2020初中毕业生学业考试数学试卷(含答案及评分标准)
2020年江苏省南京中考数学试卷(附答案与解析)

数学试卷 第1页(共26页) 数学试卷 第2页(共26页)绝密★启用前2020年江苏省南京市初中学业水平考试数 学注意事项:1.本试卷共8页,全卷满分120分,考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字第写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分。
在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上........) 1.计算()32--的结果是 ( ) A .5- B .1- C .1D .5 2.3的平方根是( ) A .9BC. D.3.计算()232aa ÷的结果是( )A .3aB .4aC .7aD .8a4.党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置,根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误..的是( )A .2019年末,农村贫困人口比上年末减少551万人B .2012年末至2019年末,农村贫困人口累计减少超过9 000万人C .2012年末至2019年末,连续7年每年农村贫困人口减少1 000万人以上D .为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村人口的任务5.关于x 的方程()()212x x ρ-+=(ρ为常数)根的情况下,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根6.如图,在平面直角坐标系中,点P 在第一象限,P 与x 轴、y 轴都相切,且经过矩形AOBC 的顶点C ,与BC 相交于点D ,若P 的半径为5,点A 的坐标是()0,8,则点D 的坐标是( )(第6题)A .()9,2B .()9,3C .()10,2D .()10,3二、填空题(本大题共10小题,每小题2分,共20分。
2020年山东省滨州市中考数学试题及参考答案(word解析版)

滨州市2020年初中学生学业水平考试数学试题(满分150分,考试用时120分钟)第Ⅰ卷(选择题共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来.每小题涂对得3分,满分36分.1.下列各式正确的是()A.﹣|﹣5|=5 B.﹣(﹣5)=﹣5 C.|﹣5|=﹣5 D.﹣(﹣5)=52.如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD的大小为()A.60°B.70°C.80°D.100°3.冠状病毒的直径约为80~120纳米,1纳米=1.0×10﹣9米,若用科学记数法表示110纳米,则正确的结果是()A.1.1×10﹣9米B.1.1×10﹣8米C.1.1×10﹣7米D.1.1×10﹣6米4.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)5.下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为()A.1 B.2 C.3 D.46.如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A.4 B.6 C.8 D.127.下列命题是假命题的是()A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直的矩形是正方形C.对角线相等的菱形是正方形D.对角线互相垂直且平分的四边形是正方形8.已知一组数据:5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A.1 B.2 C.3 D.49.在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为()A.6 B.9 C.12 D.1510.对于任意实数k,关于x的方程x2﹣(k+5)x+k2+2k+25=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法判定11.对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为()A.3 B.4 C.5 D.612.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC=5,EN=1,则OD的长为()A.B.C.D.第Ⅱ卷(非选择题共114分)二、填空题:本大题共8个小题.每小题5分,满分40分.13.若二次根式在实数范围内有意义,则x的取值范围为.14.在等腰△ABC中,AB=AC,∠B=50°,则∠A的大小为.15.若正比例函数y=2x的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为.16.如图,⊙O是正方形ABCD的内切圆,切点分别为E、F、G、H,ED与⊙O相交于点M,则sin∠MFG的值为.17.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为.18.若关于x的不等式组无解,则a的取值范围为.19.观察下列各式:a1=,a2=,a3=,a4=,a5=,…,根据其中的规律可得a n=(用含n的式子表示).20.如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为2、、4,则正方形ABCD的面积为.三、解答题:本大题共6个小题,满分74分,解答时请写出必要的演推过程.21.(10分)先化简,再求值:1﹣÷;其中x=cos30°×,y=(π﹣3)0﹣()﹣1.22.(12分)如图,在平面直角坐标系中,直线y=﹣x﹣1与直线y=﹣2x+2相交于点P,并分别与x轴相交于点A、B.(1)求交点P的坐标;(2)求△PAB的面积;(3)请把图象中直线y=﹣2x+2在直线y=﹣x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围.23.(12分)如图,过▱ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC、CD、DA于点P、M、Q、N.(1)求证:△PBE≌△QDE;(2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形.24.(13分)某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?25.(13分)如图,AB是⊙O的直径,AM和BN是它的两条切线,过⊙O上一点E作直线DC,分别交AM、BN于点D、C,且DA=DE.(1)求证:直线CD是⊙O的切线;(2)求证:OA2=DE•CE.26.(14分)如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,﹣),点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.答案与解析第Ⅰ卷(选择题共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来.每小题涂对得3分,满分36分.1.下列各式正确的是()A.﹣|﹣5|=5 B.﹣(﹣5)=﹣5 C.|﹣5|=﹣5 D.﹣(﹣5)=5【知识考点】相反数;绝对值.【思路分析】根据绝对值的性质和相反数的定义对各选项分析判断即可.【解题过程】解:A、∵﹣|﹣5|=﹣5,∴选项A不符合题意;B、∵﹣(﹣5)=5,∴选项B不符合题意;C、∵|﹣5|=5,∴选项C不符合题意;D、∵﹣(﹣5)=5,∴选项D符合题意.故选:D.【总结归纳】此题主要考查相反数的定义以及绝对值的含义和求法,解答此题的关键是要明确一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD的大小为()A.60°B.70°C.80°D.100°【知识考点】平行线的性质.【思路分析】根据平行线和角平分线的定义即可得到结论.【解题过程】解:∵AB∥CD,∴∠1=∠CPF=55°,∵PF是∠EPC的平分线,∴∠CPE=2∠CPF=110°,∴∠EPD=180°﹣110°=70°,故选:B.【总结归纳】本题考查了平行线的性质以及角平分线的定义,熟练掌握平行线的性质是解题的关键.3.冠状病毒的直径约为80~120纳米,1纳米=1.0×10﹣9米,若用科学记数法表示110纳米,则正确的结果是()A.1.1×10﹣9米B.1.1×10﹣8米C.1.1×10﹣7米D.1.1×10﹣6米【知识考点】科学记数法—表示较小的数.【思路分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解题过程】解:110纳米=110×10﹣9米=1.1×10﹣7米.故选:C.【总结归纳】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)【知识考点】点的坐标.【思路分析】直接利用点的坐标特点进而分析得出答案.【解题过程】解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:﹣4,横坐标为:5,即点M的坐标为:(5,﹣4).故选:D.【总结归纳】此题主要考查了点的坐标,正确掌握第四象限点的坐标特点是解题关键.5.下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为()A.1 B.2 C.3 D.4【知识考点】轴对称图形;中心对称图形.【思路分析】根据轴对称图形与中心对称图形的概念求解.【解题过程】解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形;则既是轴对称图形又是中心对称图形的有2个.故选:B.【总结归纳】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A.4 B.6 C.8 D.12【知识考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;矩形的性质.【思路分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【解题过程】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线y=上,∴四边形AEOD的面积为4,∵点B在双曲线线y=上,且AB∥x轴,∴四边形BEOC的面积为12,∴矩形ABCD的面积为12﹣4=8.故选:C.【总结归纳】本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.7.下列命题是假命题的是()A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直的矩形是正方形C.对角线相等的菱形是正方形D.对角线互相垂直且平分的四边形是正方形【知识考点】命题与定理.【思路分析】利用正方形的判定依次判断,可求解.【解题过程】解:A、对角线互相垂直且相等的平行四边形是正方形是真命题,故选项A不合题意;B、对角线互相垂直的矩形是正方形是真命题,故选项B不合题意;C、对角线相等的菱形是正方形是真命题,故选项C不合题意;D、对角线互相垂直且平分的四边形是菱形,即对角线互相垂直且平分的四边形是正方形是假命题,故选项D符合题意;故选:D.【总结归纳】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.已知一组数据:5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A.1 B.2 C.3 D.4【知识考点】算术平均数;中位数;众数;方差.【思路分析】先把数据由小到大排列为3,4,4,5,9,然后根据算术平均数、中位数和众数的定义得到数据的平均数,中位数和众数,再根据方差公式计算数据的方差,然后利用计算结果对各选项进行判断.【解题过程】解:数据由小到大排列为3,4,4,5,9,它的平均数为=5,数据的中位数为4,众数为4,数据的方差=[(3﹣5)2+(4﹣5)2+(4﹣5)2+(5﹣5)2+(9﹣5)2]=4.4.所以A、B、C、D都正确.故选:D.【总结归纳】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,也考查了平均数,中位数和众数的定义.9.在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为()A.6 B.9 C.12 D.15【知识考点】勾股定理;垂径定理.【思路分析】直接根据题意画出图形,再利用垂径定理以及勾股定理得出答案.【解题过程】解:如图所示:∵直径AB=15,∴BO=7.5,∵OC:OB=3:5,∴CO=4.5,∴DC==6,∴DE=2DC=12.故选:C.【总结归纳】此题主要考查了垂径定理和勾股定理,正确得出CO的长是解题关键.10.对于任意实数k,关于x的方程x2﹣(k+5)x+k2+2k+25=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法判定【知识考点】根的判别式.【思路分析】先根据根的判别式求出“△”的值,再根据根的判别式的内容判断即可.【解题过程】解:x2﹣(k+5)x+k2+2k+25=0,△=[﹣(k+5)]2﹣4××(k2+2k+25)=﹣k2+6k﹣25=﹣(k﹣3)2﹣16,不论k为何值,﹣(k﹣3)2≤0,即△=﹣(k﹣3)2﹣16<0,所以方程没有实数根,故选:B.【总结归纳】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键,注意:一元二次方程ax2﹣bx+c=0(a、b、c为常数,a≠0),当△=b2﹣4ac>0时,方程有两个不相等的实数根,当△=b2﹣4ac=0时,方程有两个相等的实数根,当△=b2﹣4ac<0时,方程没有实数根.11.对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为()A.3 B.4 C.5 D.6【知识考点】二次函数图象与系数的关系.【思路分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解题过程】解:①由图象可知:a>0,c<0,∵﹣=1,∴b=﹣2a<0,∴abc<0,故①错误;②∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,故②正确;③当x=2时,y=4a+2b+c<0,故③错误;④当x=﹣1时,y=a﹣b+c>0,∴3a+c>0,故④正确;⑤当x=1时,y的值最小,此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c≤am2+bm+c,故a+b≤am2+bm,即a+b≤m(am+b),故⑤正确,⑥当x<﹣1时,y随x的增大而减小,故⑥错误,故选:A.