经典等差数列性质练习题
等差数列练习题

等差数列练习题1. 已知等差数列的首项为3,公差为2,求此数列的第10项。
2. 一个等差数列的前三项分别为2,5,8,求此数列的第20项。
3. 一个等差数列的前n项和为S_n,如果S_9=135,公差d=3,求首项a_1。
4. 已知等差数列的前n项和为S_n,如果S_8=112,公差d=4,求此数列的第5项。
5. 一个等差数列的前n项和公式为S_n=3n^2+5n,求此数列的公差。
6. 已知等差数列的前n项和为S_n,如果S_10=220,求此数列的第1项和第10项的和。
7. 一个等差数列的第3项为10,第8项为35,求此数列的公差和首项。
8. 如果一个等差数列的第1项为-5,第4项为10,求此数列的前7项和。
9. 已知等差数列的第k项为a_k,如果a_5=14,a_8=26,求此数列的公差。
10. 一个等差数列的前n项和为S_n,如果S_5=40,S_9=100,求此数列的首项和公差。
11. 已知等差数列的前n项和为S_n,如果S_6=42,S_12=252,求此数列的公差。
12. 一个等差数列的前10项和为S_10=220,公差为d=3,求此数列的第1项。
13. 已知等差数列的第m项为a_m,第n项为a_n,如果a_m+a_n=20,且m+n=15,求此数列的公差。
14. 一个等差数列的前n项和为S_n,如果S_7=77,公差d=2,求此数列的第7项。
15. 已知等差数列的前n项和为S_n,如果S_6=90,S_12=330,求此数列的首项。
16. 一个等差数列的前n项和为S_n,如果S_5=75,公差d=5,求此数列的第5项。
17. 已知等差数列的第k项为a_k,如果a_2=5,a_5=14,求此数列的首项和公差。
18. 一个等差数列的前n项和为S_n,如果S_4=30,S_8=100,求此数列的公差。
19. 已知等差数列的前n项和为S_n,如果S_5=55,公差d=4,求此数列的第5项。
等差数列数列练习题(5篇)

等差数列数列练习题(5篇)第一篇:等差数列数列练习题一、选择题35241.已知为等差数列,1A.-1B.1C.3D.7 a+a+a=105,a+a+a6=99,则a20等于()2.设Sn是等差数列{an}的前n项和,已知a2=3,a6=11,则S7等于()A.13B.35C.49D. 633.等差数列{an}的前n项和为Sn,且S3 =6,a1=4,则公差d等于5C.-2D 3 34.已知{an}为等差数列,且a7-2a4=-1, a3=0,则公差d=A.1B11C.D.2 225.若等差数列{an}的前5项和S5=25,且a2=3,则a7=()A.-2B.-A.12B.13C.14D.156.在等差数列{an}中,a2+a8=4,则其前9项的和S9等于()A.18B 27C36D 97.已知{an}是等差数列,a1+a2=4,a7+a8=28,则该数列前10项和S10等于()A.64B.100C.110D.1208.记等差数列{an}的前n项和为Sn,若a1=1,S4=20,则S6=()2A.16B.24C.36D.489.等差数列{an}的前n项和为Sx若a2=1,a3=3,则S4=()A.12B.10C.8D.610.设等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9=()A.63B.45C.36D.2711.已知等差数列{an}中,a7+a9=16,a4=1,则a12的值是()A.15二、填空题 B.30 C.31 D.6412.已知等差数列{an}的前n项和为Sn,若S12=21,则a2+a5+a8+a11=13.设等差数列{an}的前n项和为Sn,若S9=72,则a2+a4+a9=14.设等差数列{an}的前n项和为Sn,若a5=5a3则S9=S515.等差数列{an}的前n项和为Sn,且6S5-5S3=5,则a4=已知等差数列{an}的公差是正整数,且a3⋅a7=-12,a4+a6=-4,则前10项的和S10 16.三、解答题17.在等差数列{an}中,a4=0.8,a11=2.2,求a51+a52+Λ+a80.18、设等差数列{an}的前n项和为Sn,已知a3=12,S12>0,S13<0,①求公差d的取值范围;②S1,S2,Λ,S12中哪一个值最大?并说明理由.19、设等差数列{an}的前n项的和为S n ,且S 4 =-62, S 6 =-75,求:(1){an}的通项公式a n 及前n项的和S n ;(2)|a 1 |+|a 2 |+|a 3 |+……+|a 14 |.20.已知等差数列{an}中,a3a7=-16,a4+a6=0求{an}前n项和sn.1第二篇:数列四等差数列1、(2009湖北卷文)已知{an}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.(Ⅰ)求数列{an}的通项公式:(Ⅱ)若数列{an}和数列{bn}满足等式:an=={bn}的前n项和Sn2、(重庆市重庆八中2011届高三第四次月考理)设数列{an}的前n项和为Sn,a1=1,an=(1)求数列{an}的通项公式an;s11s22Snn+2(n-1),(n∈N).*b12+b22+b32+...bn2n(n为正整数),求数列snn(2)是否存在正整数n使得++....+求出n值;-(n-1)=2011?若存在,若不存在,说明理由.3、(北京龙门育才学校2011届高三上学期第三次月考)在数列{an}中,a1=bn=1an(n∈N).*13,并且对任意n∈N*,n≥2都有an⋅an-1=an-1-an成立,令(Ⅰ)求数列{bn}的通项公式;ann(Ⅱ)求数列{}的前n项和Tn.4、(江苏泰兴市重点中学2011届)已知数列{an}是等差数列,cn=an-an+1(n∈N*)(1)判断数列{cn}是否是等差数列,并说明理由;(2)如果a1+a3+Λ+a25=130,a2+a4+Λ+a26=143-13k(k为常数数列{cn}的通项公式;(3)在(2)的条件下,若数列{cn}得前n项和为Sn,问是否存在这样的实数k,使Sn当且仅当n=12时取得最大值。
等差数列题目100道

等差数列题目100道一、基础概念类题目1. 已知数列{a_n}满足a_{n + 1}-a_n = 3,a_1 = 2,求数列{a_n}的通项公式。
- 解析:因为a_{n + 1}-a_n = d = 3(d为公差),a_1 = 2。
根据等差数列通项公式a_n=a_1+(n - 1)d,可得a_n=2+(n - 1)×3=3n - 1。
2. 在等差数列{a_n}中,a_3 = 7,a_5 = 11,求a_{10}。
- 解析:首先求公差d,d=frac{a_{5}-a_{3}}{5 - 3}=(11 - 7)/(2)=2。
由a_3=a_1+(3 - 1)d,即7=a_1 + 2×2,解得a_1 = 3。
那么a_{10}=a_1+(10 -1)d=3+9×2 = 21。
3. 若数列{a_n}为等差数列,且a_2=5,a_6 = 17,求其公差d。
- 解析:根据等差数列通项公式a_n=a_m+(n - m)d,则a_6=a_2+(6 - 2)d,即17 = 5+4d,解得d = 3。
4. 已知等差数列{a_n}的首项a_1=-1,公差d = 2,求该数列的前n项和S_n的公式。
