28+6=1.【点睛】本题考查了有理数的乘法运算,熟练掌握运算法则和运算律是解题关键. 16. ()2295(3)(2)2+⨯---÷-.【答案】-5 【解析】 【分析】先算乘方,再算乘除,最后算加减.【详解】解:原式()95(3)4491515=+⨯--÷-=-+=-.【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.四、化简(本大题共4小题,每小题4分,共16分)17. 2267946a b a b +-+-+; 【答案】21063a b +- 【解析】 【分析】根据合并同类项法则进行计算即可. 【详解】解:原式=()22(64)7(96)a a b b++-+-+=21063a b+-.【点睛】本题考查了整式的加减运算,熟练掌握合并同类项法则是解题关键. 18. 52(45)3(34)x x y x y -++- 【答案】6x-22y 【解析】 【分析】去括号,然后合并同类项即可.【详解】解:原式=5x-8x-10y+9x-12y=(5x-8x+9x)-(10y+12y)=6x-22y.【点睛】本题考查了整式的加减运算,熟练掌握去括号法则与合并同类项法则是解题关键. 19. ()()22222351a b ababa b --++;【答案】22571b ab -+ 【解析】 【分析】去括号,然后合并同类项即可.【详解】解:原式=22226251a b ab ab a b ---+ =()()22226251a b a b ab ab --++=22571b ab -+.【点睛】本题考查了整式的加减运算,熟练掌握去括号法则与合并同类项法则是解题关键. 20. ()2242422()x xy x y xy y ⎡⎤---++⎣⎦. 【答案】10xy - 【解析】 【分析】去括号,然后合并同类项即可.【详解】原式=()22484222x xy x y xy y ---++ =224842x xy x xy --- =()2244(82)x x xy xy --+=10xy -.【点睛】本题考查了整式的加减运算,熟练掌握去括号法则与合并同类项法则是解题关键.五、解答题(本大题共2小题,每小题6分,共12分)21. 如图所示,小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各题: (1)若从中抽出2张卡片,且这2个数字的差最小,应如何抽取?最小值是多少? (2)若从中抽出2张卡片,且这2个数字的积最大,应如何抽取?最小值是多少?(3)若从中抽出4张卡片,运用加、减、乘、除、乘方、括号等运算符号,使得结果为24.请写出运算式.(只需写出一种)【答案】(1)抽取-8和6,最小值是-8-6=-14;(2)抽取-6和-8,最大值是(-4)×(-8)=32;答案不唯一. 【解析】试题分析: (1)观察这五个数,要找数字的差最小的就要找最大的数和最小的数,所以选-8和6; (2)2张卡片上数字的积最大就要找符号相同且绝对值最大的数,所以选就要选-6和-8;(3)从中取出4张卡片,用学过的运算方法,使结果为24,这就不唯一,用加减乘除只要答数是24即可,比如抽取3,-4,6,-8,结果为(-8+6)×3×(-4)=-2×(-12)=24. 试题解析:(1)抽取-8和6,它们的差最小,最小值是-8-6=-14; (2)抽取-6和-8,它们的积最大,最大值是(-4)×(-8)=32; (3)本题答案不唯一,如抽取3,-4,6,-8,结果为(-8+6)×3×(-4)=-2×(-12)=24.点睛:此题考查了有理数混合运算,熟练掌握运算法则是解本题的关键. 22. 定义:若a+b=2,则称a 与b 是关于1平衡数. (1)直接填写:①3与_ 是关于1的平衡数: :②1-x 与________是关于 1的平衡数(用含x 的代数式表示); (2)若()22234a x x x =-++,()22342b x x x x ⎡⎤=--++⎣⎦,先化简a. b,再判断a 与b 是否是关于1的平衡数.【答案】(1)①-1;②1+x ;(2)234a x x =--+,232b x x =+-,a 与b 是关于1的平衡数,理由见解析. 【解析】 【分析】(1)①根据平衡数的定义列式计算即可; ②根据平衡数的定义列式计算即可;(2)首先去括号,合并同类项化简a ,b ,然后计算a+b 的值即可进行判断. 【详解】解:(1)①∵2-3=-1, ∴3与-1是关于1的平衡数; ②∵2-(1-x)=2-1+x=1+x ,∴1-x 与1+x 是关于 1的平衡数;(2)()22222234233434a x x x x x x x x =-++=---+=+-,()22342b x x x x ⎡⎤=--++⎣⎦()22342x x x x =---+ 22342x x x x =-++- 232x x =+-,∵2222(34)(32)34322a b x x x x x x x x +=-++-=-++-+-+=-, ∴a 与b 是关于1的平衡数.【点睛】本题考查了整式加减的实际应用,正确理解平衡数的定义是解题关键.六、解答题(本大题共2小题,每小题10分,共20分)23. 已知: 5335P x x x =++,42246Q x x =++.(1)当x=1和-1时,分别求P ,Q 的值;(2)当x=19时,P 的值为a, Q 的值为b ,当x=-19时,分别求P, Q 的值(用含a ,b 的代数式表示);(3)当x=m 时,P, Q 的值分别为c, d; 当x=-m 时,P, Q 的值分别为e, f,则在c ,d, e, f 四个有理数中,以下判断正确的是 (只要填序号即可).①有两个相等的正数;②有两个互为相反数;③至多有两个正数;④至少有两个正数;⑤至多有一个负数;⑥至少有一个负数.【答案】(1)当x=1时,P=9,Q=12;当x=-1时,P =-9,Q =12;(2)P=-a ,Q=b ;(3)①②④⑤. 【解析】 【分析】(1)分别代入求值即可;(2)根据互为相反数两个数的奇次幂仍然互为相反数,互为相反数的两个数的偶次幂相等可得答案; (3)首先求出c ,d ,e ,f 并化简,然后利用相反数的和偶次方的性质逐个判断即可.【详解】解:(1)当x=1时,53351359P x x x =++=++=,4224624612Q x x =++=++=; 当x=-1时,53351359P x x x =++=---=-,4224624612Q x x =++=++=; (2)∵当x=19时,P 的值为a ,Q 的值为b , ∴当x=-19时,P=-a ,Q=b ;(3)由题意得:5335c m m m =++,42246d m m =++,535353()3()5()35(35)e m m m m m m m m m =-+-+-=-=-++--,42422()4()6246f m m m m =-+-+=++,①∵422460m m ++>,∴0d f =>,即有两个相等的正数,正确; ②∵5335c m m m =++,53(35)e m m m =-++,∴有两个互相反数,正确; ③∵0d f =>,ce 互为相反数,∴至少有两个正数,错误; ④由③可知,正确;⑤∵0d f =>,ce 互为相反数,∴至多有一个负数,正确; ⑥由⑤可知,错误; 故判断正确的是:①②④⑤.【点睛】本题主要考查了有理数的乘方以及相反数等知识,熟练掌握奇次幂和偶次幂的性质是解题关键. 24. 如图,这是网上盛传的一个关于数学的诡辩问题截图,表1是它的示意表.我们一起来解答“为什么多出了元”.表1花去剩余买牛肉40元60元买猪脚元元买蔬菜元元买调料元元总计100元102元(1)为了解释“剩余金额总计”与“我手里有100元”无关,请按要求填写表2中的空格.表2花去剩余买牛肉40元60元买猪脚元元买蔬菜元元买调料元元总计100元102元表3(2)如表3中,直接写出以下各代数式的值:①a b c d +++= ;②a x += ;③a b y ++= ;④a b c z +++= ;(3)如表3中,,a b c d 、、都是正整数,则的最大值等于 ;最小值等于 .由此可以知道“为什么多出了元”只是一个诡辩而已.(4)我们将“花去”记为“”,“剩余”记为“”,请在表4中将表1数据重新成号.【答案】(1), ,;(2)①100,②100,③100,④100;(3)294,;(4)见表格解析. 【解析】 【分析】(1)根据剩余的总计是102元,可知买蔬菜后剩余12元,据此计算其余的空格;(2)根据花去的钱数+剩余的钱数=总钱数分别计算即可;(3)当a,b,c依次取最小值时,则对应的剩余钱数就最大,w的值也就最大;当b,c,d尽可能取最小值时,则对应的剩余钱数就最小,w的值也就最小;(4)根据正负数的意义进行填表即可.【详解】解:(1)如下表:故答案为:(1), ,;(2)①100,②100,③100,④100;(3)294,;(2)由题意可得:①a+b+c+d=100;②a+x=100;③a+b+y=100;④a+b+c+z=100;故答案为:100,100,100,100;(3)当a=1,b=1,c=1时,则x=99,y=98,z=97,此时w取最大值99+98+97=294;当b=1,c=1,d=1时,则x=3,y=2,z=1,此时w取最小值3+2+1=1,故w的最大值等于294,最小值等于6;故答案为:294,;()4如下表:【点睛】本题考查了正负数的意义以及有理数加减运算的实际应用,正确理解题意并熟练掌握等量关系:花去的钱数+剩余的钱数=总钱数是解决此题的关键.。

人教版七年级上学期期中数学试卷(含解析)

人教版七年级上学期期中数学试卷(含解析)