【总结归纳】本题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.12.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC=5,EN=1,则OD的长为()A.B.C.D.【知识考点】矩形的性质;翻折变换(折叠问题).【思路分析】根据中位线定理可得AM=2,根据折叠的性质和等腰三角形的性质可得A′M=A′N=2,过M点作MG⊥EF于G,可求A′G,根据勾股定理可求MG,进一步得到BE,再根据平行线分线段成比例可求OF,从而得到OD.【解题过程】解:∵EN=1,∴由中位线定理得AM=2,由折叠的性质可得A′M=2,∵AD∥EF,∴∠AMB=∠A′NM,∵∠AMB=∠A′MB,∴∠A′NM=∠A′MB,∴A′N=2,∴A′E=3,A′F=2过M点作MG⊥EF于G,∴NG=EN=1,∴A′G=1,由勾股定理得MG==,∴BE=OF=MG=,∴OF:BE=2:3,解得OF=,∴OD=﹣=.故选:B.【总结归纳】考查了翻折变换(折叠问题),矩形的性质,勾股定理,关键是得到矩形的宽和A′E的长.第Ⅱ卷(非选择题共114分)二、填空题:本大题共8个小题.每小题5分,满分40分.13.若二次根式在实数范围内有意义,则x的取值范围为.【知识考点】二次根式有意义的条件.【思路分析】根据二次根式有意义的条件得出x﹣5≥0,求出即可.【解题过程】解:要使二次根式在实数范围内有意义,必须x﹣5≥0,解得:x≥5,故答案为:x≥5.【总结归纳】本题考查了二次根式有意义的条件和解一元一次不等式,能得出关于x的不等式是解此题的关键.14.在等腰△ABC中,AB=AC,∠B=50°,则∠A的大小为.【知识考点】等腰三角形的性质.【思路分析】根据等腰三角形两底角相等可求∠C,再根据三角形内角和为180°列式进行计算即可得解.【解题过程】解:∵AB=AC,∠B=50°,∴∠C=∠B=50°,∴∠A=180°﹣2×50°=80°.故答案为:80°.【总结归纳】本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等的性质.15.若正比例函数y=2x的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为.【知识考点】反比例函数与一次函数的交点问题.【思路分析】当y=2时,即y=2x=2,解得:x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=,即可求解.【解题过程】解:当y=2时,即y=2x=2,解得:x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=并解得:k=2,故答案为:y=.【总结归纳】本题考查的是反比例函数与一次函数的交点问题,解题的关键是通过正比例函数确定交点的坐标,进而求解.16.如图,⊙O是正方形ABCD的内切圆,切点分别为E、F、G、H,ED与⊙O相交于点M,则sin∠MFG的值为.【知识考点】正方形的性质;圆周角定理;切线长定理;正多边形和圆;解直角三角形.【思路分析】根据同弧所对的圆周角相等,可以把求三角函数的问题,转化为直角三角形的边的比的问题.【解题过程】解:∵⊙O是正方形ABCD的内切圆,∴AE=AB,EG=BC;根据圆周角的性质可得:∠MFG=∠MEG.∵sin∠MFG=sin∠MEG==,∴sin∠MFG=.故答案为:.【总结归纳】本题考查圆周角的性质及锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.17.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为.【知识考点】三角形三边关系;列表法与树状图法.【思路分析】利用完全列举法展示所有可能的结果数,再利用三角形三边的关系得到组成三角形的结果数,然后根据概率公式计算.【解题过程】解:3,5,8,10,13,从中任取三根,所有情况为:3、5、8;3、5、10;3、5、13;3、8、10;3、8、13;3,10,13;5、8、10;5、8、13;5、10、13;8、10、13;共有10种等可能的结果数,其中可以组成三角形的结果数为4,所以可以组成三角形的概率==.故答案为.【总结归纳】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了三角形三边的关系.18.若关于x的不等式组无解,则a的取值范围为.【知识考点】解一元一次不等式组.【思路分析】分别求出每一个不等式的解集,根据口诀:大大小小无解了可得答案.【解题过程】解:解不等式x﹣a>0,得:x>2a,解不等式4﹣2x≥0,得:x≤2,∵不等式组无解,∴2a≥2,解得a≥1,故答案为:a≥1.【总结归纳】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.观察下列各式:a1=,a2=,a3=,a4=,a5=,…,根据其中的规律可得a n=(用含n的式子表示).【知识考点】列代数式;规律型:数字的变化类.【思路分析】观察发现,每一项都是一个分数,分母依次为3、5、7,…,那么第n项的分母是2n+1;分子依次为2,3,10,15,26,…,变化规律为:奇数项的分子是n2+1,偶数项的分子是n2﹣1,即第n项的分子是n2+(﹣1)n+1;依此即可求解.【解题过程】解:由分析可得a n=.故答案为:.【总结归纳】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.20.如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为2、、4,则正方形ABCD的面积为.【知识考点】全等三角形的判定与性质;勾股定理的逆定理;正方形的性质;旋转的性质.【思路分析】如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.首先证明∠PMC=90°,推出∠CMB=∠APB=135°,推出A,P,M共线,利用勾股定理求出AB2即可.【解题过程】解:如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH ⊥PM于H.∵BP=BM=,∠PBM=90°,∴PM=PB=2,∵PC=4,PA=CM=2,∴PC2=CM2+PM2,∴∠PMC=90°,∵∠BPM=∠BMP=45°,∴∠CMB=∠APB=135°,∴∠APB+∠BPM=180°,∴A,P,M共线,∵BH⊥PM,∴PH=HM,∴BH=PH=HM=1,∴AH=2+1,∴AB2=AH2+BH2=(2+1)2+12=14+4,∴正方形ABCD的面积为14+4.故答案为14+4.【总结归纳】本题考查旋转的性质,全等三角形的判定和性质,正方形的性质,解直角三角形等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题.三、解答题:本大题共6个小题,满分74分,解答时请写出必要的演推过程.21.(10分)先化简,再求值:1﹣÷;其中x=cos30°×,y=(π﹣3)0﹣()﹣1.【知识考点】实数的运算;分式的化简求值;零指数幂;负整数指数幂;特殊角的三角函数值.【思路分析】直接利用分式的混合运算法则化简,再计算x,y的值,进而代入得出答案.【解题过程】解:原式=1﹣÷=1+•=1+==,∵x=cos30°×=×2=3,y=(π﹣3)0﹣()﹣1=1﹣3=﹣2,∴原式==0.【总结归纳】此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.22.(12分)如图,在平面直角坐标系中,直线y=﹣x﹣1与直线y=﹣2x+2相交于点P,并分别与x轴相交于点A、B.(1)求交点P的坐标;(2)求△PAB的面积;(3)请把图象中直线y=﹣2x+2在直线y=﹣x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围.【知识考点】一次函数的性质;两条直线相交或平行问题.【思路分析】(1)解析式联立,解方程组即可求得交点P的坐标;(2)求得A、B的坐标,然后根据三角形面积公式求得即可;(3)根据图象求得即可.【解题过程】解:(1)由解得,∴P(2,﹣2);(2)直线y=﹣x﹣1与直线y=﹣2x+2中,令y=0,则﹣x﹣1=0与﹣2x+2=0,解得x=﹣2与x=1,∴A(﹣2,0),B(1,0),∴AB=3,∴S△PAB===3;(3)如图所示:自变量x的取值范围是x<2.【总结归纳】本题考查了两条直线平行或相交问题,两条直线的交点坐标是两条直线的解析式构成的方程组的解.23.(12分)如图,过▱ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC、CD、DA于点P、M、Q、N.(1)求证:△PBE≌△QDE;(2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形.【知识考点】全等三角形的判定与性质;平行四边形的性质;菱形的判定.【思路分析】(1)由ASA证△PBE≌△QDE即可;(2)由全等三角形的性质得出EP=EQ,同理△BME≌△DNE(ASA),得出EM=EN,证出四边形PMQN是平行四边形,由对角线PQ⊥MN,即可得出结论.【解题过程】(1)证明:∵四边形ABD是平行四边形,∴EB=ED,AB∥CD,∴∠EBP=∠EDQ,在△PBE和△QDE中,,∴△PBE≌△QDE(ASA);(2)证明:如图所示:∵△PBE≌△QDE,∴EP=EQ,同理:△BME≌△DNE(ASA),∴EM=EN,∴四边形PMQN是平行四边形,∵PQ⊥MN,∴四边形PMQN是菱形.【总结归纳】本题考查了平行四边形的判定与性质,菱形的判定,全等三角形的判定与性质;熟练掌握菱形的判定和平行四边形的判定与性质,证明三角形全等是解题的关键.24.(13分)某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?【知识考点】一元二次方程的应用;二次函数的应用.【思路分析】(1)由月销售量=500﹣(销售单价﹣50)×10,可求解;(2)设每千克水果售价为x元,由利润=每千克的利润×销售的数量,可列方程,即可求解;(3)设每千克水果售价为m元,获得的月利润为y元,由利润=每千克的利润×销售的数量,可得y与x的关系式,有二次函数的性质可求解.【解题过程】解:(1)当售价为55元/千克时,每月销售水果=500﹣10×(55﹣50)=450千克;(2)设每千克水果售价为x元,由题意可得:8750=(x﹣40)[500﹣10(x﹣50)],解得:x1=65,x2=75,答:每千克水果售价为65元或75元;(3)设每千克水果售价为m元,获得的月利润为y元,由题意可得:y=(m﹣40)[500﹣10(m﹣50)]=﹣10(m﹣70)2+9000,∴当m=70时,y有最大值为9000元,答:当每千克水果售价为70元时,获得的月利润最大值为9000元.【总结归纳】本题主要考查二次函数的应用,解题的关键是熟练掌握销售问题中关于销售总利润的相等关系,并据此列出函数解析式及熟练掌握二次函数的性质.25.(13分)如图,AB是⊙O的直径,AM和BN是它的两条切线,过⊙O上一点E作直线DC,分别交AM、BN于点D、C,且DA=DE.(1)求证:直线CD是⊙O的切线;(2)求证:OA2=DE•CE.【知识考点】圆周角定理;切线的判定与性质;相似三角形的判定与性质.【思路分析】(1)连接OD,OE,证明△OAD≌△OED,得∠OAD=∠OED=90°,进而得CD 是切线;(2)过D作DF⊥BC于点F,得四边形ABFD为矩形,得DF=20A,再证明CF=CE﹣DE,进而根据勾股定理得结论.【解题过程】解:(1)连接OD,OE,如图1,在△OAD和△OED中,,∴△OAD≌△OED(SSS),∴∠OAD=∠OED,∵AM是⊙O的切线,∴∠OAD=90°,∴∠OED=90°,∴直线CD是⊙O的切线;(2)过D作DF⊥BC于点F,如图2,则∠DFB=∠RFC=90°,∵AM、BN都是⊙O的切线,∴∠ABF=∠BAD=90°,∴四边形ABFD是矩形,∴DF=AB=2OA,AD=BF,∵CD是⊙O的切线,∴DE=DA,CE=CB,∴CF=CB﹣BF=CE﹣DE,∵DE2=CD2﹣CF2,∴4OA2=(CE+DE)2﹣(CE﹣DE)2,即4OA2=4DE•CE,∴OA2=DE•CE.【总结归纳】本题主要考查了圆的切线的性质与判定,勾股定理,矩形的性质与判定,全等三角形的性质与判定,关键是正确作辅助线构造全等三角形与直角三角形.26.(14分)如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,﹣),点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.【知识考点】二次函数综合题.【思路分析】(1)由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x﹣2)2﹣1,把点B坐标代入求出a即可.(2)由题意P(m,m2﹣m﹣),求出d2,PF2(用m表示)即可解决问题.(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.因为△DFQ的周长=DF+DQ+FQ,DF是定值==2,推出DQ+QF的值最小时,△DFQ的周长最小,再根据垂线段最短解决问题即可.【解题过程】(1)解:由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x ﹣2)2﹣1,∵抛物线经过B(0,﹣),∴﹣=4a﹣1,∴a=,∴抛物线的解析式为y=(x﹣2)2﹣1.(2)证明:∵P(m,n),∴n=(m﹣2)2﹣1=m2﹣m﹣,∴P(m,m2﹣m﹣),∴d=m2﹣m﹣﹣(﹣3)=m2﹣m+,∵F(2,1),∴PF==,∵d2=m4﹣m3+m2﹣m+,PF2=m4﹣m3+m2﹣m+,∴d2=PF2,∴PF=d.(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.∵△DFQ的周长=DF+DQ+FQ,DF是定值==2,∴DQ+QF的值最小时,△DFQ的周长最小,∵QF=QH,∴DQ+DF=DQ+QH,根据垂线段最短可知,当D,Q,H共线时,DQ+QH的值最小,此时点H与N重合,点Q在线段DN上,∴DQ+QH的最小值为3,∴△DFQ的周长的最小值为2+3,此时Q(4,﹣)【总结归纳】本题属于二次函数综合题,考查了待定系数法,两点间距离公式,垂线段最短等知识,解题的关键是学会利用参数解决问题,学会用转化的思想思考问题,属于中考常考题型.。
2020年黑龙江省龙东地区中考数学试卷(解析版)

3
3
设 AG= y ,则 DG= a y , ∴EG=GH = a y 1 a 4 a y ,
33
11
在 Rt△AEG 中, AE2 AG2 EG2 ,
即
2 3
a
2
y2
4 3
a
y
2
,
解得: y 1 a , 2
∴当 BE 1 a 时, G 是线段 AD 的中点,故⑤正确; 3
B. 3.6 或 3.8
C. 3.8 或 4.2
D. 3.8 或 4.2
【答案】B
【解析】
【分析】
根据众数的定义得出正整数 a 的值,再根据平均数的定义求解可得.