- 解析:根据等差数列前n项和公式S_n=na_1+(n(n - 1))/(2)d,将a_1=-1,d = 2代入可得S_n=-n+(n(n - 1))/(2)×2=n^2 - 2n。
5. 在等差数列{a_n}中,a_1 = 1,a_{10}=19,求S_{10}。
- 解析:根据等差数列前n项和公式S_n=(n(a_1 + a_n))/(2),这里n = 10,a_1 = 1,a_{10}=19,则S_{10}=(10×(1 + 19))/(2)=100。
二、性质应用类题目6. 在等差数列{a_n}中,若a_3+a_8+a_{13}=12,求a_8的值。
- 解析:因为在等差数列中,若m,n,p,q∈ N^+,m + n=p+q,则a_m + a_n=a_p + a_q。
等差数列的性质同步练习题(含答案)

等差数列的性质同步练习题二班级 姓名( )1.已知等差数列{a n }中,a 1+a 4+a 7=39,a 2+a 5+a 8=33,则a 3+a 6+a 9等于 A .30 B .27 C .24 D .21 ( )2.已知在等差数列{a n }中,a 1<0,S 25=S 45,若S n 最小,则n 为 A .25 B .35 C .36 D .45( )3.设{a n }是等差数列,公差为d ,S n 是其前n 项和,且S 5<S 6, S 6=S 7>S 8.下列结论错误的是 A .d <0 B .a 7=0 C .S 9>S 5D .S 6和S 7为S n 最大值 ( )4.在等差数列{a n }中,已知a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 1等于 A .-20B .-2021 C .-2121 D .-22( )5.已知数列{}n a 的通项公式350n a n =-,则其前n 项和n S 的最小值是 A .-784 B .-392 C .-389 D .-368 ( )6.公差不为0的等差数列{}n a 中,236,,a a a 依次成等比数列,则公比等于 A .12. B .13. C .2. D .3. ( ) 7.等差数列{}n a 中,共有21n +项,其中13218n a a a ++++=,2427n a a a +++=,则n 的值是A .3.B . 5.C . 7.D .9( )8.数列{}n a 的前n 项和是n S ,如果*32 ()n n S a n N =+∈,则这个数列一定是A .等比数列.B .等差数列.C .除去第一项后是等比数列.D .除去第一项后是等差数列. ( )9.设{a n }是公差为–2的等差数列,如果1479750a a a a +++=.那么36999a a a a +++=A .–182B .–78C .–148D .–82( )10.已知函数 22()()()n n f n n n ⎧⎪=⎨-⎪⎩当为奇数时当为偶数时 且 )1()(++=n f n f a n , 则=+⋯+++100321a a a aA .100 B.-100C.2100D.11012-( )11.数列{}n a 满足211=++n n a a (N n ∈且1≥n ),12=a ,n s 是{}n a 的前n 次和,则21S 为 A 、29 B 、211C 、6D 、10 ( )12.一个正整数数表如下(表中下一行中的数的个数是上一行中数的个数的2倍): 1 2 3 4 5 6 7…………… 则第8行中的第5个数是A 、68B 、132C 、133D 、260( ) 13.等差数列}{n a 的公差,0<d 且21121a a =,则数列}{n a 的前n 项和n S 取得最大值时的项数n 是( ) A .5B .6C .5或6D .6或714.等差数列{}n a 中,35710133()2()24a a a a a ++++=,则此数列前13项和是_____26_____.15.已知等差数列{a n }的公差d =21,且前100项和S 100 = 145,那么a 1 + a 3 + a 5 +…+a 99 = 60 . 16.等差数列{a n }中,若a 3+a 5=a 7-a 3=24,则a 2=___0___. 17.一个等差数列的前12项的和为354,前12项中,偶数项和与奇数项和之比为32∶27,则公差d 等于__5 _. 18.设等差数列{a n }共有3n 项,它的前2n 项和为100,后2n 项和是200,则该数列的中间n 项和等于 75 .19.已知f (x +1)=x 2-4,等差数列{a n }中,a 1=f (x -1), a 2=-23,a 3=f (x ).(1)求x 值;(2)求a 2+a 5+a 8+…+a 26的值. 【解】 (1)∵f (x -1)=(x -1-1)2-4=(x -2)2-4 ∴f (x )=(x -1)2-4,∴a 1=(x -2)2-4,a 3=(x -1)2-4 又a 1+a 3=2a 2,解得x =0或x =3.(2)∵a 1、a 2、a 3分别为0、-23、-3或-3、-23、0 ∴a n =-23(n -1)或a n =23(n -3)①当a n =-23(n -1)时,a 2+a 5+…+a 26=29(a 2+a 26)=3512-②当a n =23(n -3)时,a 2+a 5+…+a 26=29(a 2+a 26)=2297.20.已知函数f (x)=-x 3+ax 在(0,1)上是增函数.(1) 求实数a 的取值集合A ;(2) 当a 取A 中最小值时,定义数列{a n }满足:2a n +1=f (a n ),且a 1=b ∈(0,1)(b 为常数),试比较a n +1与a n的大小; (3) 在(2)的条件下,问是否存在正实数c .使0<a n +c a n -c<2对一切n ∈N *恒成立?(1)f'(x)=3x 2+a >0,对x ∈(0,1)恒成立,求出a ≥3.………………4分 (2)当a =3时,由题意:a n +1=-12a 3n +32a n ,且a 1=b ∈(0,1)以下用数学归纳法证明:a n ∈(0,1),对n ∈N *恒成立.①当n =1时,a 1=b ∈(0,1)成立;………………………………………………6分②假设n =k 时,a k ∈(0,1)成立,那么当n =k +1时, a k +1=12a k 3+32a k ,由①知g(x)=12(-x 3+3x)在(0,1)上单调递增,∴g(0)<g(a k )<g(1) 即0<a k +1<1, 由①②知对一切n ∈N *都有a n ∈(0,1) 而a n +1-a n =-12a n 3+32a n -a n =12a n (1-a n 2)>0 ∴a n +1>a n …………………………………10分(3)存在正实数c ,使0<a n +c a n -c <2恒成立,令y =x +c x -c =1+2cx -c ,在(c ,+∞)上是减数,∴a n +c a n -c 随着a n 增大,而小, 又{a n }为递增数列,所以要使0<a n +ca n -c<2恒成立, 只须⎩⎪⎨⎪⎧a 1-c >0 a 1+c a 1-c<2 ∴0<c <a 13,即0<c <b 3 ……… 14分21.