人教版七年级第一学期期中数学试卷及答案一、选择题(每小题4分,共12小题,共48分)1.在数字:、﹣1、、0中,最小的数是()A.B.﹣1C.D.02.下列各式中不是整式的是()A.3a B.C.D.03.下列方程中是一元一次方程的是()A.=2B.x+1=y+2C.x﹣1=3x D.x2﹣2=04.|﹣3|的相反数是()A.﹣3B.3C.D.﹣5.若x与3互为相反数,则x+1等于()A.﹣2B.4C.﹣4D.26.若单项式a m+1b3与﹣a3b n是同类项,则m n值是()A.3B.4C.6D.87.若a﹣b=1,则代数式2a﹣2b﹣1的值为()A.1B.﹣1C.2D.﹣28.某企业今年1月份产值为a万元,2月份比1月份减少了15%,3月份比2月份增加了5%,则3月份的产值为()A.(a+15%)(a﹣5%)万元B.(a﹣15%)(a+5%)万元C.a(1+15%)(1﹣5%)万元D.a(1﹣15%)(1+5%)万元9.已知mx=my,字母m为任意有理数,下列等式不一定成立的是()A.mx+1=my+1B.x=y C.πmx=πmy D.mx=my10.若|m﹣1|+m=1,则m一定()A.大于1B.小于1C.不小于1D.不大于111.如图,表中给出的是2021年1月份的月历,任意选取“工”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.161B.91C.78D.4912.三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m,图2阴影部分周长为n,要求m与n的差,只需知道一个图形的周长,这个图形是()A.整个长方形B.图①正方形C.图②正方形D.图③正方形二、填空题(每小题3分,共8小题,共24分)13.(3分)经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过95000000党员的世界第一大政党,将数字95000000用科学记数法表示为.14.(3分)计算:25+(﹣12)﹣(﹣7)的结果为.15.(3分)若方程3x k﹣2=7是一元一次方程,那么k=.16.(3分)点A在数轴上表示数3,一只蚂蚁从点A出发向正方向爬了2个单位长度到了点B,则点B所表示的数是.17.(3分)按下图的程序计算,若输入n=32,则输出结果是.18.(3分)若多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,则ab=.19.(3分)已知|a|=5,|b|=3,若|a+b|=a+b,则a+b=.20.(3分)学校组织劳动实践活动,组织一组同学把两片草地的草割完.已知两片草地一大一小,大的比小的大一倍,大家先都在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完,另一半人到小片草地割,到收工时还剩一小块,且这一小块草地恰好是一个人一天的工作量,由此可知,此次参加社会实践活动的人数为人.三.解答题(共8小题,共78分)21.(8分)画出数轴标出表示下列各数的点,并用“<”把下列各数连接起来.3,﹣3,|﹣2|,0,﹣2222.(8分)计算:(1)(﹣5)×(﹣7)×2;(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.23.(10分)解方程:(1)5x﹣4=x+4;(2)﹣=1+.24.(10分)(1)化简:ab+3b2﹣(2b2+ab);(2)先化简,再求代数式3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy的值,其中x=﹣2,y=﹣1.25.(10分)“抗击新冠疫情,人人有责”,学校作为人员密集的场所,要求老师和同学们进入校门后按照要求佩戴好口罩.巴川量子中学初一的鑫鑫从学校了解到,上周五这一天,七年级各班共使用口罩500只,喜欢统计的鑫鑫本周统计了七年级各班每天的口罩使用情况,制作了如下的一个统计表,以500只为标准,其中每天超过500只的记为“+”,每天不足500只的记为“﹣”,统计表格如下:周一周二周三周四周五﹣14+11﹣20+48﹣5(1)本周哪一天七年级同学使用口罩最多,数量是多少只?(2)若同学们佩戴的口罩分为两种,一种是普通医用口罩,价格为1元一只,另外一种为N95型口罩,价格为3元一只,其中本周所用的普通医用口罩的数量比N95型口罩多520只,求本周七年级所有同学们购买口罩的总金额?26.(10分)为奖励同学们在班级文化展中的精彩演出,老师让洪洪到文体超市购买若干个文具作为奖品,其中文具袋标价每个10元,笔记本标价每本8元,签字笔标价每支6元.请认真审题,解决下面两个问题:(1)洪洪在买文具袋时与老板进行了如图的对话,请认真阅读图片,求出洪洪原计划购买文具袋的个数.(2)除了文具袋,洪洪还需要购买笔记本和签字笔,经和老板协商,笔记本和签字笔也可享受八五折优惠,最后购买笔记本和签字笔一共支付了612元,且购得的笔记本和签字笔数量恰好能让每位同学得到1个笔记本和两只签字笔,问洪洪班里共有多少名同学?27.(10分)定义.对于一个四位自然数n,若其百位数字等于其个位数字与十位数字之和,其千位数字等于其十位数字与百位数字之和,则称这个四位自然数n为“加油数”,并将该“加油数”的各个数位数字之和记为F(n).例如:5413是“加油数”,因为5413的个位数字是3,十位数字是1,百位数字是4,千位数字是5,且3+1=4,1+4=5,所以543是“加油数”,则F(5413)=5+4+1+3=13;19734不是“加油数”,因为9734的个位数字是4,十位数字是3,百位数字是7,千位数字是9,而4+3=7,但3+7=10≠9,所以9734不是“加油数”.(1)判断.8624和3752是不是“加油数”并说明理由;(2)若x,y均为“加油数”,其中x的个位数字为1,y的十位数字为2,且F(x)+F(y)=30,求所有满足条件的“加油数”x.28.(12分)数轴是一种特定的几何图形,利用数轴能形象地表示数,在数轴的问题中,我们常常用到数形结合的思想,并借助方程解决问题.如图1,在数轴上,点A表示数﹣8,点C表示的数为2,点B表示的数为6.(1)点P从点A出发,以2个单位/秒的速度向右运动,同时,点Q从点B出发,以1个单位/秒的速度向左运动,经过多久两点相遇?(2)如图2,我们将图1的数轴沿点O和点C各折一次后会得到一个新的图形,与原来相比,线段AO和CB 仍然水平,线段OC处产生了一个坡度,我们称这样的数轴为“坡数轴”,其中O为“坡数轴”原点,在“坡数轴”上,每个点对应的数就是把“坡数轴”拉直后对应的数.记“坡数轴”上A到B的距离为A和B拉直后距离:即=AO+OC+CB,其中AO、OC、CB代表线段长度.在“坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.①点P从点A出发,以2个单位/秒的速度沿着“坡数轴”向右运动,同时点Q从点B出发,以1个单位l秒的速度沿着“坡数轴”向左运动,经过多久,=2?②点P从A处沿“坡数轴”以每秒2个单位长度的速度向右移动,当移到点C时,立即掉头返回(掉头时间不计),在P出发的同时,点Q从B处沿“坡数轴”以每秒1个单位长度的速度向左移动,当P重新回到A点所有运动结束,设P点运动时间为t秒,在移动过程中,何时?直接写出t的值.参考答案与试题解析一、选择题(每小题4分,共12小题,共48分)1.在数字:、﹣1、、0中,最小的数是()A.B.﹣1C.D.0【分析】利用“负数<0<正数,两个负数比大小,绝对值大的反而小”比较大小.【解答】解:∵负数<0<正数,两个负数比大小,绝对值大的反而小,||>|﹣1|,∴<﹣1<0<,∴最小的数是.故选:A.【点评】本题考查了有理数的大小比较,解题的关键是熟知有理数大小比较方法“两个负数比大小,绝对值大的反而小”.2.下列各式中不是整式的是()A.3a B.C.D.0【分析】根据单项式与多项式统称为整式,根据整式及相关的定义解答即可.【解答】解:A、3a是单项式,是整式,故本选项不符合题意;B、既不是单项式,又不是多项式,不是整式,故本选项符合题意;C、是单项式,是整式,故本选项不符合题意;D、0是单项式,是整式,故本选项不符合题意;故选:B.【点评】本题主要考查整式的相关的定义,解决此题的关键是熟记整式的相关定义;单项式与多项式统称为整式.3.下列方程中是一元一次方程的是()A.=2B.x+1=y+2C.x﹣1=3x D.x2﹣2=0【分析】根据一元一次方程的定义即可求出答案.只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.【解答】解:A.不是整式方程,故本选项不合题意;B.含有两个未知数,不是一元一次方程,故本选项不合题意;C.是一元一次方程,故本选项符合题意;D.未知数的最高次数2次,不是一元一次方程,故本选项不合题意;故选:C.【点评】本题考查一元一次方程,解题的关键是正确运用一元一次方程的定义,本题属于基础题型.4.|﹣3|的相反数是()A.﹣3B.3C.D.﹣【分析】根据绝对值定义得出|﹣3|=3,再根据相反数的定义:只有符号相反的两个数互为相反数作答.【解答】解:∵|﹣3|=3,∴3的相反数是﹣3.故选:A.【点评】此题主要考查了绝对值,相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0,难度适中.5.若x与3互为相反数,则x+1等于()A.﹣2B.4C.﹣4D.2【分析】根据相反数的概念:只有符号不同的两个数是互为相反数,即可得出x的值,即可得出答案.【解答】解:∵x与3互为相反数,∴x=﹣3,∴x+1=﹣3+1=﹣2.故选:A.【点评】此题主要考查了相反数,正确掌握相反数的定义是解题关键.6.若单项式a m+1b3与﹣a3b n是同类项,则m n值是()A.3B.4C.6D.8【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值,代入计算即可得出答案.【解答】解:∵单项式a m+1b3与﹣a3b n是同类项,∴m+1=3,n=3,∴m=2,n=3,∴m n=23=8.故选:D.【点评】本题考查了同类项的知识,属于基础题,掌握同类项中的两个相同是解答本题的关键.7.若a﹣b=1,则代数式2a﹣2b﹣1的值为()A.1B.﹣1C.2D.﹣2【分析】首先把2a﹣2b﹣1化成2(a﹣b)﹣1;然后把a﹣b=1代入化简后的算式计算即可.【解答】解:∵a﹣b=1,∴2a﹣2b﹣1=2(a﹣b)﹣1=2×1﹣1=2﹣1=1.故选:A.【点评】此题主要考查了代数式求值问题,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.8.某企业今年1月份产值为a万元,2月份比1月份减少了15%,3月份比2月份增加了5%,则3月份的产值为()A.(a+15%)(a﹣5%)万元B.(a﹣15%)(a+5%)万元C.a(1+15%)(1﹣5%)万元D.a(1﹣15%)(1+5%)万元【分析】根据3月份、2月份与1月份的产值的百分比的关系列式计算即可求解.【解答】解:∵今年1月份产值为a万元,2月份比1月份减少了15%,∴2月份的产值为a(1﹣15%)万元,∵3月份比2月份增加了5%,∴3月份的产值为a(1﹣15%)(1+5%)万元.故选:D.【点评】本题考查了列代数式,理解各月之间的百分比的关系是解题的关键.9.已知mx=my,字母m为任意有理数,下列等式不一定成立的是()A.mx+1=my+1B.x=y C.πmx=πmy D.mx=my【分析】根据等式的性质2进行准确运用辨别.【解答】解:根据等式的性质1,等式mx=my两边都加1可得mx+1=my+1,故选项A不符合题意;∵m可能为0,∴根据等式的性质2,等式mx=my两边都除以m可能无意义,故选项B符合题意;∵π≠0,∴根据等式的性质2,等式mx=my两边都乘以π可得πmx=πmy,故选项C不符合题意;∵,∴根据等式的性质2,等式mx=my两边都乘以可得mx=my,故选项D不符合题意;故选:B.【点评】此题考查了等式性质的应用能力,关键是能准确理解性质,并在运用等式性质2时,明确等式两边都除以的数是否为0.10.若|m﹣1|+m=1,则m一定()A.大于1B.小于1C.不小于1D.不大于1【分析】把|m﹣1|+m=1,转化为|m﹣1|=1﹣m,再根据绝对值的性质判断即可.【解答】解:∵|m﹣1|+m=1,∴|m﹣1|=1﹣m,∴m﹣1≤0,∴m≤1,故选:D.【点评】本题考查了绝对值,通过转化得到|m﹣1|=1﹣m是解题的关键.11.如图,表中给出的是2021年1月份的月历,任意选取“工”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.161B.91C.78D.49【分析】设最中间的数为x,根据题意列出方程即可求出判断.【解答】解:设最中间的数为x,∴这7个数分别为x﹣8、x﹣7、x﹣6、x、x+8、x+7、x+6,∴这7个数的和为:x﹣8+x﹣7+x﹣6+x+x+8+x+7+x+6=7x,当7x=161时,此时x=23,当7x=91时,此时x=13,当7x=78时,此时x=11不是整数,当7x=49时,此时x=7,故选:C.【点评】本题考查了一元一次方程的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.12.三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m,图2阴影部分周长为n,要求m与n的差,只需知道一个图形的周长,这个图形是()A.整个长方形B.图①正方形C.图②正方形D.图③正方形【分析】设正方形①的边长为a、正方形②的边长为b、正方形③的边长为c,分别表示出m、n的值,就可计算出m﹣n的值为4c,从而可得只需知道正方形③的周长即可.【解答】解:设正方形①的边长为a、正方形②的边长为b、正方形③的边长为c,可得m=2[c+(a﹣c)]+2[b+(a+c﹣b)]=2a+2(a+c)=2a+2a+2c=4a+2c,n=2[(a+b﹣c)+(a+c﹣b)]=2(a+b﹣c+a+c﹣b)=2×2a=4a,∴m﹣n=4a+2c﹣4a=2c,故选:D.【点评】该题考查了数形结合解决问题的能力,关键是能根据图形正确列出算式并计算.二、填空题(每小题3分,共8小题,共24分)13.