【详解】∵数据:a,3,4,4,6(a 为正整数),唯一的众数是 4,
∴a=1 或 2,
13 4 46
当 a=1 时,平均数为
=3.6;
5
2
∴y 可以分别取 2,4,6,8,10,12 共 6 种情况,x 为正整数;
8
综上所述:共有 8+6=14 种购买方案.
故选:D
【点睛】本题考查了求方程组的正整数解,根据题意列出方程,并确定方程组的解为正整数是解题关键.
10.如图,正方形 ABCD 的边长为 a ,点 E 在边 ,点 F
则△CBE≌△CDH(SAS), ∴∠ECB=∠DCH,
10
∴∠ECH=∠BCD=90°, ∴∠ECG=∠GCH=45°, ∵CG=CG,CE=CH, ∴△GCE≌△GCH(SAS), ∴EG=GH, ∵GH=DG+DH,DH=BE, ∴EG=BE+DG,故③错误, ∴△AEG 的周长=AE+EG+AG=AE+AH= AE +AD+DH =AE +AD+EB =AB+AD=2a,故②错误,
2020年初中毕业班学业水平适应性测试 数学(参考答案)

2020年初中毕业班学业水平适应性测试评分标准数 学一、选择题:(本大题考查基本知识和基本运算.共10小题,每小题3分,共30分)题号1 2 3 4 5 6 7 8 9 10 答案C A B C C B B C A B二、填空题:(本大题查基本知识和基本运算,体现选择性.共6小题,每小题3分,共18分) 11.︒128 12.()223y x − 13. 12≠−≥x x 且 14.665 15.5 16.①③④ 三、解答题:(本大题共9小题,满分102分.解答须写出文字说明、证明过程和演算步骤.)17.(本题满分9分)解不等式组:⎩⎨⎧+≤<+5641x x x解:①得: 3<x ……………………………………………………………3分解②得:15556−≥≤−≤−x x x x ……………………………………………………………6分不等式①,不等式②的解集在数轴上表示,如图………………………………………………………………8分∴原不等式组的解集为31<≤−x ………………………………………9分18.(本题满分9分)① ②证明:∵C 是AB 中点∴CB AC =………………………………………………………2分.又∵CD ∥BE∴ CBE ∠=∠ACD ………………………………………………4分在△ACD 和△CBE 中…⎪⎩⎪⎨⎧=∠=∠=BE CD BE ,ACD C CB AC∴ )(S S BE C △ ≌D C A △A ……………7分∴CE AD =…………………………………9分19.(本题满分10分)解(1)()()b a b a b a a b T −−−=()b a ab a b a ab b −−−=22)(………………………………………………2分()()()b a ab a b a b −−+=………………………………………………4分 ()()()b a ab b a a b −−+−= ab b a +−=………………………………………………………………………6分 (2)∵03=+−b ab a∴ab b a 3=+………………………………7分3=+ab b a …………………………………9分∴3−=+−=abb a T ………………………………………10分20.(本题满分10分)解:设原计划每天加工这种零件x 个,则根据题意可得:………………………1分 ()5%5012400024000++=x x ……………………………………………………………………5分解得:1600=x …………………………………………………………………7分经检验1600=x 是原方程的解且符合题意…………………………………………………………………9分 答:该工厂原计划每天加工这种零件1600个.…………………………………………………………………10分21.(本题满分12分)解:(1)共抽取学生 __40__ 人, 扇形图中C 等级所占扇形圆心角为__36_度;……………………2分(2)如图所示, ……………………4分(3)画树状图如下:开始男生1 男生2 男生3 女生男生2 男生3 女生 男生1男生3 女生 男生1男生2 女生 男生1男生2男生3…………………………………………9分由树状图可知,所有等可能的结果为12种(此处省略,需列明),其中两人恰好都为男生的有6种,分别为男生1男生2、男生1男生3、男生2男生1、男生2男生3、男生3男生1、男生3男生2、…………………………………………………………………………………………10分概率为:21126==p …………………………………………12分22.(本题满分12分)解:(1)作图所示,……………………………………………3分(2)∵点C 为弧AB 点∴弧AC 等于弧BC∴BC AC = …………………………………………5分又∵AB 为直径∴︒=∠90ACB …………………………………………6分延长BE 、AC 交于点F由(1)作图知:CAE BAE ∠=∠,︒=∠90AEB∴AE 垂直平分BF ………………………8分∴ 42==BE BF …………………………………………9分又∵BC AC BCF ACD FBC DAC ==∠=∠=∠︒,90,∴ ACD BCF SAS ∆∆≌()…………………………………………11分 ∴4==BF AD …………………………………………12分23. (本题满分12分) 解:(1)把点()2,1A 代入x k y 22= 得:122k =,∴22=k ,x y 22=…………………………………………1分把()1,m B 代入x y 22=得: 12=m ,∴2=m …………………………………………2分把点()2,1A ,()1,2B 代入b x k y +=11得:∴⎩⎨⎧=+=+12211b k b k …………………………………………3分解得:⎩⎨⎧=−=311b k …………………………………………4分∴直线AB 的解析式为31+−=x y ……………………………………5分(2)当0<x 或21<<x 时, x k b x k 21>+,……………………………………7分(3)如图,由(1)知31+−=x y ,知311==OE OD∴︒=∠4511E OD将直线AB 向下平移n 个单位长度,n OE ODE −==∠︒3,45 ∴)3(2n DE −= ………………………………9分过点P 作DE PM ⊥于点M ,过点D 作11E D DN ⊥于点N∵11E D ∥DE ∴n DN PM 22==………………………………10分 ∴()122322121=•−⨯=••=∆n n PM DE S DEF即0232=+−n n ,解得:1,221==n n∵30<<n∴ 21=n 或12=n ………………………………12分24.(本题满分14分)解: ∵二次函数的最高点坐标为(1,2)−∴顶点坐标为(1,2)−,对称轴为1x =−,设二次函数解析式为2(1)2y a x =++(0)a <又∵OB =1 ∴B (1,0)将B (1,0)代入2(1)2y a x =++,得:420a +=,解得12a =− ∴22113(1)2222y x x x =−++=−−+………………………………………2分 ∵对称轴为1x =−,B (1,0)∴)0,3(−A ∴4=AB又∵5ABD S ∆= ∴1252D D AB y y ⨯⨯==,得52D y =− 代入抛物线解析式得:215(1)222x −++=−,解得12x =,24x =−, ∴54,2D ⎛⎫−− ⎪⎝⎭…………………………………………………………………………3分 将5(1,0),(4,)2B D −−代入y kx b =+得: ∴5420k b k b ⎧−+=−⎪⎨⎪+=⎩,解得:1212k b ⎧=⎪⎪⎨⎪=−⎪⎩, ∴直线AD 的解析式为1122y x =−.……………………4分 (2)如图,过点E 作BD EN ⊥于N ,y EM ⊥轴交BD 于M∵∠EMN =∠OCB ∴25sin sin 5EMN OCB ∠=∠= ∴25sin 5EN EM EMN EM =∠=…………………5分设213,22E a a a ⎛⎫−−+ ⎪⎝⎭,则11,22M a a ⎛⎫− ⎪⎝⎭, ∴22131113()2222222EM a a a a a =−−+−−=−−+21325228a ⎛⎫=−++ ⎪⎝⎭ 2255355()5524EN EM a ==−++…………………………………………………………7分 当32a =−时,21315(1)2228y =−−++= ∴当32a =−时,EN 有最大值,最大值是554,此时E 点坐标为315,28⎛⎫− ⎪⎝⎭.……………9分(3)作E 关于x 轴的对称点F ,连接EF 交x 轴于点G ,过点F 作FH BE ⊥于点H ,交x 轴于点P ,此时点P 即为最小值的位置……………10分 ∵315,28E ⎛⎫− ⎪⎝⎭,1OB =, ∴35122BG =+=,158EG =,∴5421538BG EG ==, ∵90BGE BHP ∠=∠=o , ∴3sin 5PH EG EBG BP BE ∠===,∴35PH BP =, ∵E 、F 关于x 轴对称,∴PE PF =, ∴FH HP PE BP PE BP PE 5)(5)53(535=+=+=+…………………12分 ∵1515284EF =⨯=,BEG HEF ∠=∠, ∴4sin sin 5BG FH BEG HEF BE EF ∠=∠===,4152==EG EF ∴415354FH =⨯=. ∴PB PE 35+的最小值是15.…………………………………………14分25.(本题满分14分)(1)∵COP CDP ∠∠与是CP 所对的圆周角∴=COP CDP ∠∠又∵四边形OABC 是矩形,(8,6)B∴90OCB ∠=︒,8BC =,6OC = ∴4tan 3BC COB CO ∠== ∴tan CDP ∠4tan 3COB =∠=………………………………………3分 (2)如图2,连接AP ,∵四边形OABC 是矩形∴OB 与AC 互相平分;又∵点P 是OB 的中点时∴A C P 、、三点共线又∵四边形CODP 是圆内接四边形∴ 180=∠+∠COD CPD∴ 90=∠=∠COD CPD∴PD 垂直平分AC∴CD AD =,CDP ADP ∠=∠∴PED ∆沿PD 翻折后,点F 落在线段AD 上设OD x =,则8=AD CD x =−,在Rt COD ∆中,222CD CO OD =+得到222(8)6x x −=+,解得74x = 又∵OD BC ∥ ∴DOE CBE ∆∆∽ ∴7D 74=CE BC 832E OD == ∴739DE CD =,22227256()44CD CO OD =+=+= ∴7725725112(1)439443939OF OD DF OD DE =+=+=+⨯=⨯+= ∴112(,0)39F ………………………………………………………………8分(3)过点D 作DM OB ⊥于M设OD t =,63sin sin 105AB MOD BOA OB ∠=∠===, 84cos cos 105OA MOD BOA OB ∠=∠=== 在Rt OMD ∆中,3sin 5MD OD BOA t =∠=…………………………………………9分知识像烛光,能照亮一个人,也能照亮无数的人。
2020年云南省中考数学试题及参考答案(word解析版)