已知数列{a n }中,a 1>0, 且a n +1=23na +, (Ⅰ)试求a 1的值,使得数列{a n }是一个常数数列; (Ⅱ)试求a 1的取值范围,使得a n +1>a n 对任何自然数n 都成立;(Ⅲ)若a 1 = 2,设b n = | a n +1-a n | (n = 1,2,3,…),并以S n 表示数列{b n }的前n 项的和,求证:S n <12. 【思路分析】:解:(Ⅰ)欲使数列{a n }是一个常数数列,则a n +1=23na += a n ……………………2’ 又依a 1>0,可得a n >0并解出:a n =23,即a 1 = a n =23……………………4’ (Ⅱ)研究a n +1-a n =23n a +-231-+n a =⎪⎪⎭⎫ ⎝⎛+++---2323211n n n n a a a a (n ≥2) 注意到⎪⎪⎭⎫ ⎝⎛+++-232321n n a a >0因此,可以得出:a n +1-a n ,a n -a n -1,a n -1-a n -2,…,a 2-a 1有相同的符号……………7’ 要使a n +1>a n 对任意自然数都成立,只须a 2-a 1>0即可.由1123a a -+>0,解得:0<a 1<23………………9’ (Ⅲ)用与(Ⅱ)中相同的方法,可得 当a 1>23时,a n +1<a n 对任何自然数n 都成立. 因此当a 1=2时,a n +1-a n <0 ……………………………………………10’∴ S n = b 1+b 2+…b n =|a 2-a 1| + |a 3-a 2| +…+ |a n +1-a n |=a 1-a 2+a 2-a 3+…+a n -a n +1 =a 1-a n +1=2-a n +1 ………………………………………………………13’又:a n +2=231++n a < a n +1,可解得a n +1>23, 故S n <2-23=21………………………………………14’。
(完整版)经典等差数列练习题(含答案),推荐文档

A.13 项 B.14 项 C.15 项 D.16 项
3.已知等差数列的通项公式为an 3n a, a为常数,则公差 d=( )
4.首项为24 的等差数列从第10 项起开始为正数,则公差d 的取值范围是( )
A. d 8 3
B. d 3
C. 8 d 3 3
D. 8 d 3 3
A.第 22 项 B.第 21 项 C.第 20 项 D.第 19 项 6. 已知数列a,-15,b,c,45 是等差数列,则 a+b+c 的值是( )
4.在等差数列{an}中,若 a4 a6 a8 a10 a12 120 ,则 2a10 a12
.
5.在首项为 31,公差为-4 的等差数列中,与零最接近的项是
6. 如果等差数列 an的第 5 项为 5 ,第 10 项为 5 ,则此数列的第 1个负数项
是第项.
7.已知{an }是等差数列,且 a4 a7 a10 57, a4 a5 a6 a14 77, 若ak 13, 则 k=
2 4 8 16
( 6) 1 1 1 ,,
1 ,
,
1
…….
3 8 15 24 35
2. 成等差数列的四个数的和为 26 ,第二数与第三数之积为 40 ,求这四个数。
3. 已知等差数列{ an }中, a3 a7 16, a4 a6 0, 求{ an }的 通项公式
4. 数列通项公式为 an=n2-5n+4,问(1)数列中有多少项是负数?(2)n 为何值时,an 有最小值?并求出最小值.
5.
在等差数列a
中,公差 d
n
1 ,前100 项的和 S 2
100
45Βιβλιοθήκη ,则 a1a3a
等差数列的性质(完整版,配例题)

等差数列的性质等差数列通项公式:()d n a a n 11-+= 等差数列前n 项和公式:()()d n n na a a n S n n 21211-+=+=等差数列的性质:(1)等差中项:如果c b a ,,成等差数列,则称b 是a 与c 的等差中项。
即:c b a ,,成等差数列22ca b b c a +=⇔=+⇔ (2)等差数列{}n a 中,当n 为奇数时,21121+=-+=-n a d n a S S 偶奇(中间项); 21+⋅=n n a n S (项数与中间项的积);11-+=n n S S 偶奇; 当n 为偶数时,d nS S 2=-奇偶; 2122++⋅=nn n a a n S ;122+=nna a S S 偶奇。
【例1】在等差数列{}n a 中, ① 已知154533,153a a ==,求30a ;总结:已知(),且同奇偶+∈N n m a a n m ,,,可求2n m a +。
② 已知16,1086==a a ,求13S ;总结:已知()+∈N n m a a n m ,,,可求1-+n m S 。
③ 已知163a =,求31S ;总结:已知()+∈N n a n ,可求12-n S ()()n n a n S 1212-=-。
④ (2007湖北理)已知两个等差数列{}n a 和{}n b 的前n 项和分别为n A 和n B ,且3457++=n n B A n n ,则使得n n b a为整数的正整数n 的个数是( ) A .2 B .3 C .4 D .5【练习1】等差数列{}n a 的前12项和为354,前12项中奇数项与偶数项的和之比为27:32,求公差d ;【练习2】在两个等差数列{}n a 和{}n b 满足327321321++=++++++++n n b b b b a a a a n n ,求55b a 。
(3)等差数列{}n a 中,()()+∈-=-N m n d m n a a m n ,;(4)如果c b a ,,成等差数列,则k mc k mb k ma +++,,也成等差数列()为常数k m ,; (5)等差数列{}n a 中,若q p n m +=+,则q p n m a a a a +=+;(6)等差数列{}n a 中,每隔相同的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等差数列,但剩下的项按照原来的顺序排列,构成的新数列不一定是等差数列。
(完整版)等差数列练习题有答案

数列A 、等差数列知识点及例题一、数列由与的关系求n a n S na 由求时,要分n=1和n≥2两种情况讨论,然后验证两种情况可否用统一的解析式表示,若不能,则用分段函数的n S n a 形式表示为。
11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩〖例〗根据下列条件,确定数列的通项公式。
{}na 分析:(1)可用构造等比数列法求解;(2)可转化后利用累乘法求解;(3)将无理问题有理化,而后利用与的关系求解。
n a n S 解答:(1)(2)……累乘可得,故(3)二、等差数列及其前n 项和(一)等差数列的判定1、等差数列的判定通常有两种方法:第一种是利用定义,,第二种是利用等差中项,即。
1()(2)n n a a d n --=≥常数112(2)n n n a a a n +-=+≥2、解选择题、填空题时,亦可用通项或前n 项和直接判断。
(1)通项法:若数列{}的通项公式为n 的一次函数,即=An+B,则{}是等差数列;n a n a n a (2)前n 项和法:若数列{}的前n 项和是的形式(A ,B 是常数),则{}是等差数列。