(3分)经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过95000000党员的世界第一大政党,将数字95000000用科学记数法表示为9.5×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:将95000000用科学记数法可以表示为9.5×107.故答案为:9.5×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.14.(3分)计算:25+(﹣12)﹣(﹣7)的结果为20.【分析】利用有理数的加减法法则,统一成加法,然后运算即可.【解答】解:25+(﹣12)﹣(﹣7)=25﹣12+7=20.故答案为20.【点评】本题考查有理数的加减混合运算,关键是熟练掌握相应的运算法则.15.(3分)若方程3x k﹣2=7是一元一次方程,那么k=3.【分析】利用一元一次方程的定义得到:k﹣2=1.【解答】解:根据题意,得k﹣2=1.解得k=3.故答案是:3.【点评】此题考查了一元一次方程的定义,只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.16.(3分)点A在数轴上表示数3,一只蚂蚁从点A出发向正方向爬了2个单位长度到了点B,则点B所表示的数是5.【分析】利用数轴,从点A向右数2个单位,即得点B表示的数为5.【解答】解:3+2=5,故答案为:5.【点评】本题考查数轴上的有理数,关键分清正负方向,右加左减.17.(3分)按下图的程序计算,若输入n=32,则输出结果是806.【分析】根据程序框图的要求计算即可.【解答】解:输入n=32,5n+1=5×32+1=161<500,把n=161再输入得:5n+1=5×161+1=806>500,故输出结果为806.故答案为:806.【点评】本题考查代数式求值,解题关键是读懂题意,根据程序框图的要求准确计算.18.(3分)若多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,则ab=﹣6.【分析】直接利用整式的加减运算法则化简,进而合并同类项,得出x2项和x项的系数为零,进而得出答案.【解答】解:∵多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,∴ax2+3x﹣1﹣(2x2﹣bx﹣4)=ax2+3x﹣1﹣2x2+bx+4=(a﹣2)x2+(b+3)x+3,∴a﹣2=0,b+3=0,∴a=2,b=﹣3,故ab=﹣6.故答案为:﹣6.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.19.(3分)已知|a|=5,|b|=3,若|a+b|=a+b,则a+b=8或2.【分析】若|a+b|=a+b,则a+b≥0,结合a|=5,|b|=3,求出a,b的值即可求解.【解答】解:∵a|=5,|b|=3,∴a=±5,b=±3,∵|a+b|=a+b,∴a=5,b=±3,∴a+b=8或2,故答案为:8或2.【点评】此题主要考查了绝对值的性质和有理数的减法,解决问题的关键是判断出a+b≥0.20.(3分)学校组织劳动实践活动,组织一组同学把两片草地的草割完.已知两片草地一大一小,大的比小的大一倍,大家先都在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完,另一半人到小片草地割,到收工时还剩一小块,且这一小块草地恰好是一个人一天的工作量,由此可知,此次参加社会实践活动的人数为8人.【分析】由题意可知每人每天除草量是一定的,设此次参加社会实践活动的人数为x人,每人每天除草量为y,则上午在大片草地除草量为0.5xy,下午在大片草地除草量为0.5×0.5xy,下午在小片草地除草量为0.5×0.5xy,一个人刚好把剩下一块的小片地除完则为y,又因为大片草地的面积是小片草地的2倍,列出方程解答即可.【解答】解:由题可知每人每天除草量是一定的,设此次参加社会实践活动的人数为x人,每人每天除草量为y,则上午在大片草地除草量为0.5xy,下午在大片草地除草量为0.5×0.5xy,下午在小片草地除草量为0.5×0.5xy,一个人刚好把剩下一块的小片地除完则为y,又因为大片地的面积是小片地的2倍,列出方程,0.5xy+0.5×0.5xy=2×(0.5×0.5xy+y),0.5xy+0.25xy=0.5xy+2y,0.75xy﹣0.5xy=2y,0.25xy=2y,0.25x=2,x=8.答:此次参加社会实践活动的人数为8人.故答案为:8.【点评】此题考查了一元一次方程的应用,主要是先明白每人每天除草量是一定的,设次参加社会实践活动的人数为x人,每人每天除草量为y,根据题意找到关系即可解答.三.解答题(共8小题,共78分)21.(8分)画出数轴标出表示下列各数的点,并用“<”把下列各数连接起来.3,﹣3,|﹣2|,0,﹣22【分析】先准确地画出数轴,并在数轴上找到各数对应的点,即可解答.【解答】解:在数轴上表示各数如图所示:∴﹣22<﹣3<0<|﹣2|<3.【点评】本题考查了实数大小比较,数轴,绝对值,有理数的乘方,准确在数轴上找到各数对应的点是解题的关键.22.(8分)计算:(1)(﹣5)×(﹣7)×2;(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.【分析】(1)由有理数乘法法则计算即可;(2)先算乘方,再算乘除,最后算加减.【解答】解:(1)原式=+5×7×2=70;(2)原式=﹣1+(﹣2)×(﹣3)﹣9=﹣1+6﹣9=﹣4.【点评】本题考查有理数运算,解题的关键是掌握有理数运算的顺序及相关运算的法则.23.(10分)解方程:(1)5x﹣4=x+4;(2)﹣=1+.【分析】(1)移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【解答】解:(1)移项,可得:5x﹣x=4+4,合并同类项,可得:4x=8,系数化为1,可得:x=2.(2)去分母,可得:3x﹣(5x+11)=6+2(2x﹣4),去括号,可得:3x﹣5x﹣11=6+4x﹣8,移项,可得:3x﹣5x﹣4x=6﹣8+11,合并同类项,可得:﹣6x=9,系数化为1,可得:x=﹣1.5.【点评】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.24.(10分)(1)化简:ab+3b2﹣(2b2+ab);(2)先化简,再求代数式3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy的值,其中x=﹣2,y=﹣1.【分析】(1)把整式去括号、合并同类项,即可得出答案;(2)把整式去括号、合并同类项化简后,代入计算,即可得出答案.【解答】解:(1)ab+3b2﹣(2b2+ab)=ab+3b2﹣2b2﹣ab=b2;(2)3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy=3x2y﹣2xy+(2xy﹣x2y)﹣xy=3x2y﹣2xy+2xy﹣x2y﹣xy=2x2y﹣xy,当x=﹣2,y=﹣1时,原式=2×(﹣2)2×(﹣1)﹣(﹣2)×(﹣1)=﹣8﹣2=﹣10.【点评】本题考查了整式的加减—化简求值,把整式去括号、合并同类项正确化简是解决问题的关键.25.(10分)“抗击新冠疫情,人人有责”,学校作为人员密集的场所,要求老师和同学们进入校门后按照要求佩戴好口罩.巴川量子中学初一的鑫鑫从学校了解到,上周五这一天,七年级各班共使用口罩500只,喜欢统计的鑫鑫本周统计了七年级各班每天的口罩使用情况,制作了如下的一个统计表,以500只为标准,其中每天超过500只的记为“+”,每天不足500只的记为“﹣”,统计表格如下:周一周二周三周四周五﹣14+11﹣20+48﹣5(1)本周哪一天七年级同学使用口罩最多,数量是多少只?(2)若同学们佩戴的口罩分为两种,一种是普通医用口罩,价格为1元一只,另外一种为N95型口罩,价格为3元一只,其中本周所用的普通医用口罩的数量比N95型口罩多520只,求本周七年级所有同学们购买口罩的总金额?【分析】(1)对本周每天使用口罩数量进行比较、计算即可;(2)先求出两种口罩各用的只数,再进行求解此题结果.【解答】解:(1)由题意得﹣20<﹣14<﹣5<+11<+48,48+500=548(只),答:本周周四这天七年级同学使用口罩最多,数量是548只;(2)本周共使用口罩数量为:500×5+(﹣14+11﹣20+48﹣5)=2500+20=2520(只),设本周使用N95型口罩x只,得x+x+520=2520,解得x=1000,∴x+520=1000+520=1520(只),∴1×1520+3×1000=1520+3000=4520(元),答:本周七年级所有同学们购买口罩的总金额为4520元.【点评】此题考查了运用正负数解决实际问题的能力,关键是能准确理解该知识和题目间的数量关系,进行列式计算.26.(10分)为奖励同学们在班级文化展中的精彩演出,老师让洪洪到文体超市购买若干个文具作为奖品,其中文具袋标价每个10元,笔记本标价每本8元,签字笔标价每支6元.请认真审题,解决下面两个问题:(1)洪洪在买文具袋时与老板进行了如图的对话,请认真阅读图片,求出洪洪原计划购买文具袋的个数.(2)除了文具袋,洪洪还需要购买笔记本和签字笔,经和老板协商,笔记本和签字笔也可享受八五折优惠,最后购买笔记本和签字笔一共支付了612元,且购得的笔记本和签字笔数量恰好能让每位同学得到1个笔记本和两只签字笔,问洪洪班里共有多少名同学?【分析】(1)根据题意和题目中的数据,可知原计划购买的文具袋个数×10﹣17=(原计划购买文具袋数+1)×10×0.85,然后列出相应的方程,再求解即可;(2)根据题意和(1)中的结果,可以列出相应的方程,然后求解即可.【解答】解:(1)设洪洪原计划购买文具袋x个,由题意可得:10x﹣17=10(x+1)×0.85,解得x=17,答:洪洪原计划购买文具袋17个;(2)设洪洪班里共有a名同学,由题意可得:10×(17+1)×0.85+(8a+6a×2)×0.85=612,解得a=27,答:洪洪班里共有27名同学.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的方程.27.(10分)定义.对于一个四位自然数n,若其百位数字等于其个位数字与十位数字之和,其千位数字等于其十位数字与百位数字之和,则称这个四位自然数n为“加油数”,并将该“加油数”的各个数位数字之和记为F(n).例如:5413是“加油数”,因为5413的个位数字是3,十位数字是1,百位数字是4,千位数字是5,且3+1=4,1+4=5,所以543是“加油数”,则F(5413)=5+4+1+3=13;19734不是“加油数”,因为9734的个位数字是4,十位数字是3,百位数字是7,千位数字是9,而4+3=7,但3+7=10≠9,所以9734不是“加油数”.(1)判断.8624和3752是不是“加油数”并说明理由;(2)若x,y均为“加油数”,其中x的个位数字为1,y的十位数字为2,且F(x)+F(y)=30,求所有满足条件的“加油数”x.【分析】(1)根据加油数的定义即可判断;(2)设x的十位数为a,y的个位数为b,则x的百位数为a+1,千位数为2a+1,y的百位数为b+2,千位数为4+b,根据F(x)+F(y)=30列出等式即可解答.【解答】解:(1)8624是“加油数”,理由如下:∵8=6+2,6=2+4,∴8624是“加油数”;3752不是“加油数”,理由如下:∵3≠7+5,7=5+2,∴3752是“加油数”;(2)设x的十位数为a,y的个位数为b,∴x的百位数为a+1,千位数为2a+1,y的百位数为b+2,千位数为4+b,∴F(x)=2a+1+a+1+a+1=4a+3,F(y)=4+b+b+2+b+2=3b+8,∴F(x)+F(y)=4a+3+3b+8=30,∴4a+3b=19,∵0≤a≤9,0≤b≤9,且a,b为整数,∴a=1,b=5或a=4,b=1,∴有满足条件的“加油数”x为3211或9541.【点评】本题以新定义考查了列代数式,整式的加减,解题的关键是根据新定义列出代数式.28.(12分)数轴是一种特定的几何图形,利用数轴能形象地表示数,在数轴的问题中,我们常常用到数形结合的思想,并借助方程解决问题.如图1,在数轴上,点A表示数﹣8,点C表示的数为2,点B表示的数为6.(1)点P从点A出发,以2个单位/秒的速度向右运动,同时,点Q从点B出发,以1个单位/秒的速度向左运动,经过多久两点相遇?(2)如图2,我们将图1的数轴沿点O和点C各折一次后会得到一个新的图形,与原来相比,线段AO和CB 仍然水平,线段OC处产生了一个坡度,我们称这样的数轴为“坡数轴”,其中O为“坡数轴”原点,在“坡数轴”上,每个点对应的数就是把“坡数轴”拉直后对应的数.记“坡数轴”上A到B的距离为A和B拉直后距离:即=AO+OC+CB,其中AO、OC、CB代表线段长度.在“坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.①点P从点A出发,以2个单位/秒的速度沿着“坡数轴”向右运动,同时点Q从点B出发,以1个单位l秒的速度沿着“坡数轴”向左运动,经过多久,=2?②点P从A处沿“坡数轴”以每秒2个单位长度的速度向右移动,当移到点C时,立即掉头返回(掉头时间不计),在P出发的同时,点Q从B处沿“坡数轴”以每秒1个单位长度的速度向左移动,当P重新回到A点所有运动结束,设P点运动时间为t秒,在移动过程中,何时?直接写出t的值.【分析】(1)设运动时间为t,利用路程=速度×时间,再根据点P与点Q相遇,列关于t的一元一次方程,解方程即可;(2)①分点P在AO上,点Q在BC上和点P在OC上,点Q在AO上两种情况,结合题意列出方程即可求解;②分别求出点Q的运动时间,结合点P,点Q的不同位置,根据=2列出方程求解即可.【解答】解:(1)设运动时间为t秒,点P与点Q相遇,∵点P从点A出发,以2个单位/秒的速度向右运动,点Q从点B出发,以1个单位/秒的速度向左运动,∴2t+t=14,解得:t=,∴点P与点Q经过秒相遇;(2)①(Ⅰ)当点P在AO上,点Q在BC上时,设点P与点Q运动的时间为t秒时,=2,∵=AO﹣AP+BC﹣BQ,8﹣2t+6﹣t=2,解得:t=4,此时,点P运动至点O,点Q运动至点C;(Ⅱ)∵点P在OC上运动速度为1个单位/秒,点Q在OC上运动速度为2个单位/秒,结合(1),当点P运动到OC中点时,点Q运动到点O,此时,=1,∵=8,=2,点P在AO上运动速度为2个单位/秒,在OC上运动速度为1个单位/秒,∴点P运动到OC中点所需时间为:+1=5秒,。

