怎么求一元二次函数的最大值和最小值
高中数学最值问题12种

高中数学最值问题12种高中数学最值问题是指在一定条件下,找出某个函数的最大值和最小值的问题。
这些问题需要通过一定的方法来求解,涉及到导数、不等式、二次函数、三角函数等数学知识。
下面我们将介绍12种高中数学最值问题的解法和相关概念。
1.函数的最大值和最小值:函数的最大值和最小值是指函数的各个值中最大和最小的值。
一元函数的最大值和最小值通常可以通过求解导数为0的点来获得。
多元函数的最大值和最小值可能需要使用拉格朗日乘数法等方法。
2.二次函数的最值:二次函数的最值可以通过求解顶点坐标来获得。
二次函数的最大值发生在开口向下的情况下,最小值发生在开口向上的情况下。
3.三角函数的最值:三角函数的最值可以通过研究函数的周期性和对称性来获得。
一般情况下,三角函数的最值为1和-1。
4.不等式的最值:不等式的最值是指不等式的解集中最大和最小的值。
不等式的最值可以通过求解方程来获得。
需要注意确定不等式边界的方式。
5.绝对值函数的最值:绝对值函数的最值可以通过研究函数的分段性质来获得。
需要考虑绝对值函数的参数取值范围。
6.对数函数的最值:对数函数的最值可以通过研究函数的定义域和值域来获得。
对数函数的最大值和最小值通常发生在底数小于1的情况下。
7.指数函数的最值:指数函数的最值可以通过研究函数的定义域和值域来获得。
指数函数的最大值和最小值通常发生在指数大于1的情况下。
8.等式的最值:等式的最值是指满足等式的变量的最大和最小的值。
等式的最值通常可以通过求解方程组来获得,在求解过程中需要注意排除无解的情况。
9.不定积分的最值:不定积分的最值可以通过求导和临界点的方式来获得。
需要注意确定积分的上下界。
10.定积分的最值:定积分的最值可以通过函数在积分区间上的最值来获得。
需要注意确定积分的上下界和积分变量的取值范围。
11.矩形面积的最值:矩形面积的最值可以通过求解矩形的边长和面积关系来获得。
需要注意确定矩形的条件和限制条件。
12.三角形面积的最值:三角形面积的最值可以通过求解三角形的边长和高的关系来获得。
一元二次方程求最小值

一元二次方程求最小值
一元二次方程的一般形式是ax^2 + bx + c = 0,其中a、b和c是实数且a≠0。
要求一元二次方程的最小值,需要先确定函数的凸凹性。
一元二次方程是一个二次函数,它的图像可以是一个开口朝上或者朝下的抛物线。
而抛物线的最小值或最大值就对应着函数的凸部分的顶点。
1. 如果a > 0,那么抛物线开口朝上。
在这种情况下,二次函数的最小值等于抛物线的顶点的纵坐标。
2. 如果a < 0,那么抛物线开口朝下。
在这种情况下,二次函数的最小值不存在。
为了求得抛物线的顶点,可以使用顶点公式:x = -b / (2a)。
通过将x的值代入二次函数,可以得到对应的y值,即为函数的最小值。
需要注意的是,如果二次函数的最小值不对应于方程的解,则表示该方程无实数解。
此时,最小值是函数的极小值,仅存在于图像上。
二次函数在各种区间上的最值