n a n S 2n S An Bn =+n a 注:若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可。
〖例〗已知数列{}的前n 项和为,且满足n a n S 111120(2),2n n n n S S S S n a ---+=≥=A (1)求证:{}是等差数列;1nS (2)求的表达式。
n a 分析:(1)与的关系结论;1120n n n n S S S S ---+=A →1n S 11n S -→(2)由的关系式的关系式1nS →n S →n a 解答:(1)等式两边同除以得-+2=0,即-=2(n≥2).∴{}是以==2为首1n n S S -A 11n S -1n S 1n S 11n S -1n S 11S 11a 项,以2为公差的等差数列。
等差数列的性质练习 含答案

时间:45分钟满分:100分课堂训练1.若一个数列的通项公式是a n=k·n+b(其中b,k为常数),则下列说法中正确的是( )A.数列{a n}一定不是等差数列B.数列{a n}是以k为公差的等差数列C.数列{a n}是以b为公差的等差数列D.数列{a n}不一定是等差数列【答案】B【解析】a n+1-a n=k(n+1)+b-kn-b=k.2.等差数列中,若a3+a4+a5+a6+a7+a8+a9=420,则a2+a10等于( )A.100 B.120C.140 D.160【答案】B【解析】∵a3+a4+a5+a6+a7+a8+a9=7a6=420,则a6=60,∴a2+a10=2a6=2×60=120.3.在等差数列{a n}中,a15=33,a25=66,则a35=________.【答案】99【解析】a15,a25,a35成等差数列,∴a35=2a25-a15=99.4.已知单调递增的等差数列{a n}的前三项之和为21,前三项之积为231,求数列{a n}的通项公式.【分析】关键是求出数列{a n}的首项和公差.【解析】由于数列为等差数列,因此可设等差数列的前三项为a -d ,a ,a +d ,于是可得⎩⎪⎨⎪⎧a -d +a +a +d =21,a -d a a +d =231,即⎩⎪⎨⎪⎧3a =21,a a 2-d2=231,即⎩⎪⎨⎪⎧a =7,d 2=16,由于数列为单调递增数列,因此d =4,a 1=3,从而{a n }的通项公式为a n =4n -1.【规律方法】 此解法恰到好处地设定等差数列的项,为我们的解题带来了极大的方便,特别是大大降低了运算量.一般来说,已知三个数成等差数列时,可设成:a -d ,a ,a +d ,四个数成等差数列时,可设成:a -3d ,a -d ,a +d ,a +3d ,其余依此类推,如五个可设成:a -2d ,a -d ,a ,a +d ,a +2d .课后作业一、选择题(每小题5分,共40分)1.在等差数列{a n }中,a 5=3,a 9=5,则a 7=( ) A .4 B .-4 C .7 D .1【答案】 A【解析】 由题意知a 7为a 5,a 9的等差中项,故a 7=12(a 5+a 9)=12×(3+5)=4.2.在等差数列{a n }中,若a 3+a 5+a 7+a 9+a 11=100,则3a 9-a 13的值为( )A .20B .30C .40D .50 【答案】 C【解析】 ∵a 3+a 11=a 5+a 9=2a 7,∴a 3+a 5+a 7+a 9+a 11=5a 7=100, ∴a 7=20.∴3a 9-a 13=3(a 7+2d )-(a 7+6d )=2a 7=40.3.在等差数列{a n }中,a 1+a 4+a 7=39,a 2+a 5+a 8=33,则a 3+a 6+a 9的值为( )A .30B .27C .24D .21【答案】 B【解析】 方法一:由等差数列的性质知,a 1+a 4+a 7,a 2+a 5+a 8,a 3+a 6+a 9成等差数列,所以(a 1+a 4+a 7)+(a 3+a 6+a 9)=2(a 2+a 5+a 8),则a 3+a 6+a 9=2×33-39=27. 方法二:(a 2+a 5+a 8)-(a 1+a 4+a 7) =3d (d 为数列{a n }的公差),则d =-2,a 3+a 6+a 9=(a 2+a 5+a 8)+3d =33-6=27.4.把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的 17是较小的两份之和,问最小的1份是( )【答案】 C【解析】 设这5份为a -2d ,a -d ,a ,a +d ,a +2d , 由已知得a =20,且17(a +a +d +a +2d )=a -2d +a -d ,∴d =556,∴a -2d =53. 5.等差数列{a n }的公差d <0,且a 2a 4=12,a 1+a 5=8,则其通项公式为( )A .a n =2n -2B .a n =2n +4C .a n =-2n +12D .a n =-2n +10【答案】 D【解析】 由等差数列的性质得a 2+a 4=a 1+a 5=8. 又a 2a 4=12,所以a 2,a 4为方程x 2-8x +12=0的两根,解得⎩⎪⎨⎪⎧a 2=2,a 4=6或⎩⎪⎨⎪⎧a 2=6,a 4=2.当a 2=2,a 4=6时,d =a 4-a 24-2=2>0(舍去), 当a 2=6,a 4=2时,d =a 4-a 24-2=-2.所以数列的通项公式为a n =a 2+(n -2)d =6+(n -2)×(-2)=-2n +10.即a n =-2n +10.6.设{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( )A .0B .37C .100D .-37【答案】 C【解析】 设{a n },{b n }的公差分别是d 1,d 2,∴(a n +1+b n +1)-(a n+b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2,∴{a n +b n }为等差数列. 又∵a 1+b 1=a 2+b 2=100, ∴a 37+b 37=100. 故正确答案为C.7.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是( )A .-2B .-3C .-4D .-5【答案】 C【解析】 设该数列的公差为d ,则由题设条件知:a 6=a 1+5d >0,a 7=a 1+6d <0.又∵a 1=23,∴⎩⎪⎨⎪⎧d >-235,d <-236,即-235<d <-236.又∵d 是整数,∴d =-4,故选C.8.已知数列{a n }、{b n }都是公差为1的等差数列,其首项分别为a 1、b 1,且a 1+b 1=5,a 1,b 1∈N +.设c n =ab n (n ∈N +),则数列{c n }的前10项和等于( )A .55B .70C .85D .100【答案】 C【解析】 由题c n =ab n (n ∈N +),则数列{c n }的前10项和等于ab 1+ab 2+…+ab 10=ab 1+ab 1+1+…+ab 1+9.∵ab 1=a 1+(b 1-1)=4,∴ab 1+ab 1+1+…+ab 1+9=4+5+…+13=85. 