人教版七年级上学期期中考试数学试卷及答案(共7套)

人教版七年级上学期期中考试数学试卷及答案(共7套)

人教版七年级上学期期中考试数学试卷(一)时间:120分钟 满分:120分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.a 的相反数是( )A .|a | B.1a C .-a D .以上都不对2.计算-3+(-1)的结果是( ) A .2 B .-2 C .4 D .-43.在1,-2,0,53这四个数中,最大的数是( )A .-2B .0 C.53D .14.若2x 2m y 3与-5xy 2n 是同类项,则|m -n |的值是( ) A .0 B .1 C .7 D .-15.长方形窗户上的装饰物如图所示,它是由半径均为b 的两个四分之一圆组成,则能射进阳光部分的面积是( )A .2a 2-πb 2B .2a 2-π2b 2C .2ab -πb 2D .2ab -π2b 2第5题图 第6题图6.如图,将一张等边三角形纸片沿各边中点剪成4个小三角形,称为第一次操作;然后将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;……,根据以上操作,若要得到100个小三角形,则需要操作的次数是( )A .25B .33C .34D .50二、填空题(本大题共6小题,每小题3分,共18分)7.-0.5的绝对值是________,相反数是________,倒数是________.8.请你写出一个只含有字母m 、n ,且它的系数为-2、次数为3的单项式________. 9.秋收起义广场是为纪念秋收起义而建设的纪念性广场,位于萍乡城北新区,占地面积约为109000平方米,将数据109000用科学记数法表示为________.10.若关于a ,b 的多项式3(a 2-2ab -b 2)-(a 2+mab +2b 2)中不含有ab 项,则m =________.11.已知|x |=2,|y |=5,且x >y ,则x +y =________.12.已知两个完全相同的大长方形,长为a ,各放入四个完全一样的白色小长方形后,得到图①、图②,那么,图①中阴影部分的周长与图②中阴影部分的周长的差是________(用含a 的代数式表示).三、(本大题共5小题,每小题6分,共30分) 13.计算:(1)-20-(-14)-|-18|-13;(2)-23-(1+0.5)÷13×(-3).14.化简:(1)3a 2+2a -4a 2-7a; (2)13(9x -3)+2(x +1).15.已知a 、b 互为相反数,c 、d 互为倒数,|m |=2,求代数式2m -(a +b -1)+3cd 的值.16.先化简,再求值:-a2b+(3ab2-a2b)-2(2ab2-a2b),其中a=-1,b=-2.17.有理数a,b,c在数轴上的位置如图所示,化简:|b-a|-|c-b|+|a+b|.四、(本大题共3小题,每小题8分,共24分)18.如果两个关于x、y的单项式2mx a y3与-4nx3a-6y3是同类项(其中xy≠0).(1)求a的值;(2)如果它们的和为零,求(m-2n-1)2017的值.19.如图所示,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b>a >0).(1)用a、b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.20.邮递员骑车从邮局O出发,先向西骑行2km到达A村,继续向西骑行3km到达B 村,然后向东骑行8km,到达C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1cm表示2km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村距离A村有多远?(3)邮递员共骑行了多少km?五、(本大题共2小题,每小题9分,共18分)21.操作探究:已知在纸面上有一数轴(如图所示).操作一:(1)折叠纸面,使1表示的点与-1表示的点重合,则-3表示的点与________表示的点重合;操作二:(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:①5表示的点与数________表示的点重合;②若数轴上A、B两点之间距离为11(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.22.“十一”黄金周期间,淮安动物园在7天假期中每天接待的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数),把9月30日的游客人数记为a万人.(1)请用含a的代数式表示10月2日的游客人数;(2)请判断七天内游客人数最多的是哪天,有多少人?(3)若9月30日的游客人数为2万人,门票每人10元,问黄金周期间淮安动物园门票收入是多少元?六、(本大题共12分)23.探索规律,观察下面算式,解答问题. 1+3=4=22; 1+3+5=9=32; 1+3+5+7=16=42; 1+3+5+7+9=25=52; …(1)请猜想:1+3+5+7+9+…+19=________;(2)请猜想:1+3+5+7+9+…+(2n -1)+(2n +1)+(2n +3)=________; (3)试计算:101+103+…+197+199.参考答案与解析1.C 2.D 3.C 4.B 5.D6.B 解析:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7(个);第三次操作后,三角形共有4+3+3=10(个)……∴第n 次操作后,三角形共有4+3(n -1)=(3n +1)(个).当3n +1=100时,解得n =33.故选B.7.0.5 0.5 -2 8.-2m 2n (答案不唯一) 9.1.09×105 10.-6 11.-3或-712.a 解析:由图②知小长方形的长为宽的2倍,设大长方形的宽为b ,小长方形的宽为x ,长为2x ,由图②得2x +x +x =a ,则4x =a .图①中阴影部分的周长为2b +2(a -2x )+2x ×2=2a +2b ,图②中阴影部分的周长为2(a +b -2x )=2a +2b -4x ,∴图①中阴影部分的周长与图②中阴影部分的周长之差为(2a +2b )-(2a +2b -4x )=4x =a .13.解:(1)原式=-6-18-13=-37.(3分)(2)原式=-8-1.5÷13×(-3)=-8-4.5×(-3)=-8+13.5=5.5.(6分)14.解:(1)原式=-a 2-5a .(3分)(2)原式=5x +1.(6分)15.解:根据题意得a +b =0,cd =1,m =2或-2.(2分)当m =2时,原式=4-(-1)+3=4+1+3=8;(4分)当m =-2时,原式=-4-(-1)+3=-4+1+3=0.(6分)16.解:原式=-a 2b +3ab 2-a 2b -4ab 2+2a 2b =-ab 2,(3分)当a =-1,b =-2时,原式=4.(6分)17.解:由数轴可知:c <b <0<a ,|a |>|b |,∴b -a <0,c -b <0,a +b >0,(2分)∴原式=-(b -a )+(c -b )+(a +b )=-b +a +c -b +a +b =2a -b +c .(6分)18.解:(1)依题意,得a =3a -6,解得a =3.(4分)(2)∵2mx 3y 3+(-4nx 3y 3)=0,故m -2n =0,∴(m -2n -1)2017=(-1)2017=-1.(8分) 19.解:(1)阴影部分的面积为12b 2+12a (a +b ).(4分)(2)当a =3,b =5时,12b 2+12a (a +b )=12×25+12×3×(3+5)=492,即阴影部分的面积为492.(8分) 20.解:(1)如图所示:(3分)(2)C 、A 两村的距离为3-(-2)=5(km). 答:C 村距离A 村5km.(5分) (3)|-2|+|-3|+|+8|+|-3|=16(km). 答:邮递员共骑行了16km.(8分) 21.解:(1)3(3分) (2)①-3(6分)②由题意可得,A 、B 两点距离对称点的距离为11÷2=5.5.∵对称点是表示1的点,∴A 、B 两点表示的数分别是-4.5,6.5.(9分)22.解:(1)10月2日的游客人数为(a +2.4)万人.(2分) (2)10月3日游客人数最多,人数为(a +2.8)万人.(4分)(3)(a +1.6)+(a +2.4)+(a +2.8)+(a +2.4)+(a +1.6)+(a +1.8)+(a +0.6)=7a +13.2.(6分)当a =2时,(7×2+13.2)×10=272(万元).(8分)答:黄金周期间淮安动物园门票收入是272万元.(9分) 23.解:(1)102(3分) (2)(n +2)2(6分)(3)原式=(1+3+5+…+197+199)-(1+3+…+97+99)=1002-502=7500.(12分)人教版七年级上学期期中考试数学试卷(二)时量:120分钟 满分:120分一.选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本题共12个小题,每小题3分,共36分) 1.-2的相反数是( ) A .21-B .2-C .21D .2 2. 在数轴上距离原点2个单位长度的点所表示的数是 ( ) A .2 B .2- C .2或2- D .1或1- 3.下列计算正确的是 ( ) A .xy y x 532=+ B .532222a a a =+ C .13422=-a a D .b a b a ba 2222-=+- 4.下列式子中,成立的是( )A .33)2(2-=-B .222)2(-=-C .223232=⎪⎭⎫ ⎝⎛- D .2332⨯= 5.用四舍五入按要求对06019.0分别取近似值,其中错误的是 ( ) A .0.1 (精确到0.1) B. 0.06 (精确到千分位) C .0.06 (精确到百分位) D .0.0602 (精确到0.0001)6.下列各组中,不是同类项的是 ( ) A .与 B .ab 2与ba 21C .与D .32 和23 7.小华作业本中有四道计算题:①5)5(0-=--; ②12)9()3(-=-+-; ③234932-=⎪⎭⎫ ⎝⎛-⨯; ④4)9()36(-=-÷-. y x 2-22yx n m 2-221mn其中他做对的题的个数是 ( ) A .1个 B .2个 C .3个 D .4个 8.一件衣服的进价为a 元,在进价的基础上增加20%定为标价,则标价可表示为 ( ) A .()a %201- B.20%a C.()a %201+ D.a +20%9.下面四个整式中,不能..表示图中阴影部分面积的是A .x x x 2)2)(3(-++B .6)3(++x xC .2)2(3x x ++ D .x x 52+10.若12++x x 的值是8,则9442++x x 的值是 ( ) A .37 B .25 C .32 D .011.下列说法正确的是 ( ) A .单项式22R π-的次数是3,系数是2-B .单项式5322y x -的系数是3,次数是4C .3ba +不是多项式 D .多项式26534222---y y x x 是四次四项式 12. 已知b a ,在数轴上的位置如图所示, 则化简a b a ++-是( )A .a 2B .a 2-C . 0D .b 2二.填空题(本题共6个小题,每小题3分,共18分) 13.用式子表示“a 的平方与1的差”: .14. 比较大小:30- 40-(用“>”“=”或“<”表示).15.长沙地铁一号线于2016年6月28号正式开通试运营,这是长沙轨道交通南北向的核心线路,该线一期工程全长23550米,请用科学记数法表示全长为 米.第9题16.若一个数的倒数等于311-,则这个数是 .17.若单项式y mx 2与单项式y x n5的和是y x 23-,则=+n m ___________. 18. 按下列程序输入一个数x ,若输入的数0=x ,则输出结果为 .三.解答题(共8个小题,第19、20题每小题6分,第21、22题每小题8分,第23、24题每小题9分,第25、26每小题10分,共66分,解答应写出必要的文字说明或演算步骤.) 19.计算:3.7)7.13()3.7(7.25+-+-+20.计算:2201611(2)5(1)122-⨯--+÷21.先化简,再求值:23(2)(61)a a a ---,其中1a =-22.小明参加“趣味数学”选修课,课上老师给了一个问题,小明看了很为难,你能帮他一下吗?已知b a ,互为相反数,d c ,互为倒数,2=m ,则cd m mba -+++1的值为多少?23.如果一个多项式与222n m -的和是13522+-n m ,求这个多项式。