2020年云南省初中学业水平考试数学试题卷(满分120分,考试用时120分钟)一、填空题(本大题共6小题,每小题3分,共18分)1.中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为吨.2.如图,直线c与直线a、b都相交.若a∥b,∠1=54°,则∠2=度.3.要使有意义,则x的取值范围是.4.已知一个反比例函数的图象经过点(3,1),若该反比例函数的图象也经过点(﹣1,m),则m=.5.若关于x的一元二次方程x2+2x+c=0有两个相等的实数根,则实数c的值为.6.已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA=EC.若AB=6,AC=2,则DE的长是.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽,1500000人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报).1500000这个数用科学记数法表示为()A.15×106B.1.5×105C.1.5×106D.1.5×1078.下列几何体中,主视图是长方形的是()A.B.C.D.9.下列运算正确的是()A.=±2 B.()﹣1=﹣2 C.(﹣3a)3=﹣9a3D.a6÷a3=a3(a≠0)10.下列说法正确的是()A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s甲2、s乙2,若=,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定D.一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖11.如图,平行四边形ABCD的对角线AC,BD相交于点O,E是CD的中点.则△DEO与△BCD的面积的比等于()A.B.C.D.12.按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是()A.(﹣2)n﹣1a B.(﹣2)n a C.2n﹣1a D.2n a13.如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A.B.1 C.D.14.若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为()A.﹣61或﹣58 B.﹣61或﹣59 C.﹣60或﹣59 D.﹣61或﹣60或﹣59 三、解答题(本大题共9小题,共70分)15.(6分)先化简,再求值:÷,其中x=.16.(6分)如图,已知AD=BC,BD=AC.求证:∠ADB=∠BCA.17.(8分)某公司员工的月工资如下:员工经理副经理职员A 职员B 职员C 职员D 职员E 职员F 杂工G 月工资/元7000 4400 2400 2000 1900 1800 1800 1800 1200经理、职员C、职员D从不同的角度描述了该公司员工的收入情况.设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为k、m、n,请根据上述信息完成下列问题:(1)k=,m=,n=;(2)上月一个员工辞职了,从本月开始,停发该员工工资,若本月该公司剩下的8名员工的月工资不变,但这8名员工的月工资数据(单位:元)的平均数比原9名员工的月工资数据(见上述表格)的平均数减小了.你认为辞职的那名员工可能是.18.(6分)某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?19.(7分)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.(1)直接写出甲家庭选择到大理旅游的概率;(2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值.20.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE,垂足为D,AC平分∠DAB.(1)求证:CE是⊙O的切线;(2)若AD=4,cos∠CAB=,求AB的长.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:目的地/车型A地(元/辆)B地(元/辆)大货车900 1000小货车500 700现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.22.(9分)如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE⊥AB,重足为E,点F在AD的延长线上,CF⊥AD,重足为F,(1)若∠BAD=60°,求证:四边形CEHF是菱形;(2)若CE=4,△ACE的面积为16,求菱形ABCD的面积.23.(12分)抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).点P为抛物线y=x2+bx+c上的一个动点.过点P作PD⊥x轴于点D,交直线BC于点E.(1)求b、c的值;(2)设点F在抛物线y=x2+bx+c的对称轴上,当△ACF的周长最小时,直接写出点F的坐标;(3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?若存在,求出点P所有的坐标;若不存在,请说明理由.答案与解析一、填空题(本大题共6小题,每小题3分,共18分)1.中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为吨.【知识考点】正数和负数.【思路分析】根据正负数的意义,直接写出答案即可.【解答过程】解:因为题目运进记为正,那么运出记为负.所以运出面粉8吨应记为﹣8吨.故答案为:﹣8.【总结归纳】本题考查了正数和负数.根据互为相反意义的量,确定运出的符号是解决本题的关键.2.如图,直线c与直线a、b都相交.若a∥b,∠1=54°,则∠2=度.【知识考点】平行线的性质.【思路分析】直接利用平行线的性质:两直线平行,同位角相等,即可得出答案.【解答过程】解:∵a∥b,∠1=54°,∴∠2=∠1=54°.故答案为:54.【总结归纳】此题主要考查了平行线的性质,正确掌握平行线的基本性质是解题关键.3.要使有意义,则x的取值范围是.【知识考点】二次根式有意义的条件.【思路分析】根据二次根式有意义的条件得到x﹣2≥0,然后解不等式即可.【解答过程】解:∵有意义,∴x﹣2≥0,∴x≥2.故答案为x≥2.【总结归纳】本题考查了二次根式有意义的条件:二次根式有意义的条件为被开方数为非负数,即当a≥0时有意义;若含分母,则分母不能为0.4.已知一个反比例函数的图象经过点(3,1),若该反比例函数的图象也经过点(﹣1,m),则m =.【知识考点】反比例函数图象上点的坐标特征.【思路分析】设反比例函数的表达式为y=,依据反比例函数的图象经过点(3,1)和(﹣1,m),即可得到k=3×1=﹣m,进而得出m=﹣3.【解答过程】解:设反比例函数的表达式为y=,∵反比例函数的图象经过点(3,1)和(﹣1,m),∴k=3×1=﹣m,解得m=﹣3,故答案为:﹣3.【总结归纳】本题主要考查了反比例函数图象上点的坐标特征,解题时注意:反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.5.若关于x的一元二次方程x2+2x+c=0有两个相等的实数根,则实数c的值为.【知识考点】根的判别式.【思路分析】若一元二次方程有两个相等的实数根,则根的判别式△=b2﹣4ac=0,建立关于c 的不等式,求出c的值即可.【解答过程】解:∵关于x的一元二次方程x2+2x+c=0有两个相等的实数根,∴△=b2﹣4ac=22﹣4c=0,解得c=1.故答案为1.【总结归纳】此题考查了根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA=EC.若AB=6,AC=2,则DE的长是.【知识考点】勾股定理;矩形的性质.【思路分析】由勾股定理可求BC=2,分点E在CD上或在AB上两种情况讨论,由勾股定理可求解.【解答过程】解:如图,∵四边形ABCD是矩形,∴CD=AB=6,AD=BC,∠ABC=∠ADC=90°,∴BC===2,∴AD=2,当点E在CD上时,∵AE2=DE2+AD2=EC2,∴(6﹣DE)2=DE2+4,∴DE=;当点E在AB上时,∵CE2=BE2+BC2=EA2,∴AE2=(6﹣AE)2+4,∴AE=,∴DE===,综上所述:DE=或,故答案为:或.【总结归纳】本题考查了矩形的性质,勾股定理,利用分类讨论思想解决问题是本题的关键.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽,1500000人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报).1500000这个数用科学记数法表示为()A.15×106B.1.5×105C.1.5×106D.1.5×107【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:1500000=1.5×106,故选:C.【总结归纳】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.下列几何体中,主视图是长方形的是()A.B.C.D.【知识考点】简单几何体的三视图.【思路分析】根据各个几何体的主视图的形状进行判断即可.【解答过程】解:圆柱体的主视图是长方形,圆锥的主视图是等腰三角形,球的主视图是圆形,四面体的主视图是三角形,故选:A.【总结归纳】本题考查简单几何体的三视图,主视图就是从正面看该物体所得到的图形.9.下列运算正确的是()A.=±2 B.()﹣1=﹣2 C.(﹣3a)3=﹣9a3D.a6÷a3=a3(a≠0)【知识考点】算术平方根;幂的乘方与积的乘方;同底数幂的除法;负整数指数幂.【思路分析】根据二次根式的性质,负整数指数幂法则,幂的性质进行解答便可.【解答过程】解:A.,选项错误;B.原式=2,选项错误;C.原式=﹣27a3,选项错误;D.原式=a6﹣3=a3,选项正确.故选:D.【总结归纳】本题主要考查了二次根式的性质,负整数指数幂的运算法则,幂的运算法则,关键是熟记性质和法则.10.下列说法正确的是()A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s甲2、s乙2,若=,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定D.一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖【知识考点】三角形内角和定理;全面调查与抽样调查;算术平均数;方差;随机事件;概率的意义;概率公式.【思路分析】根据普查、抽查,三角形的内角和,方差和概率的意义逐项判断即可.【解答过程】解:了解三名学生的视力情况,由于总体数量较少,且容易操作,因此宜采取普查,因此选项A不符合题意;任意画一个三角形,其内角和是360°是比可能事件,因此选项B不符合题意;根据平均数和方差的意义可得选项C符合题意;一个抽奖活动中,中奖概率为,表示中奖的可能性为,不代表抽奖20次就有1次中奖,因此选项D不符合题意;故选:C.【总结归纳】本题考查普查、抽查,三角形的内角和,方差和概率的意义,理解各个概念的内涵是正确判断的前提.11.如图,平行四边形ABCD的对角线AC,BD相交于点O,E是CD的中点.则△DEO与△BCD的面积的比等于()A.B.C.D.【知识考点】三角形中位线定理;平行四边形的性质;相似三角形的判定与性质.【思路分析】利用平行四边形的性质可得出点O为线段BD的中点,结合点E是CD的中点可得出线段OE为△DBC的中位线,利用三角形中位线定理可得出OE∥BC,OE=BC,进而可得出△DOE∽△DBC,再利用相似三角形的面积比等于相似比的平方,即可求出△DEO与△BCD 的面积的比.【解答过程】解:∵平行四边形ABCD的对角线AC,BD相交于点O,∴点O为线段BD的中点.又∵点E是CD的中点,∴线段OE为△DBC的中位线,∴OE∥BC,OE=BC,∴△DOE∽△DBC,∴=()2=.故选:B.【总结归纳】本题考查了平行四边形的性质、三角形中位线定理以及相似三角形的判定与性质,利用平行四边形的性质及三角形中位线定理,找出OE∥BC且OE=BC是解题的关键.12.按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是()A.(﹣2)n﹣1a B.(﹣2)n a C.2n﹣1a D.2n a【知识考点】规律型:数字的变化类;单项式.【思路分析】根据题意,找出规律:单项式的系数为(﹣2)的幂,其指数为比序号数少1,字母为a.【解答过程】解:∵a=(﹣2)1﹣1a,﹣2a=(﹣2)2﹣1a,4a=(﹣2)3﹣1a,﹣8a=(﹣2)4﹣1a,16a=(﹣2)5﹣1a,﹣32a=(﹣2)6﹣1a,…由上规律可知,第n个单项式为:(﹣2)n﹣1a.