二次函数在各区间上的最值一、知识要点:一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。
一般分为:对称轴在区间的左边,中间,右边三种情况.设,求在上的最大值与最小值。
分析:将配方,得顶点为、对称轴为当时,它的图象是开口向上的抛物线,数形结合可得在[m,n]上的最值:(1)当时,的最小值是的最大值是中的较大者。
(2)当时若,由在上是增函数则的最小值是,最大值是若,由在上是减函数则的最大值是,最小值是当时,可类比得结论。
二、例题分析归类:(一)、正向型是指已知二次函数和定义域区间,求其最值。
对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。
此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。
1. 轴定区间定二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。
例1.函数在区间[0,3]上的最大值是_________,最小值是_______。
解:函数是定义在区间[0,3]上的二次函数,其对称轴方程是,顶点坐标为(2,2),且其图象开口向下,显然其顶点横坐标在[0,3]上,如图1所示。
函数的最大值为,最小值为。
图1练习. 已知,求函数的最值。
解:由已知,可得,即函数是定义在区间上的二次函数。
将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。
显然其顶点横坐标不在区间内,如图2所示。
函数的最小值为,最大值为。
图22、轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。
例2. 如果函数定义在区间上,求的最小值。
解:函数,其对称轴方程为,顶点坐标为(1,1),图象开口向上。
如图1所示,若顶点横坐标在区间左侧时,有,此时,当时,函数取得最小值。
图1如图2所示,若顶点横坐标在区间上时,有,即。
当时,函数取得最小值。
图2如图3所示,若顶点横坐标在区间右侧时,有,即。
一元二次函数

一元二次函数一、一元二次函数的定义形如y=ax 2+bx+c(其中a ≠0)的函数称之为一元二次函数。
一般情况下,我们会把一元二次函数改写成:224()24b ac b y a x a a-=++写成这样的目的主要是:〔1〕可以看出对称轴方程及顶点坐标;抛物线的对称轴的方程为:x= -2b a 顶点坐标为〔-2b a ,244ac b a-)〔2〕可以得到最大、小值:当a >0,y 取最小值,y= 244ac b a-当a<0,y 取最大值,y= 244ac b a-由一元二次函数的对称轴,从而我们可以知道一元二次函数的单调性:当a>0时,〔-∞,-2b a ]为单调减区间;[-2b a ,+∞〕为单调增区间。
当a<0时,[-2b a ,+∞〕为单调减区间;〔-∞,-2ba]为单调增区间〔3〕解答平移问题方便。
平移的法那么遵循两条:左加右减,上加下减。
题型一:平移图像,求新的解析式 【例题1】:y=x 2-2x+3向左移动一个单位,向上移动两个单位,移动后的解析式是什么? 解答:y=(x-1)2+2根据“左加右减〞的原那么,向左移动一个单位,那么有:y=(x-1+1)2+2 根据“上加下减〞的原那么,向上移动两个单位,那么有y=(x-1+1)2+2+2 所以,最终的结果是:y=x 2+4题型二:三点求函数的解析式——方法:待定系数法【例题2】一元二次方程y=ax 2+bx+c 经过点A(1,3),B(2,4),C(3,11),求函数的解析式。
解答:根据题意有:a b c 34a 2b c 49a 3b c 11++=⎧⎪++=⎨⎪++=⎩解上面的方程组,得:388a b c =⎧⎪=-⎨⎪=⎩所以:y=3x 2-8x+8【例题3】函数y=ax 2+bx+c 与x 轴的交点为A(-3,0),B(1,0),并且经过点〔4,21〕,求函数的解析式。
一般情况下,如果告诉你一元二次方程的两个解x 1,x 2;这个时候我们设:y=a(x-x 1)(x-x 2)最为方便。
求函数的最大值和最小值方法归纳总结