2024年最新人教版七年级数学(上册)期中试卷及答案(各版本)

2024年最新人教版七年级数学(上册)期中试卷及答案(各版本)

2024年最新人教版七年级数学(上册)期中试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. 3/4C. πD. √12. 下列哪个数是整数?A. 1.5B. 2/3C. 3/4D. 53. 下列哪个数是无理数?A. 2/3B. 3.25C. √3D. 1/24. 下列哪个式子是正确的?A. √9 = 3B. √9 = 3C. √9 = 2D. √9 = 45. 下列哪个式子是错误的?A. 2^3 = 8B. 3^2 = 9C. 4^2 = 16D. 5^2 = 20二、判断题5道(每题1分,共5分)1. 任何两个有理数的和都是有理数。

()2. 任何两个整数的积都是整数。

()3. 任何两个无理数的积都是无理数。

()4. 任何两个实数的和都是实数。

()5. 任何两个实数的积都是实数。

()三、填空题5道(每题1分,共5分)1. 两个有理数的和是______数。

2. 两个整数的积是______数。

3. 两个无理数的积是______数。

4. 两个实数的和是______数。

5. 两个实数的积是______数。

四、简答题5道(每题2分,共10分)1. 请简要说明有理数的定义。

2. 请简要说明整数的定义。

3. 请简要说明无理数的定义。

4. 请简要说明实数的定义。

5. 请简要说明有理数和无理数的区别。

五、应用题:5道(每题2分,共10分)1. 计算下列式子的值:2^3 + 3^2 4^22. 计算下列式子的值:√9 + √16 √253. 计算下列式子的值:3/4 + 2/3 1/24. 计算下列式子的值:2/3 3/4 4/55. 计算下列式子的值:√2 √3 √6六、分析题:2道(每题5分,共10分)1. 请分析并解释为什么√1是无理数。

2. 请分析并解释为什么π是无理数。

七、实践操作题:2道(每题5分,共10分)1. 请用计算器计算下列式子的值:2^10 + 3^5 4^32. 请用计算器计算下列式子的值:√9.6 + √36.9 √81.25八、专业设计题:5道(每题2分,共10分)1. 设计一个函数,使其输入一个正整数n,输出n的所有正因数。

人教版七年级上学期期中考试数学试卷(含答案)

人教版七年级上学期期中考试数学试卷(含答案)

人教版七年级第一学期期中数学试卷及答案一、单选题(共10题,每小题4分,合计40分)1.(4分)的相反数是()A.6B.﹣6C.D.﹣【解答】解:的相反数是﹣,故选:D.2.(4分)如果和﹣x2y n是同类项,则m+n=()A.3B.2C.1D.﹣1【解答】解:∵和﹣x2y n是同类项,∴m=2,n=1,∴m+n=2+1=3.故选:A.3.(4分)如果m=n,那么下列等式不一定成立的是()A.m﹣3=n﹣3B.2m+3=3n+2C.5+m=5+n D.【解答】解:A.∵m=n,∴m﹣3=n﹣3,故本选项不符合题意;B.∵m=n,∴2m=2n,∴2m+3=2n+3,不能推出2m+3=3n+2,故本选项符合题意;C.∵m=n,∴5+m=5+n,故本选项不符合题意;D.∵m=n,∴=,故本选项不符合题意;故选:B.4.(4分)用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3B.2a+3C.2(a﹣3)D.2(a+3)【解答】解:a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.5.(4分)已知x=2是方程3x﹣5=2x+m的解,则m的值是()A.1B.﹣1C.3D.﹣3【解答】解:∵x=2是方程3x﹣5=2x+m的解,∴把x=2代入方程可得6﹣5=4+m,解得m=﹣3,故选:D.6.(4分)解一元一次方程(x+1)=1﹣x时,去分母正确的是()A.3(x+1)=1﹣2x B.2(x+1)=1﹣3xC.2(x+1)=6﹣3x D.3(x+1)=6﹣2x【解答】解:方程两边都乘以6,得:3(x+1)=6﹣2x,故选:D.7.(4分)多项式a2+a与多项式﹣a+1的差为()A.a2+1B.a2+2a+1C.a2﹣1D.a2+2a﹣1【解答】解:(a2+a)﹣(﹣a+1)=a2+a+a﹣1=a2+2a﹣1,故选:D.8.(4分)多项式x2﹣kxy﹣5y2+xy﹣6合并同类项后不含xy项,则k的值是()A.0B.1C.2D.﹣2【解答】解:∵项式x2﹣kxy﹣5y2+xy﹣6合并同类项后不含xy项,∴﹣k+1=0,∴k=2.故选:C.9.(4分)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.1【解答】解:∵点C在原点的左侧,且CO=BO,∴点C表示的数为﹣2,∴a=﹣2﹣1=﹣3.故选:A.10.(4分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n【解答】解:a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1•a n.故选:C.二.填空题(共6题,每小题4分,合计24分)11.(4分)我市2020年常住人口约9080000人,该人口数用科学记数法可表示为9.08×106人.【解答】解:9080000人用科学记数法可表示为9.08×106人.故答案为:9.08×106.12.(4分)若a﹣b=1,则代数式2a﹣(2b﹣1)的值是3.【解答】解:整理代数式得,2a﹣2b+1=2(a﹣b)+1,∵a﹣b=1,∴原式=2+1=3.13.(4分)当x=1时,代数式x+2与代数式的值相等.【解答】解:∵代数式x+2与代数式的值相等,∴x+2=,2x+4=7﹣x,2x+x=7﹣4,3x=3,x=1,故答案为:1.14.(4分)若|x|=3,|y|=4,且xy>0,则x+y的值为7或﹣7.【解答】解:∵|x|=3,|y|=4,∴x=±3,y=±4,∵xy>0,∴x=3时,y=4,x+y=7,x=﹣3时,y=﹣4,x+y=﹣3+(﹣4)=﹣7,综上所述,x+y的值是7或﹣7.故答案为:7或﹣7.15.(4分)一台整式转化器原理如图,开始时输入关于x的整式M,当M=x+1时,第一次输出3x+1,继续下去,则第2次输出的结果是7x+1.【解答】解:第一次输入M=x+1得整式:(x+1+)×2+N=3x+1,整理得3x+2+N=3x+1,故2+N=1,解得N=﹣1,故运算原理为:(M+)×2﹣1,第二次输入M=3x+1,运算得(3x+1+)×2﹣1=7x+1.故答案为:7x+1.16.(4分)有理数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|a﹣c|+|b﹣c|的结果是﹣2a.【解答】解:根据图形,c<b<0<a,且|a|<|b|<|c|,∴a+b<0,a﹣c>0,b﹣c>0,∴原式=(﹣a﹣b)﹣(a﹣c)+(b﹣c),=﹣a﹣b﹣a+c+b﹣c,=﹣2a.故答案为:﹣2a.三.解答题(共9题,合计86分)17.(8分)计算:(1);(2).【解答】解:(1)=()×(﹣60)=﹣×60+×60﹣×60+×60=﹣20+15﹣12+10=﹣7;(2)=﹣1﹣×(﹣20)+4=﹣1+8+4=11.18.(8分)先化简再求值:3a2b﹣[2a2b﹣(2ab﹣a2b)﹣4a2]﹣ab,其中a=﹣3,b=﹣2.【解答】解:3a2b﹣[2a2b﹣(2ab﹣a2b)﹣4a2]﹣ab=3a2b﹣2a2b+(2ab﹣a2b)+4a2﹣ab=3a2b﹣2a2b+2ab﹣a2b+4a2﹣ab=ab+4a2当a=﹣3,b=﹣2时,原式=(﹣3)×(﹣2)+4×(﹣3)2=6+36=42.19.(8分)解方程:(1)y﹣3(20﹣2y)=10(2)(x﹣2)=1﹣(4﹣3x)【解答】解:(1)去括号得:y﹣60+6y=10,移项得:y+6y=10+60,合并同类项得:7y=70,系数化为1得:y=10,(2)方程两边同时乘以12得:3(x﹣2)=12﹣2(4﹣3x),去括号得:3x﹣6=12﹣8+6x,移项得:3x﹣6x=12﹣8+6,合并同类项得:﹣3x=10,系数化为1得:x=﹣.20.(8分)某一食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:g)﹣5﹣20136袋数143453这批样品的平均质量比标准质量多还是少?多或少几克,若标准质量为450克,则抽样检测的总质量是多少?【解答】解:与标准质量的差值的和为﹣5×1+(﹣2)×4+0×3+1×4+3×5+6×3=24,其平均数为24÷20=1.2,即这批样品的平均质量比标准质量多,多1.2克.则抽样检测的总质量是(450+1.2)×20=9024(克).21.(8分)若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.【解答】解:(1)3*(﹣4),=4×3×(﹣4),=﹣48;(2)(﹣2)*(6*3),=(﹣2)*(4×6×3),=(﹣2)*(72),=4×(﹣2)×(72),=﹣576.22.(10分)已知:M+N=4x3+16xy2+8y3,N=3x3﹣4y3+16xy2.(1)求M;(2)若|x﹣2|+(y+1)2=0,计算M的值.(2)直接利用非负数的性质得出x,y的值,进而代入计算得出答案.【解答】解:(1)∵M+N=4x3+16xy2+8y3,N=3x3﹣4y3+16xy2,∴M=4x3+16xy2+8y3﹣(3x3﹣4y3+16xy2)=4x3+16xy2+8y3﹣3x3+4y3﹣16xy2=x3+12y3;(2)∵|x﹣2|+(y+1)2=0,∴x﹣2=0,y+1=0,解得:x=2,y=﹣1,∴M=23+12×(﹣1)=8﹣12=﹣4.23.(10分)阅读下面解题过程.利用运算律有时能进行简便计算.例1:98×12=(100﹣2)×12=1200﹣24=1176;例2:﹣16×233+17×233=(﹣16+17)×233=233;请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15);(2)999×118+999×(﹣)﹣999×18.【解答】解:(1)999×(﹣15)=(1000﹣1)×(﹣15)=1000×(﹣15)﹣1×(﹣15)=﹣15000+15=﹣14985;(2)999×118+999×(﹣)﹣999×18=999×[118+(﹣)+(﹣18)]=999×100=99900.24.(12分)有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作;第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8;继续依次操作下去.问(1)第一次操作后,增加的所有新数之和是多少?(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和是多少?(3)猜想:第一百次操作后得到的新数串比第九十九次操作后所得的数串增加的所有新数之和是多少?【解答】解:(1)第一次操作后增加的新数是6,﹣1,则6+(﹣1)=5.(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和为3+3+(﹣10)+9=5.(3)猜想:第一百次操作后得到的新数串比第九十九次操作后所得的数串增加的所有新数之和为5.25.(14分)如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.【解答】解:(1)点P运动至点C时,所需时间t=10÷2+10÷1+8÷2=19(秒),(2)由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.则10÷2+x÷1=8÷1+(10﹣x)÷2,解得x=.故相遇点M所对应的数是.(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:①动点Q在CB上,动点P在AO上,则:8﹣t=10﹣2t,解得:t=2.②动点Q在CB上,动点P在OB上,则:8﹣t=(t﹣5)×1,解得:t=6.5.③动点Q在BO上,动点P在OB上,则:2(t﹣8)=(t﹣5)×1,解得:t=11.④动点Q在OA上,动点P在BC上,则:10+2(t﹣15)=t﹣13+10,解得:t=17.综上所述:t的值为2、6.5、11或17.。