故选:A.【总结归纳】本题主要考查了单项式的有关知识,在解题时要能通过观察得出规律是本题的关键.13.如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A.B.1 C.D.【知识考点】圆锥的计算.【思路分析】根据圆锥的底面周长与展开后所得扇形的弧长相等列式计算即可.【解答过程】解:设圆椎的底面圆的半径为r,根据题意可知:AD=AE=4,∠DAE=45°,∴2πr=,解得r=.答:该圆锥的底面圆的半径是.故选:D.【总结归纳】本题考查了圆锥的计算,解决本题的关键是掌握圆锥的底面周长与展开后所得扇形的弧长相等.14.若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为()A.﹣61或﹣58 B.﹣61或﹣59 C.﹣60或﹣59 D.﹣61或﹣60或﹣59【知识考点】分式方程的解;解一元一次不等式组;一元一次不等式组的整数解.【思路分析】解不等式组,得<x≤25,根据不等式组有且只有45个整数解,可得﹣61≤a <﹣58,根据关于y的方程+=1的解为非正数:解得a≥﹣61,又y+1不等于0,进而可得a的值.【解答过程】解:解不等式组,得<x≤25,∵不等式组有且只有45个整数解,∴﹣20≤<﹣19,解得﹣61≤a<﹣58,因为关于y的方程+=1的解为:y=﹣a﹣61,y≤0,∴﹣a﹣61≤0,解得a≥﹣61,∵y+1≠0,∴y≠﹣1,∴a≠﹣60则a的值为:﹣61或﹣59.故选:B.【总结归纳】本题考查了分式方程的解、解一元一次不等式组、一元一次不等式组的整数解,解决本题的关键是确定一元一次不等式组的整数解.三、解答题(本大题共9小题,共70分)15.(6分)先化简,再求值:÷,其中x=.【知识考点】分式的化简求值.【思路分析】原式利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答过程】解:原式=÷=•=,当x=时,原式=2.【总结归纳】本题考查分式的化简求值,掌握分式的运算法则是解题的关键.16.(6分)如图,已知AD=BC,BD=AC.求证:∠ADB=∠BCA.【知识考点】全等三角形的判定与性质.【思路分析】根据SSS推出△ADB和△BCA全等,再根据全等三角形的性质得出即可.【解答过程】证明:在△ADB和△BCA中,,∴△ADB≌△BCA(SSS),∴∠ADB=∠BCA.【总结归纳】本题考查了全等三角形的判定和性质.解题的关键是掌握全等三角形的性质和判定的运用,注意:全等三角形的对应边相等,对应角相等.17.(8分)某公司员工的月工资如下:员工经理副经理职员A 职员B 职员C 职员D 职员E 职员F 杂工G月工资/元7000 4400 2400 2000 1900 1800 1800 1800 1200经理、职员C、职员D从不同的角度描述了该公司员工的收入情况.设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为k、m、n,请根据上述信息完成下列问题:(1)k=,m=,n=;(2)上月一个员工辞职了,从本月开始,停发该员工工资,若本月该公司剩下的8名员工的月工资不变,但这8名员工的月工资数据(单位:元)的平均数比原9名员工的月工资数据(见上述表格)的平均数减小了.你认为辞职的那名员工可能是.【知识考点】算术平均数;中位数;众数.【思路分析】(1)求出9个数据之和再除以总个数即可;对于中位数,按从大到小的顺序排列,找出最中间的那个数即可;出现频数最多的数据即为众数;(2)根据剩下的8名员工的月工资数据的平均数比原9名员工的月工资数据的平均数减小,得出辞职的那名员工工资高于2700元,从而得出辞职的那名员工可能是经理或副经理.【解答过程】解:(1)平均数k=(7000+4400+2400+2000+1900+1800×3+1200)÷9=2700,9个数据从大到小排列后,第5个数据是1900,所以中位数m=1900,1800出现了三次,次数最多,所以众数n=1800.故答案为:2700,1900,1800;(2)由题意可知,辞职的那名员工工资高于2700元,所以辞职的那名员工可能是经理或副经理.故答案为:经理或副经理.【总结归纳】本题考查了确定一组数据的平均数、中位数和众数的能力.平均数是指在一组数据中所有数据之和再除以数据的个数.注意找中位数的时候一定要先排好顺序,然后根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.一组数据中出现次数最多的数据叫做众数.18.(6分)某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?【知识考点】分式方程的应用.【思路分析】设原计划每年绿化升级改造的面积是x万平方米,则实际每年绿化升级改造的面积是2x万平方米,根据“实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务”列出方程即可求解.【解答过程】解:设原计划每年绿化升级改造的面积是x万平方米,则实际每年绿化升级改造的面积是2x万平方米,根据题意,得:﹣=4,解得:x=45,经检验,x=45是原分式方程的解,则2x=2×45=90.答:实际平均每年绿化升级改造的面积是90万平方米.【总结归纳】此题考查了分式方程的应用,解答本题的关键是读懂题意,根据题意设出适当的未知数,找出等量关系,列方程求解,注意检验.19.(7分)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.(1)直接写出甲家庭选择到大理旅游的概率;(2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值.【知识考点】列表法与树状图法.【思路分析】(1)直接用概率公式求解可得;(2)记到大理、丽江、西双版纳三个城市旅游分别为A、B、C,列表得出所有等可能结果,从中找到甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的结果数,根据概率公式求解可得.【解答过程】解:(1)甲家庭选择到大理旅游的概率为;(2)记到大理、丽江、西双版纳三个城市旅游分别为A、B、C,列表得:A B CA (A,A)(A,B)(A,C)B (B,A)(B,B)(B,C)C (C,A)(C,B)(C,C)由表格可知,共有9种等可能性结果,其中甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的有3种结果,所以甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率P==.【总结归纳】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.20.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE,垂足为D,AC平分∠DAB.(1)求证:CE是⊙O的切线;(2)若AD=4,cos∠CAB=,求AB的长.【知识考点】勾股定理;垂径定理;圆周角定理;切线的判定与性质;解直角三角形.【思路分析】(1)连接OC.只要证明OC⊥DE即可解决问题;(2)连接BC,根据圆周角定理得到∠ACB=90°,根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的性质即可得到结论.【解答过程】(1)证明:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠CAD=∠CAB,∴∠DAC=∠ACO,∴AD∥OC,∵AD⊥DE,∴OC⊥DE,∴直线CE是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ADC=∠ACB,∵AC平分∠DAB,∴∠DAC=∠CAB,∴△DAC∽△CAB,∴=,∵cos∠CAB==,∴设AC=4x,AB=5x,∴=,∴x=,∴AB=.【总结归纳】本题考查切线的判定和性质,相似三角形的判定和性质,平行线的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:A地(元/辆)B地(元/辆)目的地车型大货车900 1000小货车500 700现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.【知识考点】二元一次方程组的应用;一元一次不等式的应用;一次函数的应用.【思路分析】(1)设大货车、小货车各有x与y辆,根据题意列出方程组即可求出答案.(2)根据题中给出的等量关系即可列出y与x的函数关系.(3)先求出x的范围,然后根据y与x的函数关系式即可求出y的最小值.【解答过程】解:(1)设大货车、小货车各有x与y辆,由题意可知:,解得:,答:大货车、小货车各有12与8辆(2)设到A地的大货车有x辆,则到A地的小货车有(10﹣x)辆,到B地的大货车有(12﹣x)辆,到B地的小货车有(x﹣2)辆,∴y=900x+500(10﹣x)+1000(12﹣x)+700(x﹣2)=100x+15600,其中2<x<10.(3)运往A地的物资共有[15x+10(10﹣x)]吨,15x+10(10﹣x)≥140,解得:x≥8,∴8≤x<10,当x=8时,y有最小值,此时y=100×8+15600=16400元,答:总运费最小值为16400元.【总结归纳】本题考查一次函数,解题的关键是正确求出大货车、小货车各有12与8辆,并正确列出y与x的函数关系式,本题属于中等题型.22.(9分)如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE⊥AB,重足为E,点F在AD的延长线上,CF⊥AD,重足为F,(1)若∠BAD=60°,求证:四边形CEHF是菱形;(2)若CE=4,△ACE的面积为16,求菱形ABCD的面积.【知识考点】全等三角形的判定与性质;等边三角形的判定与性质;菱形的判定与性质.【思路分析】(1)根据菱形的性质得到∠ABC=∠ADC=120°,根据角平分线的性质得到CE=CF,根据直角三角形的性质得到EH=FH=AC,于是得到结论;(2)根据三角形的面积公式得到AE=8,根据勾股定理得到AC==4,连接BD,则BD⊥AC,AH=AC=2,根据相似三角形的性质得到BD=2BH=2,由菱形的面积公式即可得到结论.【解答过程】解:(1)∵四边形ABCD是菱形,∠BAD=60°,∴∠ABC=∠ADC=120°,∵CE⊥AB,CF⊥AD,∴CE=CF,∵H为对角线AC的中点,∴EH=FH=AC,∵∠CAE=30°,∵CE=AC,∴CE=EH=CF=FH,∴四边形CEHF是菱形;(2)∵CE⊥AB,CE=4,△ACE的面积为16,∴AE=8,∴AC==4,连接BD,则BD⊥AC,AH=AC=2,∵∠AHB=∠AEC=90°,∠BAH=∠EAC,∴△ABH∽△ACE,∴=,∴=,∴BH=,∴BD=2BH=2,∴菱形ABCD的面积=AC•BD==20.【总结归纳】本题考查了菱形的判定和性质,直角三角形的性质,角平分线的性质,勾股定理,相似三角形的判定和性质,正确的识别图形是解题的关键.23.(12分)抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).点P为抛物线y=x2+bx+c上的一个动点.过点P作PD⊥x轴于点D,交直线BC于点E.(1)求b、c的值;(2)设点F在抛物线y=x2+bx+c的对称轴上,当△ACF的周长最小时,直接写出点F的坐标;(3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?若存在,求出点P所有的坐标;若不存在,请说明理由.【知识考点】二次函数综合题.【思路分析】(1)把A、C点的坐标代入抛物线的解析式列出b、c的方程组,解得b、c便可;(2)连接BC与对称轴交于点F,此时△ACF的周长最小,求得BC的解析式,再求得BC与对称轴的交点坐标便可;(3)设P(m,m2﹣2m﹣3)(m>3),根据相似三角形的比例式列出m的方程解答便可.【解答过程】解:(1)把A、C点的坐标代入抛物线的解析式得,,解得,;(2)连接BC,与抛物线的对称轴交于点F,连接AF,如图1,此时,AF+CF=BF+CF=BC的值最小,∵AC为定值,∴此时△AFC的周长最小,。