二、填空题(每小题10分,共20分)9.已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20=________.【答案】1【解析】∵a1+a3+a5=105,即3a3=105,∴a3=35,同理a4=33,∴d=a4-a3=-2,∴a20=a4+(20-4)d=1.10.等差数列{a n}中,a1+a4+a10+a16+a19=150,则a18-2a14=________.【答案】-30【解析】由a1+a4+a10+a16+a19=5a10=150,得a10=30,a18-2a14=(a10+8d)-2(a10+4d)=-a10=-30.三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.(1)已知数列{a n}为等差数列,若a1-a5+a9-a13+a17=117,求a3+a15.(2)在等差数列{a n}中,已知a2+a5+a8=9,a3a5a7=-21,求数列{a n}的通项公式.【解析】(1)方法一:∵数列{a n}是等差数列,∴设数列{a n}的首项为a1,公差为d,则由题意得a1-(a1+4d)+(a1+8d)-(a1+12d)+(a1+16d)=117,∴a1+8d=117.从而a3+a15=(a1+2d)+(a1+14d)=2(a1+8d)=234.方法二:由等差数列的性质知,a1+a17=a5+a13=a3+a15=2a9.∵a1-a5+a9-a13+a17=117,∴a9=117,∴a3+a15=2a9=234.(2)∵a2+a5+a8=9,a3a5a7=-21,a2+a8=a3+a7=2a5,∴a5=3,∴a3+a7=2a5=6,a3a7=-7,解得a3=-1,a7=7或a3=7,a7=-1.又a7=a3+4d,∴当a3=-1,a7=7时,可得d=2;当a3=7,a7=-1时,可得d=-2.根据a n=a3+(n-3)d,可得当a3=-1,d=2时,a n=2n-7;当a3=7,d=-2时,a n=-2n+13.12.已知无穷等差数列{a n}中,首项a1=3,公差d=-5,依次取出序号能被4除余3的项组成数列{b n}.(1)求b1和b2;(2)求{b n}的通项公式;(3){b n}中的第503项是{a n}的第几项?【解析】数列{b n}是数列{a n}的一个子数列,其序号构成以3为首项,4为公差的等差数列,由于{a n}是等差数列,则{b n}也是等差数列.(1)∵a1=3,d=-5,∴a n=3+(n-1)(-5)=8-5n.数列{a n}中序号能被4除余3的项是{a n}中的第3项,第7项,第11项,…,∴b1=a3=-7,b2=a7=-27.(2)设{a n}中的第m项是{b n}的第n项,即b n=a m,则m=3+4(n-1)=4n-1,∴b n=a m=a4n-1=8-5(4n-1)=13-20n.即{b n}的通项公式为b n=13-20n.(3)b503=13-20×503=-10 047,设它是{a n}中的第m项,则-10 047=8-5m,则m=2 011,即{b n}中的第503项是{a n}中的第2 011项.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列基础习题选(附有详细解答)一.选择题(共26小题)1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为()A.B.1C.D.﹣12.已知数列{a n}的通项公式是a n=2n+5,则此数列是()A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列C.以5为首项,公差为2的等差数列D.不是等差数列3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于()A.23B.24C.25D.264.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=()A.一1B.2C.3D.一25.两个数1与5的等差中项是()A.1B.3C.2D.6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2B.﹣3C.﹣4D.﹣57.(2012福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1B.2C.3D.48.数列的首项为3,为等差数列且,若,,则=()A.0B.8C.3D.119.已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为()A.25B.24C.20D.1910.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=()A.5B.3C.﹣1D.111.(2005黑龙江)如果数列{a n}是等差数列,则()A.a1+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5 12.(2004福建)设S n是等差数列{a n}的前n项和,若=()A.1B.﹣1C.2D.13.(2009安徽)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()A.﹣1B.1C.3D.714.在等差数列{a n}中,a2=4,a6=12,,那么数列{}的前n项和等于()A.B.C.D.15.已知S n为等差数列{a n}的前n项的和,a2+a5=4,S7=21,则a7的值为()A.6B.7C.8D.916.已知数列{a n}为等差数列,a1+a3+a5=15,a4=7,则s6的值为()A.30B.35C.36D.2417.(2012营口)等差数列{a n}的公差d<0,且,则数列{a n}的前n项和S n取得最大值时的项数n是()A.5B.6C.5或6D.6或718.(2012辽宁)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58B.88C.143D.17619.已知数列{a n}等差数列,且a1+a3+a5+a7+a9=10,a2+a4+a6+a8+a10=20,则a4=()A.﹣1B.0C.1D.220.(理)已知数列{a n}的前n项和S n=n2﹣8n,第k项满足4<a k<7,则k=()A.6B.7C.8D.921.数列a n的前n项和为S n,若S n=2n2﹣17n,则当S n取得最小值时n的值为()A.4或5B.5或6C.4D.522.等差数列{a n}中,a n=2n﹣4,则S4等于()A.12B.10C.8D.423.若{a n}为等差数列,a3=4,a8=19,则数列{a n}的前10项和为()A.230B.140C.115D.9524.等差数列{a n}中,a3+a8=5,则前10项和S10=()A.5B.25C.50D.10025.设S n是公差不为0的等差数列{a n}的前n项和,且S1,S2,S4成等比数列,则等于()A.1B.2C.3D.426.设a n=﹣2n+21,则数列{a n}从首项到第几项的和最大()A.第10项B.第11项C.第10项或11项D.