2024年最新人教版初一数学(上册)期中考卷及答案(各版本)

2024年最新人教版初一数学(上册)期中考卷及答案(各版本)

2024年最新人教版初一数学(上册)期中考卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 1B. 0C. 1D. 22. 已知a > b,则下列不等式正确的是()A. a b > 0B. a + b < 0C. a b < 0D. a + b > 03. 下列各数中,是有理数的是()A. √2B. √3C. √5D. √94. 下列运算中,先进行乘除后进行加减的是()A. 2 + 3 × 4 5B. 2 × 3 + 4 ÷ 2C. (2 + 3) × 4 ÷ 2D. 2 ÷ 3 × 4 + 55. 已知等差数列的前5项和为25,公差为2,则第3项是()A. 3B. 4C. 5D. 6二、判断题5道(每题1分,共5分)1. 任何两个实数的和都是实数。

()2. 任何两个实数的积都是实数。

()3. 0是最小的自然数。

()4. 任何数乘以0都等于0。

()5. 任何数除以0都有意义。

()三、填空题5道(每题1分,共5分)1. 两个数的和为10,其中一个数为3,另一个数为______。

2. 两个数的差为5,被减数为10,减数为______。

3. 两个数的积为24,其中一个数为6,另一个数为______。

4. 两个数的商为3,被除数为9,除数为______。

5. 1千克等于______克。

四、简答题5道(每题2分,共10分)1. 请简述有理数的定义。

2. 请简述等差数列的定义。

3. 请简述实数的分类。

4. 请简述方程的定义。

5. 请简述不等式的定义。

五、应用题:5道(每题2分,共10分)1. 小明买了3本书,每本书的价格为8元,请计算小明一共花了多少钱。

2. 小红买了4个苹果,每个苹果的价格为2元,请计算小红一共花了多少钱。

3. 一个长方形的长为5厘米,宽为3厘米,请计算这个长方形的面积。

人教版七年级上学期期中考试数学试题(含答案)

人教版七年级上学期期中考试数学试题(含答案)