2020年昆明市初中学业水平考试数学试题卷及评分标准

机密★考试结束前2020年昆明市初中学业水平考试数学 试题卷(全卷三个大题,共23个小题,共8页;满分120分,考试用时120分钟) 注意事项:1.本卷为试题卷,考生必须在答题卡上解题作答.答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效.2.考试结束后,请将试题卷和答题卡一并交回. 一、填空题(本大题共6小题,每小题3分,共18分) 1.|-10|= .2.分解因式:m 2n -4n = .3.如图,点C 位于点A 正北方向,点B 位于点A 北偏东50°方向,点C 位于点B 北偏西35°方向,则∠ABC 的度数为 °. 4.要使51x +有意义,则x 的取值范围是 . 5.如图,边长为23cm 的正六边形螺帽,中心为点O ,OA 垂直平分边CD ,垂足为B ,AB =17cm ,用扳手拧动螺帽旋转90°,则点A 在该过程中所经过的路径长为 cm .6.观察下列一组数:23-,69,1227-,2081,30243-,…,它们是按一定规律排列的,那么这一组数的第n 个数是 .二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分) 7.由5个完全相同的正方体组成的几何体的主视图是A .B .C .D .35° AC50°B北(第3题图)OB DAC (第5题图)8.下列判断正确的是A .北斗系统第五十五颗导航卫星发射前的零件检查,应选择抽样调查B .一组数据6,5,8,7,9的中位数是8C .甲、乙两组学生身高的方差分别为2S 甲=2.3,2S 乙=1.8,则甲组学生的身高较整齐D .命题“既是矩形又是菱形的四边形是正方形”是真命题9.某款国产手机上有科学计算器,依次按键:4 60 ,显示的结果在哪两个相邻整数之间 A .2~3 B .3~4 C .4~5 D .5~610.下列运算中,正确的是A .5252-=-B .43623a b a b ab ÷=C .()326328a b a b -=- D .22111a a a a a a-+⋅=--11.不等式组+10,3+1212x x x >⎧⎪⎨≥-⎪⎩的解集在以下数轴表示中正确的是A .B .C .D .12.某校举行“停课不停学,名师陪你在家学”活动,计划投资8000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元.根据题意,求出原计划每间直播教室的建设费用是 A .1600元 B .1800元 C .2000元D .2400元sin ( ) = (第9题图)13.如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与y 轴交于点B (0,-2),点A (-1,m )在抛物线上,则下列结论中错误..的是 A .ab <0B .一元二次方程ax 2+bx +c =0的正实数根在2和3之间 C .+23m a =D .点P 1(t ,y 1),P 2(t +1,y 2)在抛物线上,当实数13t >时,y 1<y 214.在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC 是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE (不含△ABC ),使得△ADE ∽△ABC (同一位置的格点三角形△ADE 只算一个),这样的格点三角形一共有A .4个B .5个C .6个D .7个三、解答题(本大题共9小题,满分70分.请考生用黑色碳素笔在答题卡相应的题号后答题区域内作答,必须写出运算步骤、推理过程或文字说明,超出答题区域的作答无效.特别注意:作图时,必须使用黑色碳素笔在答题卡上作图) 15.(本小题满5分)计算:()120213118 3.145-⎛⎫-+π--- ⎪⎝⎭.16.(本小题满分6分)如图,AC 是∠BAE 的平分线,点D 是线段AC 上的一点,∠C =∠E ,AB =A D . 求证:BC =DE .CD BAE(第13题图)(第16题图)(第14题图)ACB17.(本小题满分7分)某鞋店在一周内销售某款女鞋,尺码(单位:cm )数据收集如下:24 23.5 21.5 23.5 24.5 23 22 23.5 23.5 23 22.5 23.5 23.5 22.5 24 24 22.5 25 23 23 23.5 23 22.5 23 23.5 23.5 23 24 22 22,5 绘制以下不完整的频数分布表及频数分布直方图:(1)请补全频数分布表和频数分布直方图;(2)若店主要进货,她最应该关注的是尺码的众数,上面数据的众数为 ; (3)若店主下周对该款女鞋进货120双,尺码在23.5≤x <25.5范围的鞋应购进约多少双?18.(本小题满分7分)有一个可自由转动的转盘,被分成了三个大小相同的扇形,分别标有数字2,4,6;另有一个不透明的瓶子,装有分别标有数字1,3,5的三个完全相同的小球.小杰先转动一次转盘,停止后记下指针指向的数字(若指针指在分界线上则重转),小玉再从瓶子中随机取出一个小球,记下小球上的数字.(1)请用列表或画树状图的方法(选其中一种)表示出所有可能出现的结果;(2)若得到的两数字之和是3的倍数,则小杰赢;若得到的两数字之和是7的倍数,则小玉赢.此游戏公平码?为什么?(第17题图)(第18题图)为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物喷洒消毒.她完成3间办公室和2间教室的药物喷洒要19min;完成2间办公室和1间教室的药物喷洒要11min.(1)校医完成一间办公室和一间教室的药物喷洒各要多少时间?(2)消毒药物在一间教室内空气中的浓度y(单位:mg/m3)与时间x(单位:min)的函数关系如图所示:校医进行药物喷洒时y与x的函数关系式为y=2x,药物喷洒完成后y 与x成反比例函数关系,两个函数图象的交点为A(m,n).当教室空气中的药物浓度不高于1mg/m3时,对人体健康无危害.校医依次对一班至十一班教室(共11间)进行药物喷洒消毒,当她把最后一间教室药物喷洒完成后,一班学生能否进入教室?请通过计算说明.(第19题图)20.(本小题满分8分)如图,点P是⊙O的直径AB延长线上的一点(PB<OB),点E是线段OP的中点.(1)尺规作图:在直径AB上方的圆上作一点C,使得EC=EP,连接EC,PC(保留清晰作图痕迹,不要求写作法),并证明PC是⊙O的切线;(2)在(1)的条件下,若BP=4,EB=1,求PC的长.AE BO P(第20题图)【材料阅读】2020年5月27日,2020珠峰高程测量登山队成功登顶珠穆朗玛峰,将用中国科技“定义”世界新高度.其基本原理之一是三角高程测量法,在山顶上立一个觇标,找到2个以上测量点,分段测量山的高度,再进行累加.因为地球面并不是水平的,光线在空气中会发生折射,所以当两个测量点的水平距离大于300m时,还要考虑球气差,球气差计算公式为f=20.43dR(其中d为两点间的水平距离,R为地球的半径,R取6400000m),即:山的海拔高度=测量点测得山的高度+测量点的海拔高度+球气差.【问题解决】某校科技小组的同学参加了一项野外测量某座山的海拔高度活动.如图,点A,B的水平距离d=800m,测量仪AC=1.5m,觇标DE=2m,点E,D,B在垂直于地面的一条直线上,在测量点A处用测量仪测得山顶觇标顶端E的仰角为37°,测量点A处的海拔高度为1800m.(1)数据6400000用科学记数法表示为;(2)请你计算该山的海拔高度.(要计算球气差,结果精确到0.01m)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)(第21题图)如图,两条抛物线y1=-x2+4,y2=15x2+bx+c相交A,B两点,点A在x轴负半轴上,且为抛物线y2的最高点.(1)求抛物线y2的解析式和点B的坐标;(2)点C是抛物线y1上A,B之间的一点,过点C作x轴的垂线交y2于点D,当线段CD取最大值时,求S△BCD.(第22题图)如图1,在矩形ABCD 中,AB =5,BC =8,点E ,F 分别为AB ,CD 的中点. (1)求证:四边形AEFD 是矩形;(2)如图2,点P 是边AD 上一点,BP 交EF 于点O ,点A 关于BP 的对称点为点M ,当点M 落在线段EF 上时,则有OB =OM ,请说明理由;(3)如图3,若点P 是射线AD 上的DE 一个动点,点A 关于BP 的对称点为点M ,连接AM ,DM ,当△AMD 是等腰三角形时,求AP 的长.ABE F DC(第23题图1)A BEF D C(第23题图2) MOPABP MDC(第23题图3)2020年昆明市初中学业水平考试。
2020年阜新市初中毕业生学业考试数学试卷参考答案及评分标准

2020年阜新市初中毕业生学业考试数学试卷参考答案及评分标准说明:①此答案为参考答案,不包括所有解法,其他正确解法参照“标准”赋分; ②“标准”中所示分数为正确解答到本步骤的累加得分;③如果在解答过程中出现错误,但未改变题目的本质和难度,那么之后的解答可以继续参照“标准”赋分,但不超过之后最高得分的一半;一、选择题(每小题3分,共30分)二、填空题(每小题3分,共18分)三、解答题(17、18、19、20题每题8分,21、22题每题10分,共52分)17. 解:原式=12111122+ --÷)+-++(x x xx x x x……………………….1分 =2111) () (÷+-x -x x x x……………………….4分 =)-x(x )-x x x 2111(⋅+ ……………………… 5分 =.11+-x x……………………….6分 当12-=x 时, 原式=.-=-=+---21222112112 …………………………. 8分18. (1)△A 1B 1C 1 如图 . …………………………….2分(2) 旋转中心O 1的坐标为 (2,0) . (4)分(3)设旋转半径为r ,则2042222=+= r , ∴阴影部分的图形面积为 : 112122214221r 41S 2⨯⨯+⨯⨯-⨯⨯-π⋅=阴影 …………………7分 =5π-211. …………………………………….8分19. (1)60, 6 …………………………………..2分 (2)C 等级所在扇形的圆心角的度数为︒=︒⨯⨯108360100601800. ……………………………………4分 (3)该校七年级学生能够达到优秀的人数为115605612300=++⨯(人). ……………………………………………6分 20.(1)解:设购买酒精x 瓶,消毒液y 瓶 . …………………….……….1分 根据题意列方程组,得⎩⎨⎧=-+=+.260%)201(5%30-110350510y x y x )(, ………………………………….4分 解得,⎩⎨⎧==.30,20y x答:每次购买的酒精和消毒液分别是20瓶,30瓶. …………….…….5分 (2)解:设能购买消毒液m 瓶,则能购买酒精2m 瓶. ……………6分根据题意,得 ,≤ ⋅)-(⨯+ ⋅)-(⨯20020152301100000m m………7分解得:m 9100≤=9111. ∵m 为正整数,∴m =11.所以,最多能购买消毒液11瓶. ……………………………8分21.解:(1)如图1,因为四边形ABCD 和CEFG 均为正方形,所以,︒=∠=∠90DCE BCD ,BC=DC ,GC=CE , …………1分 ∴ BCG ∆≌DCE ∆ .∴ΕDC GBC ∠=∠, BG=DE. ……………2分 在△BCG 和△DGH 中, ∵DGH BGC ∠=∠,∴ 90=∠+∠=∠+∠DGH EDC BGC GBC . ∴︒=∠=∠90BCG BHD .∴DE BG ⊥. ……………………3分 (2)如图2,①在线段BG 上截取BK =DH , 连接CK . 由(1)问可知,∠CBK=∠CDH , ∴ △BCK ≌△CDH .