第12项二.填空题(共4小题)27.如果数列{a n}满足:=_________.28.如果f(n+1)=f(n)+1(n=1,2,3…),且f(1)=2,则f(100)=_________.29.等差数列{a n}的前n项的和,则数列{|a n|}的前10项之和为_________.30.已知{a n}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.(Ⅰ)求数列{a n}的通项公式:(Ⅱ)若数列{a n}和数列{b n}满足等式:a n==(n为正整数),求数列{b n}的前n项和S n.参考答案与试题解析一.选择题(共26小题)1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为()A.B.1C.D.﹣1考点:等差数列.专题:计算题.分析:本题可由题意,构造方程组,解出该方程组即可得到答案.解答:解:等差数列{a n}中,a3=9,a9=3,由等差数列的通项公式,可得解得,即等差数列的公差d=﹣1.故选D点评:本题为等差数列的基本运算,只需构造方程组即可解决,数基础题.2.已知数列{a n}的通项公式是a n=2n+5,则此数列是()A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列C.以5为首项,公差为2的等差数列D.不是等差数列考点:等差数列.专题:计算题.分析:直接根据数列{a n}的通项公式是a n=2n+5求出首项,再把相邻两项作差求出公差即可得出结论.解答:解:因为a n=2n+5,所以a1=2×1+5=7;a n+1﹣a n=2(n+1)+5﹣(2n+5)=2.故此数列是以7为首项,公差为2的等差数列.故选A.点评:本题主要考查等差数列的通项公式的应用.如果已知数列的通项公式,可以求出数列中的任意一项.3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于()A.23B.24C.25D.26考点:等差数列.专题:综合题.分析:根据a1=13,a3=12,利用等差数列的通项公式求得d的值,然后根据首项和公差写出数列的通项公式,让其等于2得到关于n的方程,求出方程的解即可得到n的值.解答:解:由题意得a3=a1+2d=12,把a1=13代入求得d=﹣,则a n=13﹣(n﹣1)=﹣n+=2,解得n=23故选A点评:此题考查学生灵活运用等差数列的通项公式化简求值,是一道基础题.4.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=()A.一1B.2C.3D.一2考点:等差数列.专题:计算题.分析:根据等差数列的前三项之和是6,得到这个数列的第二项是2,这样已知等差数列的;两项,根据等差数列的通项公式,得到数列的公差.解答:解:∵等差数列{a n}的前n项和为S n,S3=6,∴a2=2∵a4=8,∴8=2+2d∴d=3,故选C.点评:本题考查等差数列的通项,这是一个基础题,解题时注意应用数列的性质,即前三项的和等于第二项的三倍,这样可以简化题目的运算.5.两个数1与5的等差中项是()A.1B.3C.2D.考点:等差数列.专题:计算题.分析:由于a,b的等差中项为,由此可求出1与5的等差中项.解答:解:1与5的等差中项为:=3,故选B.点评:本题考查两个数的等差中项,牢记公式a,b的等差中项为:是解题的关键,属基础题.6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2B.﹣3C.﹣4D.﹣5考点:等差数列.专题:计算题.分析:设等差数列{a n}的公差为d,因为数列前六项均为正数,第七项起为负数,所以,结合公差为整数进而求出数列的公差.解答:解:设等差数列{a n}的公差为d,所以a6=23+5d,a7=23+6d,又因为数列前六项均为正数,第七项起为负数,所以,因为数列是公差为整数的等差数列,所以d=﹣4.故选C.点评:解决此类问题的关键是熟练掌握等差数列的通项公式,并且结合正确的运算.7.(2012•福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1B.2C.3D.4考点:等差数列的通项公式.专题:计算题.分析:设数列{a n}的公差为d,则由题意可得2a1+4d=10,a1+3d=7,由此解得d的值.解答:解:设数列{a n}的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B.点评:本题主要考查等差数列的通项公式的应用,属于基础题.8.数列的首项为3,为等差数列且,若,,则=()A.0B.8C.3D.11考点:等差数列的通项公式.专题:计算题.分析:先确定等差数列的通项,再利用,我们可以求得的值.解答:解:∵为等差数列,,,∴∴b n=b3+(n﹣3)×2=2n﹣8∵∴b8=a8﹣a1∵数列的首项为3∴2×8﹣8=a8﹣3,∴a8=11.故选D点评:本题考查等差数列的通项公式的应用,由等差数列的任意两项,我们可以求出数列的通项,是基础题.9.已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为()A.25B.24C.20D.19考点:等差数列的通项公式.专题:计算题.分析:(法一):根据两个等差数列的相同的项按原来的先后次序组成一个等差数列,且公差为原来两个公差的最小公倍数求解,(法二)由条件可知两个等差数列的通项公式,可用不定方程的求解方法来求解.解答:解法一:设两个数列相同的项按原来的前后次序组成的新数列为{a n},则a1=11∵数列5,8,11,…与3,7,11,…公差分别为3与4,∴{a n}的公差d=3×4=12,∴a n=11+12(n﹣1)=12n﹣1.又∵5,8,11,…与3,7,11,…的第100项分别是302与399,∴a n=12n﹣1≤302,即n≤.又∵n∈N*,∴两个数列有25个相同的项.故选A解法二:设5,8,11,与3,7,11,分别为{a n}与{b n},则a n=3n+2,b n=4n﹣1.设{a n}中的第n项与{b n}中的第m项相同,即3n+2=4m﹣1,∴n=m﹣1.又m、n∈N*,可设m=3r(r∈N*),得n=4r﹣1.根据题意得1≤3r≤100 1≤4r﹣1≤100 解得≤r≤∵r∈N*从而有25个相同的项故选A点评:解法一利用了等差数列的性质,解法二利用了不定方程的求解方法,对学生的运算能力及逻辑思维能力的要求较高.10.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=()A.5B.3C.﹣1D.1考点:等差数列的通项公式.专题:计算题.分析:根据递推公式求出公差为2,再由S3=9以及前n项和公式求出a1的值.解答:解:∵a n=a n﹣1+2(n≥2),∴a n﹣a n﹣1=2(n≥2),∴等差数列{a n}的公差是2,由S3=3a1+=9解得,a1=1.故选D.点评:本题考查了等差数列的定义,以及前n项和公式的应用,即根据代入公式进行求解.11.(2005•黑龙江)如果数列{a n}是等差数列,则()A.a1+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5考点:等差数列的性质.