人教版七年级上学期期中数学试卷及答案一、选择题(每小题3分,共36分)1.﹣2022的绝对值是()A.B.﹣2022C.2022D.﹣2.检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数,在其下方标注了检测结果,其中质量最接近标准的是()A.﹣0.3B.+0.4C.﹣0.1D.﹣0.63.如图,表示互为相反数的两个点是()A.点A和点D B.点B和点C C.点A和点C D.点B和点D4.下列等式正确的是()A.|﹣9|=﹣9B.|﹣|=3C.﹣|﹣7|=7D.﹣(+2)=﹣25.在代数式m,﹣2,4ab2,,中,单项式有()A.3个B.4个C.5个D.6个6.低碳奥运,能源先行,2022冬奥会所有场馆在奥运历史上首次100%使用绿色电力,其中数据14000000000用科学记数法表示为()A.1.4×1010B.1.4×1012C.14×109D.0.14×10117.将多项式x3﹣4xy2+7y3+6x2y按字母y升幂排列的是()A.7y3+4xy2+6x2y+x3B.7y3﹣4xy2+6x2y+x3C.x3﹣6x2y+4xy2+7y3D.x3+6x2y﹣4xy2+7y38.一个点从数轴的原点开始,先向左移动2个单位长度,再向右移动7个单位长度()A.﹣9B.+9C.﹣5D.+59.若|a|=4,|b|=2,且|a+b|=﹣(a+b)()A.﹣2B.﹣6C.﹣2或﹣6D.2或610.《九章算术》中记载一问题:今有共买物,人出八,盈三,不足四.问人数、物价各几何?意思是:今有人合伙购物,每人出8钱;每人出7钱,又差4钱.问人数、物价各多少?设人数为x人()A.8x﹣3B.8x+3C.7x﹣4D.7(x+4)11.一个含有多个字母的整式,如果把其中任何两个字母互换位置,所得的结果与原式相同,x2+y2+z2是对称整式.x2﹣2y2+3z2不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式;②一个多项式是对称整式,那么该多项式中各项的次数必相同;③单项式不可能是对称整式:④若某对称整式只含字母z,y,z,且其中有一项为x2y,则该多项式的项数至少为3.以上结论中错误的个数是()A.4B.3C.2D.112.如图是一个运算程序的示意图,若开始输入x的值为125,则第2022次输出的结果为()A.5B.25C.1D.125二、填空题(每小题3分,共18分)13.﹣1 ﹣0.5.(填“>”、“<”或“=”)14.如果零上2℃记作+2℃,那么零下5℃记作℃.15.用代数式表示:x减去y的平方的差.16.如果6x2﹣3x+5=11,那么代数式2x2﹣x+3的值是.17.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“1cm”和“9cm”分别对应数轴上的﹣5和x.18.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,是世界上最早的“幻方”.如图是仅可以看到部分数值的“九宫格”,则其中x﹣y的值为.三、解答题:(共计66分)19.(12分)计算.(1)25+(﹣18)+4+(﹣10);(2)(﹣3)﹣(﹣15)÷(﹣3);(3)(﹣+﹣)×(﹣12);(4)(﹣1)10×2+(﹣2)3÷4.20.(6分)规定一种运算:=ad﹣bc,例如,,请你按照这种运算的规定,计算.21.(6分)有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|a+b|.22.(6分)若x,y互为相反数,a,b互为倒数,求()2022﹣(﹣ab)2022+c2的值.23.(8分)小明读一本共m页的书,第一天读了该书的,第二天读了剩下的.(1)用含m的代数式表示小明两天共读的页数;(2)当m=120时,求小明两天共读的页数.24.(8分)已知关于x的多项式mx4+(m﹣3)x3﹣(n+2)x2+4x﹣n不含二次项和三次项.(1)求出这个多项式;(2)求当x=2时代数式的值.25.(8分)当今,人们对健康意加重视,跑步成了人们进行体育锻炼的首要选择(即手机应用小程序)应运而生.小明苦爸给自己定了健身目标,每天跑步a千米.以目标路程为基准,不足的部分记为“﹣”,他记下了“十一”长假期间七天跑步的实际路程如下:日期1日2日3日4日5日6日7日略程(千米)+1.72+3.20﹣1.92﹣0.90﹣1.88+3.30+0.08(1)10月5日小明爸爸的跑步路程是千米;(用舍a的代数式表示)(2)小明爸爸给自己定的健身目标是每天跑5千米,若跑步一千米消耗的热量为60千卡,求小明爸爸这七天跑步一共清耗了多少热量?26.(12分)在数轴上点A表示a,点B表示b,且a、b满足|a+5|+|b﹣7|=0.(1)求a,b的值,并计算点A与点B之间的距离.(2)若动点P从A点出发,以每秒2个单位长度的速度沿数轴正方向匀速运动,运动几秒后(3)若动点P从A点出发,以每秒1个单位长度的速度沿数轴向右匀速运动,同时动点Q从B点出发,运动几秒后,P、Q两点间的距离为4个单位长度?参考答案与试题解析1.【解答】解:﹣2022的绝对值是2022.故选:C.2.【解答】解:|﹣0.3|=2.3,|+0.2|=0.4,|﹣2.6|=0.6,∵0.1<2.3<0.3<0.6,∴C选项的排球最接近标准质量.故选:C.3.【解答】解:2和﹣2互为相反数,故选:C.4.【解答】解:A.根据绝对值的定义,那么A错误.B.根据绝对值的定义,,故B不符合题意.C.根据绝对值的定义,那么C错误.D.根据相反数的定义,那么D正确.故选:D.5.【解答】解:代数式m,﹣22,,中,单项式有m,4ab4,共3个.故选:A.6.【解答】解:14000000000=1.4×1010.故选:A.7.【解答】解:将多项式x3﹣4xy6+7y3+7x2y按字母y升幂排列的是7y7﹣4xy2+3x2y+x3,故选:B.8.【解答】解:∵点从原点向左移动2个单位长度,∴该点移动到数轴上的﹣2处,∵再向右移动5个单位长度,∴﹣2+7=3,∴这个点最终所对应的数是5,故选:D.9.【解答】解:∵|a|=4,|b|=2,∴a=±7,b=±2,∵|a+b|=﹣(a+b),∴a+b≤0,∴当a=﹣7时,b=2或﹣2,∴a﹣b=﹣2﹣2=﹣6或a﹣b=﹣2﹣(﹣2)=﹣2,∴a﹣b的值为﹣3或﹣6.故选:C.10.【解答】解:根据题意得,物价为:8x﹣3或8x+4;故选:A.11.【解答】解:①假设两个对称整式分别为M和N(含相同的字母),由题意可知:任何两个字母互换位置,所得的结果与原式相同,则M+N的结果不变,故①不符合题意;②反例:x3+y3+z4+x+y+z为对称整式,x3与y互换后,所得的结果都不会是一个对称的整式;③反例:xyz为单项式,但也是对称整式;④对称整式只含字母x,y,z,且其中有一项为x2y,若x,y互换3y:y2x,则有一项为y2x;若z,x互换2y:z2y,则有一项为z2y;若y,z互换8y:x2z,则有一项为x2z;第三项中x,y,z的次数相同,同理:可以换不相同的字母,至少含有四项:xy2,x2y,x2z,yz5,则该多项式的项数至少为4.故④符合题意.所以以上结论中错误的是②③④,共3个.故选:B.12.【解答】解:第一次:当x=125,,第二次:当x=25,,第三次:当x=4,,第四次:当x=1,x+4=4,第五次:当x=5,,……根据前五次输出结果可知从第二次开始,第奇数次输出结果为1.∴第2022次输出的结果为4.故选:A.13.【解答】解:|﹣1|=1,|﹣3.5|=0.5,∵1>0.7,∴﹣1<﹣0.7,故答案为:<.14.【解答】解:∵零上2℃记作+2℃,∴零下3℃记作﹣5℃.故答案为:﹣5.15.【解答】解:y的平方即y2,则x减去y的平方的差就可以表示为:x﹣y2故答案为:x﹣y616.【解答】解:∵6x2﹣7x+5=11,∴6x7﹣3x=6,∴5(2x2﹣x)=4,即2x2﹣x=3,∴2x2﹣x+2=2+3=8.故答案为:5.17.【解答】解:∵刻度尺上“1cm”对应数轴上的﹣5,∴刻度尺上“3cm”对应数轴上的0,∴刻度尺上“9cm”对应数轴上的3,故答案为:3.18.【解答】解:这九个数的和为1+2+2+...+9=45,∵每一行、每一列的数之和均相对,∴每一行、每一列的数之和为15.∴下中为15﹣9﹣6=1,下右为15﹣8﹣7=6,左中为15﹣4﹣2=3,∴x﹣y=4﹣6=﹣3.故答案为:﹣3.19.【解答】解:(1)25+(﹣18)+4+(﹣10)=25﹣18+4﹣10=2;(2)(﹣3)﹣(﹣15)÷(﹣3)=﹣3﹣5=﹣8;(3)(﹣+﹣)×(﹣12)=×(﹣12)﹣×(﹣12)﹣=﹣9+8﹣4+10=3;(4)(﹣1)10×6+(﹣2)3÷8=1×2+(﹣5)÷4=2﹣7=0.20.【解答】解:∵=ad﹣bc,∴=(﹣1)2018×(﹣2)﹣4×1.25=5×(﹣9)﹣5=﹣5﹣5=﹣14.21.【解答】解:∵在数轴上原点右边的数大于0,左边的数小于0,b<a<8,∴|a﹣b|=a﹣b,|a+b|=﹣a﹣b,∴原式=a﹣b﹣a﹣b=﹣2b.22.【解答】解:∵x,y互为相反数,a,c的绝对值等于2,∴x+y=0,ab=7,c2=4,∴()2022﹣(﹣ab)2022+c2=()2022﹣(﹣1)2022+4=6﹣1+4=7.23.【解答】解:(1)∵第一天读了该书的,∴小明第一天读了m页;∵第二天读了剩下的,∴小明第二天读了(4﹣m(页).∴小明两天共读的页数为:m+m(页).(2)当m=120时,m=×120=56(页).答:当m=120时,小明两天共读的页数为56 页.24.【解答】解:(1)∵关于x的多项式mx4+(m﹣3)x2﹣(n+2)x2+7x﹣n不含二次项和三次项,∴m﹣3=0,﹣(n+2)=0,∴m=3,n=﹣3,∴这个多项式为:3x4+4x+2;(2)当x=2时,7x4+4x+4=3×28+4×2+4=58.25.【解答】解:(1)由题意得:10月5日小明爸爸的跑步路程是(a﹣1.88)千米,故答案为:(a﹣6.88);(2)根据题意得:(5×7+2.72+3.20﹣1.92﹣6.90﹣1.88+3.30+5.08)×60=2316(千卡),答:小明爸爸这七天跑步一共消耗了2316千卡热量.26.【解答】解:(1)∵|a+5|+|b﹣7|=8,∴a=﹣5,b=7,∴A与点B之间的距离为6﹣(﹣5)=12;(2)∵A与点B之间的距离为12,∴12÷2=7(秒),答:运动6秒后,点P到达B点;(3)P、Q相遇前:(12﹣4)÷(3+3)=2(秒),P、Q相遇后:(12+7)÷(1+3)=6(秒),答:运动2秒或4秒后,P、Q两点间的距离为3个单位长度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共12道题,每题3分,总分36分)1. 如果水库的水位高于正常水位2m 时,记作+2m,那么低于正常水位3m 时,应记作( ). A. +3m B. -3mC. +13m D. 13-m2.12-的倒数是( ) A.B.C. 12-D.123.|﹣8|的相反数是( ) A. ﹣8 B. 8 C.18D. 18-4.福布斯2015年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以242亿美元的财富雄居中国内在富豪榜榜首,这一数据用科学记数法可表示为( ) A. 0.242×1010美元 B. 0.242×1011美元 C. 2.42×1010美元 D. 2.42×1011美元5. 下列说法错误的是( ) A. 近似数2.50精确到百分位 B. 1.45×105精确到千位 C. 近似数13.6亿精确到千万位 D. 近似数7000万精确到个位6. 下列计算正确的是( ) A. 2(1)(1)0--+-= B 2237-+-= C. 3(2)8--= D 111()11222-+--=- 7.下列说法正确的是( )A.5xπ的系数是15B. 313x -是单项式 C. 52m - 是5次单项式 D.2533x y xy --是四次多项式8.2100×(﹣12)99=( ) A 2B. ﹣2C.12D. ﹣129.某企业今年1月份产值为x 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是( )A. (1-10%)(1+15%)x 万元B. (1-10%+15%)x 万元C. (x -10%)(x +15%)万元D. (1+10%-15%)x 万元10. 将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 6 个图形有( )个小圆.A. 42B. 44C. 46D. 4811.如图,数轴上的点A 所表示的数为k ,化简|k|+|1-k|的结果为( )A. 1B. 2k -1C. 2k +1D. 1-2k12. 下列说法:①0是绝对值最小的有理数 ②a 2=(﹣a)2 ③若|a|>b,则a 2>b 2④当n 为正整数时,(﹣1)2n+1与(﹣1)2n 互为相反数 ⑤若a <b,则a 3<b 3. 其中正确的个数有( ) A. 1个B. 2个C. 3个D. 4个二、填空题(共8道题,每题3分,总分24分)13.在数轴上,点A 表示数-1,距A 点2.5个单位长度的点表示的数是 . 14.已知、b 互为相反数,m 、n 互为倒数,x 绝对值为2 ,则22a bmn x m n+-+--=______.15.对于实数a ,b ,定义运算“*”:a *b=2()()a ab a b a b a b ⎧-≥⎨-<⎩.例如:因为4>2,所以4*2=42-4×2=8,则(-3)*(-2)=__________.16.一台电视机的原价是2000元,若按原价的八折出售,则购买a 台这样的电视机需要______元. 17.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣2x 2﹣2x+1=﹣x 2+5x ﹣3:则所捂住的多项式是___. 18.若a-2b=3,则9-2a+4b 的值为 _____________.19.观察下面的一列单项式:﹣x,2x 2,﹣4x 3,8x 4,﹣16x 5,…根据你发现的规律,第8个单项式为 ,第n 个单项式为 .20.根据下图所示的流程图计算,若输入x 的值为1,则输出y 的值为__________.三、解答题(共6道题,总分60分.21题6分,22题15分,23题8分,24题10分,25题9分,26题10分,)21.将13-,12,22,-|-2|,-(-3),0在数轴上表示出来,并用“<”号把它们连接起来. 22.计算: (1)20163351()()(1)461212-+---- (2)2221(2)2(10)4----⨯-(3)4322112(0.5)[(3)(3)]0.5338---÷⨯---+- 23.在某次抗险救灾中,消防官兵的冲锋舟沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米): +12,﹣9,+8,﹣7,+11,﹣6,+10,﹣5. (1)B 地在A 地什么方向,距离A 地多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为30升,求途中还需补充多少升油.24.化简求值:已知:(x﹣3)2+|y+13|=0,求3x2y﹣[2xy2﹣2(xy232x y)+3xy]+5xy2的值.25.有这样一道计算题:“计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=12,y=-1”,甲同学把x=12看错成x=-12,但计算结果仍正确,你说是怎么一回事?26.某种铂金饰品在甲、乙两种商店销售,甲店标价每克477元,按标价出售,不优惠.乙店标价每克530元,但若买铂金饰品重量超过3克,则超出部分可打八折出售.若购买的铂金饰品重量为x克,其中x>3.(1)分别列出到甲、乙商店购买该种铂金饰品所需费用(用含x的代数式表示);(2)李阿姨要买一条重量10克的此种铂金饰品,到哪个商店购买最合算.答案与解析一、选择题(共12道题,每题3分,总分36分)1. 如果水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作( ).A. +3mB. -3mC. +13m D.13-m【答案】B【解析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解:“正”和“负”相对,所以,水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作-3m.故选B2.12-的倒数是( )A. B. C.12- D.12【答案】A【解析】【分析】根据倒数的概念求解即可.【详解】根据乘积等于1的两数互为倒数,可直接得到-12的倒数为.故选A3.|﹣8|的相反数是( )A. ﹣8B. 8C. 18D.18-【答案】A【解析】分析:本题考察绝对值和相反数的定义.