∴∠BCK=∠DCH ,CK=CH . ……………….. 5分 ∴∠BCK+∠KCD=∠DCH+∠KCD即︒=∠90KCH . ∴△KCH 为等腰直角三角形 . ………………6分 ∴CH KH 2=. ………………………………7分∴BH -DH=2CH. …………………………………8分 ②DH 的长为2234+或2234-. ………………………10分 略解:第一种情况:如图3所示,当D ,H ,E 三点共线时,∠DEC =45°,连接BD. 由①可知BH=DE ,且CE=CH =1,EH=2CH=2.又∵BC=3,∴BD=32. 设DH =x ,则BH =DE =x+2. ∴在Rt △BDH 中,有BH 2+DH 2=BD 2 . 即有()()2223=++2x 2x .解得23421+-=x ,23422--=x (舍去). 第二种情况:如图4所示,当B ,H ,G 三点共线时,∠DEC =45°,连接BD . 设DH =x ,∵BG =DH ,∴BH=DH -HG= x -2. ∴在Rt △BDH 中,有BH 2+DH 2=BD 2. 即有()()2223=+-2x 2x .解得23421+=x ,23422-=x (舍去). ∴DH 的长为2234+或2234-. 22. 解:(1)把A (-3 , 0),B (1 , 0)代入c bx x y 2++=中,得 ⎩⎨⎧++=,+-= c.x c b 10390……………………………………………….2分 解得⎩⎨⎧-==.3,2c b∴ 322-+=x x y . ……………………………………………….3分 (2)设直线AC 的表达式为b kx y +=,把A (-3 , 0) ,C (0,-3)代入 b.kx y +=得,⎩⎨⎧=-,+= b.b k -330 解这个方程组,得⎩⎨⎧.-=,-=31b k∴3--=x y . …………………………………..4分∵点P (m ,0)是x 轴上的一动点,且PM ⊥x 轴.∴ M (m ,3--m ), N (m ,322-+m m ) . .........................5分 ∴MN =(3--m )- (322-+m m )=-m 2-3m=-.+)+(49232m ………………………………….6分∵ a =-1< 0,∴此函数有最大值.又∵点P 在线段OA 上运动,且-3<023<-∴当m =-23时,MN 有最大值49. ………………………….7分(3)Q 1(0,-32-1), Q 2(0,-1), Q 3(0,123-) . ………….10分【本题(3)中的点的坐标与答案不同,或多于答案个数,并不减分.】 (略解:如图1,3,MN =MC ,如图2,MC =2MN .)。
2020年安徽省初中毕业学业考试数学参考答案

2020年安徽省初中毕业学业考试数 学(参考答案)一、选择题(本大题共10小题,每小题4分,满分40分) 每个小题给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1. C2. C3. B4. C5. A6. A7. B8. A9. D 10. D二、填空题( 本大题共4小题,每小题5分,满分20分)11. 2 3 12. 5 13. 7π314. ①②④ 三、(本大题共2小题,每小题8分,满分16分)15. 解:原式=2-3+2×32+1+3 =2-3+3+1+3=6.16. 解:1+13-x =2-x x -3, 去分母得,x -3-1=2-x ,整理得,2x =6,解得,x =3,经检验,x =3是原方程的增根,故原方程无解. 四、(本大题共2小题,每小题8分,满分16分)17. 解:(1)如解图,△C ′D ′F ′即为所求;(2)如解图,AE 、BE 和直线l 即为所求.第17题解图18. 解:如解图,过点D 作DE ⊥AC 于点E ,∴∠CED =∠AED =90°∵∠ACD =45°,∴sin ∠ACD =DE CD, ∴DE =DC ·sin ∠ACD =12×22≈8.46(米),第18题解图∴CE =DE ≈8.46(米),∵∠BAC =30°,∴∠DAE =60°,在Rt △ADE 中,AE =DE tan ∠DAE, ∴AE =8.463≈4.90(米), ∴AC =AE +CE ≈13.4(米).答:看台AC 的长约为13.4米.五、(本大题共2小题,每小题10分,满分20分)19. 解:(1)小明选择的时间有以下4种可能:(1,2),(2,3),(3,4), (4,5),所以小明选择6月2日、6月3日这两天做志愿者的概率为14; (2)画树状图如解图:第19题解图由树状图可知,共有12种等可能的结果,其中他们能合作2天的结果有6种, ∴他们能合作2天的概率是612=12. 20. 解:(1)设⊙O 的半径为x ,则OE =x -8,∵CD =24,由垂径定理得,DE =12,在Rt △ODE 中,OD 2=DE 2+OE 2,即:x 2=122+(x -8)2,解得:x =13,即⊙O 的半径为13;(2)∵∠DOE =2∠M ,∠M =∠D ,∠DOE +∠D =90°,∴∠D =30°,在Rt △OED 中,∵DE =12,∠D =30°,∴OE =DE ·tan30°=12×33=4 3.六、(本题满分12分)数大约是:560×(1-1540)=350(人). 21. (1)解:∵当0<x <1时,y 1<y 2;当x >1时,y 1>y 2,∴点A 的横坐标为1,代入反比例函数解析式,y =61, 解得y =6,∴点A 的坐标为(1,6),又∵点A 在一次函数图象上,∴6=1+m ,解得m =5,∴一次函数的解析式为y 1=x +5;(2)解:∵第一象限内点C 到x 轴的距离为2,∴点C 的纵坐标为2,∴2=6x,解得x =3, ∴点C 的坐标为(3,2),过点C 作CD ∥x 轴交一次函数的图象于点D ,第21题解图则点D 的纵坐标为2,∴x +5=2,解得x =-3,∴点D 的坐标为(-3,2),∴CD =3-(-3)=3+3=6,点A 到CD 的距离为6-2=4,联立⎩⎪⎨⎪⎧y =x +5y =6x, 解得⎩⎪⎨⎪⎧x 1=1y 1=6(舍去),⎩⎪⎨⎪⎧x 2=-6y 2=-1, ∴点B 的坐标为(-6,-1),∴点B 到CD 的距离为2-(-1)=2+1=3,∴S △ABC =S △ACD +S △BCD =12×6×4+12×6×3=12+9=21. 七、(本题满分12分)22.(1)证明:∵∠BAC =90°,AB =AC ,∴∠ABC =∠C =45°,∵∠EGD =135°,∴∠BGD =180°-∠EGD =45°,∴∠BGD =∠C ,又∵∠DBG =∠EBC ,∴△BGD ∽△BCE ;(2)证明:由(1)中△BGD ∽△BCE 得,BD BE =BG BC, ∴BG =BD ·BC BE =12BC ·BC BE =12(2AB )2BE =AB 2BE, ∴AB BG =BE AB,又∵∠ABG =∠EBA ,∴△ABG ∽△EBA ,∴∠AGB =∠EAB =90°;(3)解:△CDE 为等腰直角三角形.理由:设AE =x ,则BE =AB 2+AE 2=102+x 2,S △ABE =12AG ·BE =12AB ·AE , 即AG ·BE =AB ·AE , 25·102+x 2=10x ,解得x 1=-5(舍去),x 2=5,∴AE 的长为5,又∵AC =AB =10,∴点E 为AC 的中点,∵点D 为BC 的中点,∴DE 为△ABC 的中位线,∴DE ⊥AC ,∠DEC =90°,DE =EC ,∴△CDE 为等腰直角三角形. 八、(本题满分14分)23.解:(1)S =40×60-2x ×40×3-60×x ×3+2x ·x ·9=18x 2-420x +2400(0<x<10);(2) 由题意得:18x 2-420x +2400=40×602, 化简得3x 2-70x +200=0,解得x 1=103,x 2=20(不合题意,舍去), ∴此时x 为103; (3) 由表可知:修建休闲区前期投入0.5万元,每平方米造价0.01万元;修建鹅卵石健身道前期投入0.5万元,每平方米造价0.008万元,由上述信息可得:w =0.01×(18x 2-420x +2400)+0.008×(-18x 2+420x)+1 ,整理,得w =0.036x 2-0.84x +25,配方后,得w =9250(x -353)2+20110, ∵a >0,∴当x <353时,w 随x 的增大而减小, ∵1≤x ≤3,∴当x =3时,w 最小=0.036×9-0.84×3+25=22.804(万元),答:当x 的值取3时,最低造价为22.804万元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试卷类型A 2020初中毕业生学业考试数学温馨提示:1.本试卷共6页,满分120分.考试时间120分钟.2.答卷前务必将自己的姓名、考号、座位号、试卷类型(A或B)涂写在答题卡上;选择题答案选出后,请用2B铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,请先用橡皮擦拭干净,再改涂其他答案;非选择题,请用0.5毫米的黑色字迹签字笔直接答在答题卡上.在试卷上作答无效.3.请将姓名与考号填写在本试卷相应位置上.4.考试结束,将试卷、答题卡和草纸一并交回.一、选择题(下列各题的四个选项中只有一个正确. 共12小题,每小题3分,共36分)1.在实数-3,3,0,-1中,最小的数是A.-3B.0C.-1 D.32.下列各式计算正确的是呼伦贝尔市、兴安盟初中毕业生学业考试数学试卷A 第1页(共20页)呼伦贝尔市、兴安盟初中毕业生学业考试数学试卷A 第2页(共20页)A .933632x x x =⋅B .2224)()(b a ab ab -=-÷- C .222743x x x =+ D .222)b a b a +=+(3.点A (4,-2)关于x 轴的对称点的坐标为A .( 4,2 )B .(-4,2)C .(-4,-2)D .(﹣2,4)4.如图,已知AB AC =,点D 、E 分别在线段AB 、AC 上,BE与 CD 相交于点O ,添加以下哪个条件仍不能判定△ABE ≌△ACDA .BC ∠=∠ B .AD AE = C .BD CE = D . BE CD =5.一个多边形的内角和是外角和的2倍,则这个多边形是A .三角形B .四边形C .五边形D .六边形6.为了鼓励学生加强体育锻炼,学校在制定奖励方案前进行问卷调查,设置“赞成、反对、无所谓”三种意见,从全校2000名学生中随机抽取100名学生进行调查,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为A .600B .800C .1400D .16807.由若干个大小相同的小正方体搭成的几何体的三视图如图所示, 则搭成这个几何体的小正呼伦贝尔市、兴安盟初中毕业生学业考试数学试卷A 第3页(共20页)方体有A .6个B .7个C .8个D .9个8.下列命题正确的是A. 概率是1%的事件在一次试验中一定不会发生B .要了解某公司生产的100万只灯泡的使用寿命,可以采用全面调查的方式C .甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62,则乙的成绩更稳定D .随意翻到一本书的某页,页码是奇数是随机事件9. 如图,BD 是△ABC 的角平分线,DE 是BC 的垂直平分线,∠BAC﹦90°,AD ﹦3,则CD 的长为A .3B .6C .5D .4 10.甲、乙两人分别从距目的地6千米和10千米的两地同时出发,乙的速度是甲的1.2倍,结果甲比乙早到20分钟.设甲的速度为x 千米/时.根据题意,列方程正确的是 A. 2062.110=-x x B . 202.1106=-x x C .312.1106=-x x D .3162.110=-x x呼伦贝尔市、兴安盟初中毕业生学业考试数学试卷A 第4页(共20页)11.如图,反比例函数x y 2=的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC 的面积为A . 1B .2C .4D .812.