分析:用通项公式来寻求a1+a8与a4+a5的关系.解答:解:∵a1+a8﹣(a4+a5)=2a1+7d﹣(2a1+7d)=0∴a1+a8=a4+a5∴故选B点评:本题主要考查等差数列通项公式,来证明等差数列的性质.12.(2004•福建)设S n是等差数列{a n}的前n项和,若=()A.1B.﹣1C.2D.考点:等差数列的性质.专题:计算题.分析:充分利用等差数列前n项和与某些特殊项之间的关系解题.解答:解:设等差数列{a n}的首项为a1,由等差数列的性质可得a1+a9=2a5,a1+a5=2a3,∴====1,故选A.点评:本题主要考查等差数列的性质、等差数列的前n项和公式以及等差中项的综合应用,已知等差数列{a n}的前n项和为S n,则有如下关系S2n﹣1=(2n﹣1)a n.13.(2009•安徽)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()A.﹣1B.1C.3D.7考点:等差数列的性质.专题:计算题.分析:根据已知条件和等差中项的性质可分别求得a3和a4的值,进而求得数列的公差,最后利用等差数列的通项公式求得答案.解答:解:由已知得a1+a3+a5=3a3=105,a2+a4+a6=3a4=99,∴a3=35,a4=33,∴d=a4﹣a3=﹣2.∴a20=a3+17d=35+(﹣2)×17=1.故选B点评:本题主要考查了等差数列的性质和等差数列的通项公式的应用.解题的关键是利用等差数列中等差中项的性质求得a3和a4.14.在等差数列{a n}中,a2=4,a6=12,,那么数列{}的前n项和等于()A.B.C.D.考点:数列的求和;等差数列的性质.专题:计算题.分析:求出等差数列的通项,要求的和是一个等差数列与一个等比数列的积构成的数列,利用错位相减法求出数列的前n项的和.解答:解:∵等差数列{a n}中,a2=4,a6=12;∴公差d=;∴a n=a2+(n﹣2)×2=2n;∴;∴的前n项和,=两式相减得=∴故选B点评:求数列的前n项的和,先判断通项的特点,据通项的特点选择合适的求和方法.15.已知S n为等差数列{a n}的前n项的和,a2+a5=4,S7=21,则a7的值为()A.6B.7C.8D.9考点:等差数列的性质.专题:计算题.分析:由a2+a5=4,S7=21根据等差数列的性质可得a3+a4=a1+a6=4①,根据等差数列的前n项和公式可得,,联立可求d,a1,代入等差数列的通项公式可求解答:解:等差数列{a n}中,a2+a5=4,S7=21根据等差数列的性质可得a3+a4=a1+a6=4①根据等差数列的前n项和公式可得,所以a1+a7=6②②﹣①可得d=2,a1=﹣3所以a7=9故选D点评:本题主要考查了等差数列的前n项和公式及等差数列的性质的综合应用,属于基础试题.16.已知数列{a n}为等差数列,a1+a3+a5=15,a4=7,则s6的值为()A.30B.35C.36D.24考点:等差数列的性质.专题:计算题.分析:利用等差中项的性质求得a3的值,进而利用a1+a6=a3+a4求得a1+a6的值,代入等差数列的求和公式中求得答案.解答:解:a1+a3+a5=3a3=15,∴a3=5∴a1+a6=a3+a4=12∴s6=×6=36故选C点评:本题主要考查了等差数列的性质.特别是等差中项的性质.17.(2012•营口)等差数列{a n}的公差d<0,且,则数列{a n}的前n项和S n取得最大值时的项数n是()A.5B.6C.5或6D.6或7考点:等差数列的前n项和;等差数列的通项公式.专题:计算题.分析:由,知a1+a11=0.由此能求出数列{a n}的前n项和S n取得最大值时的项数n.解答:解:由,知a1+a11=0.∴a6=0,故选C.点评:本题主要考查等差数列的性质,求和公式.要求学生能够运用性质简化计算.18.(2012•辽宁)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58B.88C.143D.176考点:等差数列的性质;等差数列的前n项和.专题:计算题.分析:根据等差数列的定义和性质得a1+a11=a4+a8=16,再由S11=运算求得结果.解答:解:∵在等差数列{a n}中,已知a4+a8=16,∴a1+a11=a4+a8=16,∴S11==88,故选B.点评:本题主要考查等差数列的定义和性质,等差数列的前n项和公式的应用,属于中档题.19.已知数列{a n}等差数列,且a1+a3+a5+a7+a9=10,a2+a4+a6+a8+a10=20,则a4=()A.﹣1B.0C.1D.2考点:等差数列的通项公式;等差数列的前n项和.专题:计算题.分析:由等差数列得性质可得:5a5=10,即a5=2.同理可得5a6=20,a6=4,再由等差中项可知:a4=2a5﹣a6=0解答:解:由等差数列得性质可得:a1+a9=a3+a7=2a5,又a1+a3+a5+a7+a9=10,故5a5=10,即a5=2.同理可得5a6=20,a6=4.再由等差中项可知:a4=2a5﹣a6=0故选B点评:本题考查等差数列的性质及等差中项,熟练利用性质是解决问题的关键,属基础题.20.(理)已知数列{a n}的前n项和S n=n2﹣8n,第k项满足4<a k<7,则k=()A.6B.7C.8D.9考点:等差数列的通项公式;等差数列的前n项和.专题:计算题.分析:先利用公式a n=求出a n,再由第k项满足4<a k<7,建立不等式,求出k的值.解答:解:a n==∵n=1时适合a n=2n﹣9,∴a n=2n﹣9.∵4<a k<7,∴4<2k﹣9<7,∴<k<8,又∵k∈N+,∴k=7,故选B.点评:本题考查数列的通项公式的求法,解题时要注意公式a n=的合理运用,属于基础题.21.数列a n的前n项和为S n,若S n=2n2﹣17n,则当S n取得最小值时n的值为()A.4或5B.5或6C.4D.5考点:等差数列的前n项和.专题:计算题.分析:把数列的前n项的和S n看作是关于n的二次函数,把关系式配方后,又根据n为正整数,即可得到S n取得最小值时n的值.解答:解:因为S n=2n2﹣17n=2﹣,又n为正整数,所以当n=4时,S n取得最小值.故选C点评:此题考查学生利用函数思想解决实际问题的能力,是一道基础题.22.等差数列{a n}中,a n=2n﹣4,则S4等于()A.12B.10C.8D.4考点:等差数列的前n项和.专题:计算题.分析:利用等差数列{a n}中,a n=2n﹣4,先求出a1,d,再由等差数列的前n项和公式求S4.解答:解:∵等差数列{a n}中,a n=2n﹣4,∴a1=2﹣4=﹣2,a2=4﹣4=0,d=0﹣(﹣2)=2,∴S4=4a1+=4×(﹣2)+4×3=4.故选D.点评:本题考查等差数列的前n项和公式的应用,是基础题.解题时要认真审题,注意先由通项公式求出首项和公差,再求前四项和.23.若{a n}为等差数列,a3=4,a8=19,则数列{a n}的前10项和为()A.230B.140C.115D.95考点:等差数列的前n项和.专题:综合题.分析:分别利用等差数列的通项公式化简已知的两个等式,得到①和②,联立即可求出首项和公差,然后利用求出的首项和公差,根据公差数列的前n项和的公式即可求出数列前10项的和.