解析:|﹣8|=8,8的相反数是-8.故选A4. 福布斯2015年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以242亿美元的财富雄居中国内在富豪榜榜首,这一数据用科学记数法可表示为( )A. 0.242×1010美元B. 0.242×1011美元C. 2.42×1010美元D. 2.42×1011美元【答案】C 【解析】试题分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.242亿=24200000000用科学记数法表示时,其中a=2.42,n 为所有的整数数位减1,即n=10.故答案选C. 考点:科学记数法.5. 下列说法错误的是( ) A. 近似数2.50精确到百分位 B. 1.45×105精确到千位 C. 近似数13.6亿精确到千万位 D. 近似数7000万精确到个位 【答案】D 【解析】试题分析:根据近似数的精确度对各选项进行判断. 解:A 、近似数2.50精确到百分位,所以A 选项的说法正确; B 、1.45×105精确到千位,所以B 选项的说法正确; C 、近似数13.6亿精确到千万位,所以C 选项的说法正确; D 、近似数7000万精确到万位,所以B 选项的说法错误. 故选D .考点:近似数和有效数字. 6. 下列计算正确的是( ) A. 2(1)(1)0--+-= B. 2237-+-= C. 3(2)8--= D. 111()11222-+--=- 【答案】C 【解析】 试题解析:A 、,故本选项错误;B 、2234317-+-=-+=-≠,故本选项错误;C 、3(2)(8)8--=--=,故本选项正确;D 、111()121222-+--=-≠-,故本选项错误. 故选C .考点:有理数的混合运算. 7.下列说法正确的是( ) A.5xπ的系数是15B. 313x -是单项式 C. 52m - 是5次单项式 D.2533x y xy --是四次多项式【答案】D 【解析】A 选项:因为π是常数,所以π5x 的系数应该为π5. 因此,A 选项错误. B 选项:单项式中不能含有加减运算,而313x -中含有减法运算,故313x -不是单项式. 因此,B 选项错误. C 选项:单项式的次数是所有字母的指数之和,在单项式52m -中,只含m 一个字母,其指数为1,故52m -是1次单项式. 因此,C 选项错误.D 选项:多项式的次数是该多项式中次数最高项的次数,多项式2533x y xy --共有两项组成,2x y -项的次数为3,533xy -项的次数为4,故2533xy xy --为四次多项式. 因此,D 选项正确.故本题应选D. 8.2100×(﹣12)99=( ) A. 2 B. ﹣2C.12D. ﹣12【答案】B 【解析】观察式子可知,两个幂的底数相乘为-1. 由于-1的乘方运算是简单的,所以可以将2100分解为2×299,再对9999122⎛⎫⨯- ⎪⎝⎭逆向使用积的乘方法则,可简便地得到计算结果. 具体过程如下:()100999999999911122222212222⎡⎤⎛⎫⎛⎫⎛⎫⨯-=⨯⨯-=⨯⨯-=⨯-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故本题应选B.9.某企业今年1月份产值为x 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是( )A. (1-10%)(1+15%)x万元B. (1-10%+15%)x万元C. (x-10%)(x+15%)万元D. (1+10%-15%)x万元【答案】A【解析】【分析】根据1月份的产值是x万元,用x把2月份的产值表示出来(1-10%)x,进而得出3月份产值列出式子(1-10%)(1+15%)x万元,即可得出选项.【详解】1月份的产值是x万元,则:2月份的产值是(1-10%)x万元,3月份的产值是(1+15%)(1-10%)x万元,故选A.【点睛】本题主要考查怎么列代数式,属于简单题,解题关键在于读懂题意10. 将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 6 个图形有( )个小圆.A. 42B. 44C. 46D. 48【答案】C【解析】试题分析:根据第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,因此可得6=4+1×2,10=4+2×3,16=4+3×4,24=4+4×5…,由此可知第n个图形有:4+n(n+1).然后代入n=6可得4+6×(6+1)=46.故选C考点:规律探索11.如图,数轴上的点A所表示的数为k,化简|k|+|1-k|的结果为( )A. 1B. 2k -1C. 2k +1D. 1-2k【答案】B 【解析】【详解】解:由数轴可得1k >,则1121k k k k k +-=+-=-,故选B. 12 下列说法:①0是绝对值最小的有理数 ②a 2=(﹣a)2 ③若|a|>b,则a 2>b 2④当n 为正整数时,(﹣1)2n+1与(﹣1)2n 互为相反数 ⑤若a <b,则a 3<b 3. 其中正确的个数有( ) A. 1个 B. 2个C. 3个D. 4个【答案】D 【解析】试题分析:根据绝对值、相反数,有理数的乘方,依次进行判断即可. 解:①0是绝对值最小的有理数,正确; ②a 2=(﹣a)2,正确;③若|a|>b,则a 2>b 2,若a=1,b=﹣2,不正确;④当n 为正整数时,(﹣1)2n+1与(﹣1)2n 互为相反数,正确; ⑤若a <b,则a 3<b 3,正确; 故选D . 考点:有理数.二、填空题(共8道题,每题3分,总分24分)13.在数轴上,点A 表示数-1,距A 点2.5个单位长度的点表示的数是 . 【答案】1.5或-3.5 【解析】 试题分析:如图:距离点A 点2.5个单位长度的数为-3.5或1.5.考点:数轴.14.已知、b 互为相反数,m 、n 互为倒数,x 的绝对值为2 ,则22a bmn x m n+-+--=______.【答案】-6. 【解析】【详解】解:已知、b 互为相反数,m 、n 互为倒数,x 的绝对值为2, 可得a+b=0,mn=1,x=±2, 所以22a bmn x m n+-+--=-2×1+0-4=-6. 故答案为:-6【点睛】本题考查求代数式的值,有理数的运算,准确计算是关键.15.对于实数a ,b ,定义运算“*”:a *b=2()()a ab a b a b a b ⎧-≥⎨-<⎩.例如:因为4>2,所以4*2=42-4×2=8,则(-3)*(-2)=__________. 【答案】-1 【解析】【详解】∵-3<-2,∴(-3)*(-2)=(-3)-(-2)=-1, 故答案为:-1.【点睛】本题考查了新定义运算,能够看懂运算的条件,正确地选择运算的式子是解决本题的关键. 16.一台电视机的原价是2000元,若按原价的八折出售,则购买a 台这样的电视机需要______元. 【答案】1600a 【解析】 【分析】现在以8折出售,就是现价占原价的80%,把原价看作单位“1”,根据一个数乘百分数的意义,用乘法解答. 详解】解:2000a×80%=1600a (元) 故答案为:1600a .【点睛】本题考查列代数式.17.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣2x 2﹣2x+1=﹣x 2+5x ﹣3:则所捂住的多项式是___. 【答案】x 2+7x-4【解析】【分析】设他所捂的多项式为A ,则22(53)(221)A x x x x =-+-++-;接下来利用去括号法则对其进行去括号,然后合并同类项即可.【详解】解:设他所捂的多项式为A ,则根据题目信息可得22(53)(221),A x x x x =-+-++-2253221,x x x x =-+-++-27 4.x x =+-他所捂的多项式为27 4.x x +-故答案为27 4.x x +-【点睛】本题是一道关于整数加减运算的题目,解答本题的关键是熟练掌握整数的加减运算;18.若a-2b=3,则9-2a+4b 的值为 _____________.【答案】3【解析】【详解】试题解析:∵a-2b=3,∴原式=9-2(a-2b)=9-6=3考点:代数式求值.19.观察下面的一列单项式:﹣x,2x 2,﹣4x 3,8x 4,﹣16x 5,…根据你发现的规律,第8个单项式为 ,第n 个单项式为 .【答案】128x 8,(﹣1)n 2n ﹣1x n .【解析】试题分析:根据符号的规律:n 为奇数时,单项式为负号,n 为偶数时,符号为正号;系数的绝对值的规律:第n 个对应的系数的绝对值是2n ﹣1.指数的规律:第n 个对应的指数是n 解答即可.解:根据分析的规律,得第8个单项式是27x 8=128x 8.第n 个单项式为(﹣1)n 2n ﹣1x n ,故答案为128x 8,(﹣1)n 2n ﹣1x n .考点:单项式.20.根据下图所示的流程图计算,若输入x 的值为1,则输出y 的值为__________.【答案】7【解析】【分析】观察图形我们可以得出x 和y 的关系式为:y=3x 2-5,因此将x 的值代入就可以计算出y 的值.如果计算的结果<0则需要把结果再次代入关系式求值,直到算出的值>0为止,即可得出y 的值.【详解】解:依据题中的计算程序列出算式:12×3-5. 由于12×3-5=-2,-2<0, ∴应该按照计算程序继续计算,(-2)2×3-5=7,∴y=7.故本题答案为:7.三、解答题(共6道题,总分60分.21题6分,22题15分,23题8分,24题10分,25题9分,26题10分,)21.将13-,12,22,-|-2|,-(-3),0在数轴上表示出来,并用“<”号把它们连接起来. 【答案】见解析【解析】试题分析:对题目中给出的各个数据进行整理可得到6个有理数. 根据这些有理数的特点,规定好单位长度画出数轴,准确标注各个有理数的位置. 在数轴上,位于右边的数总大于左边的数,故根据标注准确的数轴容易得到这些有理数的大小关系.试题解析:因为22=4,22--=-,-(-3)=3,故在数轴上应标出表示13-,12,4,-2,3,0的点. 数轴及标注如下(题目中要求表示的数在数轴上方标注):由于在数轴上右边的数总比左边的数大,所以根据数轴上各点的相对位置得:()211203232--<-<<<--<. 点睛:本题综合考查了有理数运算以及数轴的相关知识. 在处理绝对值符号与括号时,有理数符号的变化规则是不同的,这是本题的一个易错点. 另外,利用数轴比较有理数大小的关键在于能否在数轴上准确地找到对应点的位置,特别要注意的是负数的位置.22.计算: (1)20163351()()(1)461212-+---- (2)2221(2)2(10)4----⨯- (3)4322112(0.5)[(3)(3)]0.5338---÷⨯---+- 【答案】(1)14-;(2)-25;(3)738- 【解析】试题分析:(1) 易知在本小题式子最后的乘方运算得1,整个算式转化为有理数的加减混合运算. 运算时,可以将分母相同的分数结合在一起运算,也可以将符号不同的数结合在一起运算,不难得到最终结果.(2) 先处理乘方运算和绝对值,再按照有理数的四则运算法则进行运算.(3) 先将小数形式化为分数形式并将除法转化为相应的乘法运算,然后按照有理数的四则运算法则进行运算. 试题解析: (1) ()201633511461212⎛⎫⎛⎫-+----⎪ ⎪⎝⎭⎝⎭ =33511461212-++- =31511421212⎛⎫-++- ⎪⎝⎭ =3111422-+- =3111422⎛⎫--- ⎪⎝⎭ =314-=14- (2) ()()222122104----⨯- =()1441004⎛⎫--⨯⎪⎝⎭=-25 (3) ()()34221120.5330.5338⎛⎫⎡⎤---÷⨯---+- ⎪⎣⎦⎝⎭ =()()12111633272384⎛⎫⎡⎤---⨯⨯---+- ⎪⎣⎦⎝⎭=121163324238⎛⎫--⨯-⨯⨯+ ⎪⎝⎭ =311622428⎛⎫---⨯+⎪⎝⎭ =11162428-+⨯+ =116128-++ =738- 点睛:本题考查有理数的四则运算. 在实际运算过程中,应充分利用各种运算律简化运算. 由于乘法运算可以利用运算律简化运算过程,所以在需要进行除法运算时,一般利用倒数关系将除法转化为乘法再进行运算. 要注意,若在除数位置上是一个含有加减运算的式子则不能将该式子中的每一项分别进行除法运算.23.在某次抗险救灾中,消防官兵的冲锋舟沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+12,﹣9,+8,﹣7,+11,﹣6,+10,﹣5.(1)B 地在A 地什么方向,距离A 地多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为30升,求途中还需补充多少升油.【答案】(1)B 地在A 地正东方向,距离A 地14千米;(2)途中还需补充4升油.【解析】【分析】(1)由于约定向东为正方向,那么正数表示向东,而当天的航行路程记录如下(单位:千米):+12,﹣9,+8,﹣7,+11,﹣6,+10,﹣5,那么只要把所给数据相加即可求解;(2)只要求出所给数据的绝对值再乘以每千米耗油0.5升即可解决问题.【详解】解:(1)+12﹣9+8﹣7+11﹣6+10﹣5=14(千米),B 地在A 地东边14千米;(2)(12+9+8+7+11+6+10+5)×0.5=68×0.5=34(升),34﹣30=4(升),还需补充4升油. 【点睛】考点:有理数的加减混合运算.24.化简求值:已知:(x ﹣3)2+|y+13|=0,求3x 2y ﹣[2xy 2﹣2(xy 232x y -)+3xy]+5xy 2的值. 【答案】2.【解析】试题分析:在初中数学范围内,任意数的平方是非负数,任意数的绝对值是非负数. 两个非负数之和为零,只可能是这两个非负数均为零. 据此可知,题目条件中给出的等式左侧的两部分应该都等于零. 由于只有零的平方等于零,只有零的绝对值等于零,故可得两个一元一次方程,解之即得满足条件的x ,y 的值. 对待求值的代数式进行化简后代入x ,y 的值求值即可.试题解析:(注:下列解析过程中的相关描述均限定在初中数学范围内)求解满足条件的x ,y 的值.∵()21303x y -++=, 又∵对于任意的x ,y 的值,()230x -≥,103y +≥均成立, ∴()230x -=,103y +=,即30x -=,103y +=, 解上述两个方程,得 3x =,13y =-. 化简待求值的式子. 22223322352x y xy xy x y xy xy ⎡⎤⎛⎫---++ ⎪⎢⎥⎝⎭⎣⎦=()2222322335x y xy xy x y xy xy ⎡⎤---++⎣⎦ =()2222322335x y xy xy x y xy xy --+++=()22223235x y xy x y xy xy -+++=22223235x y xy x y xy xy ---+=23xy xy -将x ,y 的值代入化简后的式子求值.当3x =,13y =-时, 原式=21133333⎛⎫⎛⎫⨯⨯--⨯- ⎪ ⎪⎝⎭⎝⎭=1919⨯+=2. 点睛:若两个非负数之和为零,则这两个非负数均为零. 这条结论是解决本题的关键,也是初中数学中经常考查的知识点,应该予以重点理解和掌握. 另外,在化简过程中,去括号要逐层进行,符号问题要注意;合并同类项时,要注意同类项的定义.25.有这样一道计算题:“计算(2x 3-3x 2y -2xy 2)-(x 3-2xy 2+y 3)+(-x 3+3x 2y -y 3)的值,其中x =12,y =-1”,甲同学把x =12看错成x =-12,但计算结果仍正确,你说是怎么一回事? 【答案】-2y 3,与x 无关【解析】试题分析:根据去括号,合并同类项的法则,化简,通过结果可知与x 值无关,然后再代入y 求值.试题解析:代数式化简结果为32y -,与无关,所以与其他同学的结果都一样当y=-1时,结果是考点:整式的化简求值26.某种铂金饰品在甲、乙两种商店销售,甲店标价每克477元,按标价出售,不优惠.乙店标价每克530元,但若买的铂金饰品重量超过3克,则超出部分可打八折出售.若购买的铂金饰品重量为x 克,其中x >3.(1)分别列出到甲、乙商店购买该种铂金饰品所需费用(用含x 的代数式表示);(2)李阿姨要买一条重量10克此种铂金饰品,到哪个商店购买最合算.【答案】(1)甲:477x ,乙:424318x +(2)乙【解析】【分析】(1)根据两个商店的销售方法分别列式整理即可;(2)把x=10代入代数式进行计算即可得解.【详解】解:(1)甲商店:477x ,乙商店:530×3+(x﹣3)×530×0.8=1590+424x﹣1272=424x+318;(2)当x=10时,甲商店:477×10=4770元,乙商店:424×10+318=4558元,∵4770>4558,∴到乙商店购买最合算.考点:列代数式;代数式求值.。

相关文档
最新文档