如图,△ABC 中,AC =BC =3,AB =2,将它沿AB 翻折得到△ABD , 点 P 、E 、F分别为线段AB 、AD 、DB 上的动点,则PE +PF 的最小值是A .310 B .322 C .324 D .3108二、填空题(本题5个小题,每小题3分,共15分)13.函数的自变量的取值范围是 .14.太阳半径约为696000千米,将696000用科学记数法表示为 .15.若抛物线m x x y +--=62与x 轴没有交点,则m 的取值范围是 .16.在Rt △ABC 中,∠C =ο90,AC =3,BC =4,把它16题图CB A 12题图F E P D B AC 31-=x y呼伦贝尔市、兴安盟初中毕业生学业考试数学试卷A 第5页(共20页)沿斜边AB 所在直线旋转一周,所得几何体的侧面积是 . (结果保留π)17.下列图形都是由同样大小的菱形按照一定规律组成的,其中第①个图形中共有 3个菱形,第②个图形中共有7个菱形,第③个图形中共有13个菱形……按此规律排列下去,第 个图形中菱形的个数为10101个. ……三、解答题(本题4个小题,每小题6分,共24分)18.计算:231)45cos 1(2221--+-+--)(ο 19.先化简,再求值:)111(3121322+---++⋅--x x x x x x 其中6-=x20.如图,海中有一个小岛A ,它周围8海里内有暗礁. 渔船跟踪鱼群由西向东航行,在B 点测得小岛A 在北偏东ο60方向上,航行10海里到达C 点,这时测得小岛A 在北偏东ο30方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?20题图A呼伦贝尔市、兴安盟初中毕业生学业考试数学试卷A 第6页(共20页)21.如图,有四张背面完全相同的纸牌A 、B 、C 、D ,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.21题图正六边形平行四边形正方形等腰三角形DC B A(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A 、B 、C 、D表示).四、(本题7分)22.如图,在△ABC 中,BD 、CE 分别是AC 、AB 上的中线,BD 与CE 相交于点O.(1)利用尺规作图取线段CO 的中点.(保留作图痕迹,不22题图O E DCB A呼伦贝尔市、兴安盟初中毕业生学业考试数学试卷A 第7页(共20页)写作法);(2)猜想CO 与OE 的长度有什么关系,并说明理由.五、(本题7分)23.某商场统计了每个营业员在某月的销售额,绘制了如下统计图.解答下列问题:(1)设营业员的月销售额为x (单位:万元).商场规定:当x ﹤15时为不称职,当15≤x ﹤20时为基本称职,当20≤x ﹤25时为称职,当x ≥25时为优秀.试求出基本称职、称职两个层次营业员人数所占百分比,并补全扇形图;(2)根据(1)中规定,所有称职和优秀的营业员月销售额不称职优秀10%10%23题图x/万元呼伦贝尔市、兴安盟初中毕业生学业考试数学试卷A 第8页(共20页)的中位数为 ,众数为 ;(3)为了调动营业员的积极性,商场制定月销售额奖励标准,凡达到或超过这个标准的受到奖励.如果要使称职和优秀的营业员半数左右能获奖,奖励标准应定为多少万元?简述理由.六、(本题8分)24.如图,△ACE 内接于⊙O ,AB 是⊙O 的直径,弦CD ⊥AB 于点H ,交AE 于点F ,过点E 作EG ∥AC ,分别交CD 、AB 的延长线于点G 、M.(1)求证:△ECF ∽△GCE ;(2)若43tan =G ,33=AH ,求⊙O 半径.24题图七、(本题10分)25.某书店在“读书节”之前,图书按标价销售,在“读书节”期间制定了活动计划.(1)“读书节”之前小明发现:购买5本A图书和8本B图书共花279元,购买10本A图书比购买6本B图书多花162元,请求出A、B图书的标价;(2) “读书节”期间书店计划用不超过3680元购进A、B图书共200本,且A图书不少于50本,A、B两种图书进价分别为24元、16元;销售时准备A图书每本降价1.5元,B图书价格不变,那么书店如何进货才能使利润最大?八、(本题13分)26.如图,在□OABC中,A、C两点的坐标分别为(4,0)、(﹣2,3),抛物线W经过O、A、C三点,点D是抛物线W的顶点.(1)求抛物线W的函数解析式及顶点D的坐标;(2)将抛物线W和□OABC同时先向右平移4个单位长度,再向下平移m(0<m<3)个单位长度,得到抛物线W1和□O1A1B1C1,在向下平移过程中,O1C1与x轴交于点H,□O1A1B1C1与□OABC重叠部分的面积记为S,试探究:当m为何值时,S有最大值,并求出S的最大值;呼伦贝尔市、兴安盟初中毕业生学业考试数学试卷A 第9页(共20页)呼伦贝尔市、兴安盟初中毕业生学业考试数学试卷A 第10页(共20页)(3)在(2)的条件下,当S 取最大值时,设此时抛物线W 1的顶点为F ,若点M 是x 轴上的动点,点N 是抛物线W 1上的动点,是否存在这样的点M 、N ,使以D 、F 、M 、N 为顶点的四边形是平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由. x yW 126题图B 1C 1A 1O 1OFDGHB WCA2019年呼伦贝尔市、兴安盟初中毕业生学业考试数学答案及评分标准试卷类型A一、选择题(每小题3分,共36分)呼伦贝尔市、兴安盟初中毕业生学业考试数学试卷A 第11页(共20页)试卷类型B一、选择题(每小题3分,共36分)二、填空题(每小题3分,共15分)13 .x ﹥3 14.51096.6⨯ 15. m ﹤﹣9 16.π58417.100三、解答题(每小题6分,共24分)18.解:原式92212-222+-+-=)(…………(4分)92212222+-++-=呼伦贝尔市、兴安盟初中毕业生学业考试数学试卷A 第12页(共20页)=28+…………(6分) 19.解:原式)111(3)1()1)(1(32--+--+⋅-+-=x x x x x x x …………(3分)111---+=x xx x11-=x …………(5分)当x= ﹣6时,原式=71-…………(6分)20.(1)解:过点A 作AD ⊥BC 于点D . …………(1分)由题意知:∠MBA =ο60,∠NCA =ο30∴∠ABC =ο30,∠ACD =ο60∴∠CAB =ο30 ∴∠ABC =∠CAB∴在△ABC 中,AC=BC=10 在Rt △CAD 中,NMDBC A20题图呼伦贝尔市、兴安盟初中毕业生学业考试数学试卷A 第13页(共20页)AD =AC sin ∠ACD =10×23=35 …………(4分)∵35>8∴渔船不改变航线继续航行,没有触礁危险. …………(6分)21.解:摸出的牌面有4种等可能结果,其中是中心对称图形的有3种.∴ P (中心对称图形) =43…………(1分) (2)列表得:呼伦贝尔市、兴安盟初中毕业生学业考试数学试卷A 第14页(共20页)…………(3分)共出现12种等可能结果,其中两张牌面都是轴对称图形的有6种.∴P (两张都是轴对称图形) =21…………(5分)∴这个游戏公平. …………(6分) 四、(本题满分7分) 22.(1)如图点G即为所求. …………(2分) (2)答:CO =2OE …………(3分)理由:取BO 中点F ,连接DE ,EF ,FG ,GD∵D ,E ,F ,G 分别是AC ,AB ,BO ,CO 的中点∴ED //BC ,BC ED 21= ,FG //BC ,BC FG 21=∴ED //FG ,ED =FG22题图GFABCD EO呼伦贝尔市、兴安盟初中毕业生学业考试数学试卷A 第15页(共20页)∴四边形DEFG 是平行四边形 …………(5分)∴EO =GO由(1)得CO =2GO∴CO =2OE …………(7分) 五、(本题满分7分)23.解:(1)由图知:共有营业员30人,其中基本称职、称职分别有6人、18人.所占百分比分别为:%20%100306=⨯ ,%60%1003018=⨯ ………(2分)补全扇形图如图所示: …………(3分)(2)22;20 …………(5分)奖励标准应定为22万元. …………(6分) 理由:根据中位数意义,要使称职和优秀的员工中有半数左右能获奖,应该以这些员工的月销售额中位数为标准. ………(7分)10%10%称职基本称职60%20%优秀不称职23题图呼伦贝尔市、兴安盟初中毕业生学业考试数学试卷A 第16页(共20页)六、(本题满分8分)24.证明:(1)∵AB 为⊙O 直径,CD ⊥AB∴=ACAD∴∠ACD =∠AEC ∵EG //AC∴∠G =∠ACD∴∠AEC =∠G …………(2分)又∵∠ECF =∠GCE∴△ECF ∽△GCE …………(4分)(2)连接OC ,设r OC =∵∠G =∠ACH43tan tan ==∠∴G ACH 在Rt △AHC 中43tan ==∠CH AH ACH 3434==∴AH HC …………(6分)222OC HC OH HOC R =+∆中,在t222)34()33(r r =+-∴6325=∴r …………(8分)24题图GCA呼伦贝尔市、兴安盟初中毕业生学业考试数学试卷A 第17页(共20页)七、(本题满分10分)25. 解:(1)设A 图书的标价为x 元,B 图书的标价为y 元.根据题意得…………(4分)答:A 图书的标价为27元,B 图书的标价为18元. …………(5分)(2)设购进A 图书t 本,总利润为w 元.由题意得24t +16(200-t )≤3680解不等式,得t ≤60 又∵t ≥50∴50≤t ≤60 …………(7分)w =(27-1.5-24)t +(18-16)(200-t)= ﹣0.5 t +400 ∵﹣0.5<0,w 随t 的增大而减小∴当t ﹦50时,w 有最大值. 答:A 图书购进50本,B 图书购进150本时,利润最大. …………(10分) 八、(本题满分13分)⎩⎨⎧=-=+16261027985y x y x 解得⎩⎨⎧==1827y x呼伦贝尔市、兴安盟初中毕业生学业考试数学试卷A 第18页(共20页)26.解:(1)设抛物线W 的函数解析式为bx ax y +=2,图像经过A (4,0),C (﹣2,3)∴抛物线W 的函数解析式为x x y -=241,顶点D的坐标为(2,﹣1).…………(3分)(2)根据题意,由O (0,0),C (﹣2,3)得O 1(4,﹣m ),C 1(2,3-m )设直线O 1C 1的函数解析式为y=kx +b把 O 1(4,﹣m ),C 1(2,3-m )代入 y=kx +b 得m x y -+-=623…………(5分)直线O 1C 1与x 轴交于点H∴)0,3212(m H -过C 1作C 1E ⊥HA 于点E30<<m Θ∴112223,4=33m mC E m HA -=-=-23)23(32232)3(32221+--=+-=-=⋅=∴m m m m m E C HA S …………26题图W 1呼伦贝尔市、兴安盟初中毕业生学业考试数学试卷A 第19页(共20页)(7分)∵032<-,抛物线开口向下,S 有最大值,最大值为23∴当23=m 时,23max =S …………(8分)(3)当23=m 时,由D (2,﹣1)得F (6,25-)∴抛物线W 1的函数解析式为25)6(412--=x y …………(9分)依题意设M (t ,0),以D ,F ,M ,N 为顶点的四边形是平行四边形,分情况讨论:①以DF 为边时∵D (2,﹣1),F )256(-,点D ,F 横坐标之差是4,纵坐标之差是23,若点M 、N 的横纵坐标与之有相同规律, 则以D ,F ,M ,N 为顶点的四边形是平行四边形, ∵M (t ,0)∴)23,4(1-+t N23(4,)2N t -把)23,4(1-+t N23(4,)2N t -分别代入25)6(412--=x y 得4021==t t ,,14643==t t ,∴M1(0,0),M2(4,0),M3(6,0),M4(14,0)②以DF为对角线时,以点D,F,M,N为顶点不能构成平行四边形.综上所述:∴M1(0,0),M2(4,0),M3(6,0),M4(14,0) …………(13分)呼伦贝尔市、兴安盟初中毕业生学业考试数学试卷A 第20页(共20页)。