解答:解:a3=a1+2d=4①,a8=a1+7d=19②,②﹣①得5d=15,解得d=3,把d=3代入①求得a1=﹣2,所以S10=10×(﹣2)+×3=115故选C.点评:此题考查学生灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道基础题.24.等差数列{a n}中,a3+a8=5,则前10项和S10=()A.5B.25C.50D.100考点:等差数列的前n项和;等差数列的性质.专题:计算题.分析:根据条件并利用等差数列的定义和性质可得a1+a10=5,代入前10项和S10 =运算求得结果.解答:解:等差数列{a n}中,a3+a8=5,∴a1+a10=5,∴前10项和S10 ==25,故选B.点评:本题主要考查等差数列的定义和性质,以及前n项和公式的应用,求得a1+a10=5,是解题的关键,属于基础题.25.设S n是公差不为0的等差数列{a n}的前n项和,且S1,S2,S4成等比数列,则等于()A.1B.2C.3D.4考点:等差数列的前n项和.专题:计算题.分析:由S1,S2,S4成等比数列,根据等比数列的性质得到S22=S1S4,然后利用等差数列的前n项和的公式分别表示出各项后,代入即可得到首项和公差的关系式,根据公差不为0,即可求出公差与首项的关系并解出公差d,然后把所求的式子利用等差数列的通项公式化简后,把公差d的关系式代入即可求出比值.解答:解:由S1,S2,S4成等比数列,∴(2a1+d)2=a1(4a1+6d).∵d≠0,∴d=2a1.∴===3.故选C点评:此题考查学生掌握等比数列的性质,灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道综合题.26.设a n=﹣2n+21,则数列{a n}从首项到第几项的和最大()A.第10项B.第11项C.第10项或11项D.第12项考点:等差数列的前n项和;二次函数的性质.专题:转化思想.分析:方法一:由a n,令n=1求出数列的首项,利用a n﹣a n﹣1等于一个常数,得到此数列为等差数列,然后根据求出的首项和公差写出等差数列的前n项和的公式,得到前n项的和与n成二次函数关系,其图象为开口向下的抛物线,当n=﹣时,前n项的和有最大值,即可得到正确答案;方法二:令a n大于等于0,列出关于n的不等式,求出不等式的解集即可得到n的范围,在n的范围中找出最大的正整数解,从这项以后的各项都为负数,即可得到正确答案.解答:解:方法一:由a n=﹣2n+21,得到首项a1=﹣2+21=19,a n﹣1=﹣2(n﹣1)+21=﹣2n+23,则a n﹣a n﹣1=(﹣2n+21)﹣(﹣2n+23)=﹣2,(n>1,n∈N+),所以此数列是首项为19,公差为﹣2的等差数列,则S n=19n+•(﹣2)=﹣n2+20n,为开口向下的抛物线,当n=﹣=10时,S n最大.所以数列{a n}从首项到第10项和最大.方法二:令a n=﹣2n+21≥0,解得n≤,因为n取正整数,所以n的最大值为10,所以此数列从首项到第10项的和都为正数,从第11项开始为负数,则数列{a n}从首项到第10项的和最大.故选A点评:此题的思路可以先确定此数列为等差数列,根据等差数列的前n项和的公式及二次函数求最值的方法得到n 的值;也可以直接令a n≥0,求出解集中的最大正整数解,要求学生一题多解.二.填空题(共4小题)27.如果数列{a n}满足:=.考点:数列递推式;等差数列的通项公式.专题:计算题.分析:根据所给的数列的递推式,看出数列是一个等差数列,根据所给的原来数列的首项看出等差数列的首项,根据等差数列的通项公式写出数列,进一步得到结果.解答:解:∵根据所给的数列的递推式∴数列{}是一个公差是5的等差数列,∵a1=3,∴=,∴数列的通项是∴故答案为:点评:本题看出数列的递推式和数列的通项公式,本题解题的关键是确定数列是一个等差数列,利用等差数列的通项公式写出通项,本题是一个中档题目.28.如果f(n+1)=f(n)+1(n=1,2,3…),且f(1)=2,则f(100)=101.考点:数列递推式;等差数列的通项公式.专题:计算题.分析:由f(n+1)=f(n)+1,x∈N+,f(1)=2,依次令n=1,2,3,…,总结规律得到f(n)=n+1,由此能够求出f(100).解答:解:∵f(n+1)=f(n)+1,x∈N+,f(1)=2,∴f(2)=f(1)+1=2+1=3,f(3)=f(2)+1=3+1=4,f(4)=f(3)+1=4+1=5,…∴f(n)=n+1,∴f(100)=100+1=101.故答案为:101.点评:本题考查数列的递推公式的应用,是基础题.解题时要认真审题,仔细解答.29.等差数列{a n}的前n项的和,则数列{|a n|}的前10项之和为58.考点:数列的求和;等差数列的通项公式.专题:计算题.分析:先求出等差数列的前两项,可得通项公式为a n=7﹣2n,从而得到n≤3时,|a n|=7﹣2n,当n>3时,|a n|= 2n﹣7.分别求出前3项的和、第4项到第10项的和,相加即得所求.解答:解:由于等差数列{an}的前n项的和,故a1=s1=5,∴a2=s2﹣s1=8﹣5=3,故公差d=﹣2,故a n=5+(n﹣1)(﹣2)=7﹣2n.当n≤3时,|a n|=7﹣2n,当n>3时,|a n|=2n﹣7.故前10项之和为a1+a2+a3﹣a4﹣a5﹣…﹣a10=+=9+49=58,故答案为58.点评:本题主要考查等差数列的通项公式,前n项和公式及其应用,体现了分类讨论的数学思想,属于中档题.30.已知{a n}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.(Ⅰ)求数列{a n}的通项公式:(Ⅱ)若数列{a n}和数列{b n}满足等式:a n==(n为正整数),求数列{b n}的前n项和S n.考点:数列的求和;等差数列的通项公式.专题:计算题.分析:(1)将已知条件a3a6=55,a2+a7=16,利用等差数列的通项公式用首项与公差表示,列出方程组,求出首项与公差,进一步求出数列{a n}的通项公式(2)将已知等式仿写出一个新等式,两个式子相减求出数列{b n}的通项,利用等比数列的前n项和公式求出数列{b n}的前n项和S n.解答:解(1)解:设等差数列{a n} 的公差为d,则依题设d>0由a2+a7=16.得2a1+7d=16①由a3•a6=55,得(a1+2d)(a1+5d)=55 ②由①得2a1=16﹣7d 将其代入②得(16﹣3d)(16+3d)=220.即256﹣9d2=220∴d2=4,又d>0,∴d=2,代入①得a1=1∴a n=1+(n﹣1)•2=2n﹣1所以a n=2n﹣1(2)令c n=,则有a n=c1+c2+…+c n,a n+1=c1+c2+…+c n﹣1两式相减得a n+1﹣a n=c n+1,由(1)得a1=1,a n+1﹣a n=2∴c n+1=2,c n=2(n≥2),即当n≥2时,b n=2n+1又当n=1时,b1=2a1=2∴b n=<BR>于是S n=b1+b2+b3…+b n=2+23+24+…+2n+1=2+22+23+24+…+2n+1﹣4=﹣6,即S n=2n+2﹣6点评:求一个数列的前n项和应该先求出数列的通项,利用通项的特点,然后选择合适的求和的方法.。