函数的最大值与最小值常见方法1、配方法利用平方数恒大于或等于0,将所给的函数配成若干个平方以及一些常数的代数和的形式,然后再求最值例如:配成(x±m)2±n的形式(m,n为常数)对于三角函数,可以配成类似sinα±k的形式(k为常数)2、判别式法利用实系数一元二次方程有实根,则它的判别式∆≥0,从而可以确定系数中参数的范围,进而求得最值。
例如:求y=x 2−2x−32x2+2x+1的最大值和最小值去分母并整理得:(2y−1)x2+2(y+1)x+(y+3)=0(注意判断2y-1是否为0)根据判别式∆解关于x的二次方程求最值。
3、不等式法利用不等式取等号,可得到一个最值问题的解例如:已知x、y是实数,且满足x2+xy+y2=3,求u=x2−xy+y2的最大值与最小值。
将两个式子相减再除以2,得xy=3−u2,带入条件得(x+y)2=9−u2、(x−y)2=3u−32可以得到1≤u≤9三角函数不等式法例如:|cos x|≤1,|sin x|≤14、换元法把复杂的目标函数变形为较简单的函数形式,或将不易求得最值的函数形式化成容求得的最值的形式。
例如:已知α∈[0,π2],求y=√5−4sinα+sinα的最小值和最大值。
通过变量代换,把y表示成二次函数的形式:设x=√5−4sinα,因0≤sinα≤1,所以1≤x≤√5,且sinα=5−x24,于是可以配成y=x+5−x24=−14(x−2)2+94(1≤x≤√5)5、构造法根据欲求最值的函数的特征,构造反映函数关系的几何图形,然后借助于图形可较容易地求得最大值和最小值。
例如:求函数f(x)=√x4−3x2−6x+13−√x4−x2+1的最大值,及此时x的值。
将原式整理成:f(x)=√(x−3)2+(x2−2)2−√x2+(x2−1)2后,可以发现√(x−3)2+(x2−2)2表示点P(x,x2)到点A(3,2)的距离,√x2+(x2−1)2表示点P(x,x2)到点B(0,1)的距离,再用图像法来解题。
二次函数在闭区间上的最值(详解)

二次函数在闭区间上的最值(详解)二次函数在闭区间上的最值一、知识要点:一元二次函数在闭区间上的最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。
一般分为对称轴在区间的左边,中间,右边三种情况。
设函数f(x)=ax^2+bx+c(a≠0),求f(x)在x∈[m,n]上的最大值与最小值。
分析:将f(x)配方,得顶点为(-b/2a,f(-b/2a)),对称轴为x=-b/2a。
当a>0时,它的图像是开口向上的抛物线,数形结合可得在[m,n]上f(x)的最值:1)当-b/2a∈[m,n]时,f(x)的最小值是f(-b/2a),f(x)的最大值是max{f(m),f(n)}。
2)当-b/2a∉[m,n]时,若-b/2a<m,由f(x)在[m,n]上是增函数则f(x)的最小值是f(m),最大值是max{f(-b/2a),f(n)};若n<-b/2a,由f(x)在[m,n]上是减函数则f(x)的最大值是f(m),最小值是min{f(-b/2a),f(n)}。
当a<0时,可类比得结论。
二、例题分析归类:一)、正向型是指已知二次函数和定义域区间,求其最值。
对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。
此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。
1.轴定区间定二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。
例1.函数y=-x^2+4x-2在区间[0,3]上的最大值是6,最小值是-2.练.已知函数f(x)=x^2+x+1(x≤3),求函数f(x)的最值。
2、轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。
例2.如果函数f(x)=-x^2+2x+t在区间[t+1,t+2]上,求f(x)的最值。
例3.已知f(x)=-x^2-4x+3,当x∈[t,t+1](t∈R)时,求f(x)的最值。
二次函数最值知识点总结典型例题及习题

二次函数最值知识点总结典型例题及习题必修一二次函数在闭区间上的最值一、知识要点:对于一元二次函数在闭区间上的最值问题,关键在于讨论函数的对称轴与区间的相对位置关系。
一般分为对称轴在区间左侧、中间和右侧三种情况。
例如,对于函数f(x) = ax^2 + bx + c (a ≠ 0),求其在闭区间[x1.x2]上的最大值和最小值。
分析:将函数f(x)配方,得到其顶点为(-b/2a。
c - b^2/4a)。
因此,对称轴为x = -b/2a。
当a。
0时,函数f(x)的图像为开口向上的抛物线。
结合数形结合可得在闭区间[x1.x2]上f(x)的最值:1)当对称轴在[x1.x2]之外时,f(x)的最小值为f(-b/2a),最大值为f(x1)和f(x2)中的较大者。
2)当对称轴在[x1.x2]之间时,若x1 ≤ -b/2a ≤ x2,则f(x)的最小值为f(-b/2a),最大值为f(x1)和f(x2)中的较大者;若x1.-b/2a或x2 < -b/2a,则f(x)在闭区间[x1.x2]上单调递增或单调递减,最小值为f(x1),最大值为f(x2)。
当a < 0时,情况类似。
二、例题分析归类:一)正向型此类问题是指已知二次函数和定义域区间,求其最值。
对称轴与定义域区间的相互位置关系往往成为解决这类问题的关键。
此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。
1.轴定区间定二次函数和定义域区间都是给定的,我们称这种情况是“定二次函数在定区间上的最值”。
例如,对于函数y = -x^2 + 4x - 2在区间[0.3]上的最大值为2,最小值为-2.2.轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。
例如,对于函数f(x) = (x-1)^2 + 1,在区间[t。
t+1]上的最值为f(t)和f(t+1)中的较大者。
二次函数求最大值和最小值的公式

二次函数求最大值和最小值的公式一次函数一般可以表示为y=ax+b,在图像上可以表示为一条直线,而二次函数则是数学中的一个更抽象的概念,它更常见的模式是y=ax^2+bx+c,它表示的是一条弧线,而这个弧线的最大值和最小值,就称作“二次函数求最大值和最小值的公式”,今天我们就来讲讲这个求最大值和最小值的公式。
首先,我们来看看如何求解二次函数的最大值和最小值的公式。
对于给定的二次函数 y=ax^2+bx+c,求其最大值和最小值的公式是f(x)=ax^2+bx+c,其中 a,b,c常数。
根据高等数学规律,二次函数的最大值或最小值的取值是在其函数的一阶导数为零的位置上,也就是求解一元二次方程 ax^2+bx+c=0,这就是求解二次函数最大值和最小值的公式。
其次,我们来讲讲求解二次函数最大值和最小值的具体步骤,它可以总结为三个步骤:(1)计算函数的一阶导数:由二次函数得到它的一阶导数f(x)=2ax+b,并将它代入原函数,求出原函数的最大值或最小值。
(2)求出一元二次方程的解:根据一元二次方程的求解公式,将 f(x)=2ax+b入一元二次方程 ax^2+bx+c=0,计算出一元二次方程的解。
(3)用解代入原函数:将解代入原函数,即 f(x)=ax^2+bx+c,计算出的就是原函数的最大值或最小值。
总结一下,求解二次函数求最大值和最小值的公式,需要计算函数的一阶导数,将求得的一元二次方程解代入原函数,即可得出原函数的最大值或最小值。
在学习求解二次函数求最大值和最小值的公式时,需要注意的是,在计算最大值和最小值的时候,要根据题目要求,判断函数是求最大值还是求最小值,这样才能得出准确的答案。
总之,二次函数求最大值和最小值的公式是一个比较重要的数学概念,理解和掌握了它,就可以帮助我们更加准确地解决数学中的问题了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
怎么求一元二次函数的最大值和最小值
一般来说,如果这个一元二次函数的定义域是R的话:
(1)函数开口向上,即a>0时,则没有最大值,只有最小值,即函数的顶点,可用函数的顶点公式:(-b/2a,(4ac-b^2)/4a)来求.
(2)函数开口向上,即a<0时,则没有最小值,只有最大值,求法同上.
若该函数的定义域不是R的话:
(1)函数开口向上,即a>0时:
(2)①当-b/2a在定义域内时,有最小值,再看定义域区间
假设是闭区间[m,n],若-b/2a>(n+m)/2,则最大值
是x=m时的函数值,若-b/2a<(n+m)/2,则相反,若
两者相同,则最大值即是端点值。
(3)当定义域区间是开区间(m,n)时,则无最大值还有就是区间是半开半闭的情况时,即[m,n)或
(m,n]时,按上面闭区间的方法计算,但若x取不
到,则没有最大值。
(4)②当-b/2a不在定义域内时,
假设是闭区间[m,n],则最小值和最小值就是两
个端点值,算一下再比较大小就行,
当定义域区间是开区间(m,n)时,则无最大最小
值
当区间是半开半闭的情况,即[m,n)或(m,n]时,按
上面闭区间的方法计算,关键是看能不能取到,
但肯定是只有一个最值的
至于函数开口向下,即a<0的情况,上面的看懂了就会了
其实最方便的还是画个草图,分情况讨论一下就行了,算二次函数的最值问题只要不弄错定义域,情况分清楚,不讨论错还是很简单的。