分子机制-核酸检测-RACE技术

合集下载

RACE技术原理

RACE技术原理
快速扩增cDNA末端 ——RACE

RACE的基本概念 不同厂家RACE试剂盒的介绍 RACE技术的关键环节
存在的问题及解决办法
RACE的基本概念

cDNA末端快速扩增(rapid amplification of cDNA ends, RACE)技术是基于PCR技术由已知的部分
cDNA序列来获得完整cDNA序列的一种方法,
在PCR反应中有足够的全长产物能被探测。


TdT加尾反应及其替代反应
第三,若目的cDNA中含有与多聚尾互补的几个核苷酸同 聚区,则在合成第二条cDNA链时引物的延伸会从内部序 列而不是末端序列开始,产生非全长的第二条cDNA链。

我们所使用Invitron公司的RACE试剂盒,采用PCR介导的
连接反应,在一定程度上避免了以上的问题。

RACE试剂盒中末端转移的是多聚C尾,这样在反转录合 成第一链时5’端多聚G的二级结构影响反转录的彻底进行,
会产生提前终止反应。我们改进了加尾的程序,用TdT酶 加上多聚T尾,结果降低了反转录的难度,两个基因最终 均获得了完整的5’末端。

RACE引物的设计
在实验过程中总结如下经验:
1.
2.
引物不能设计在保守区简并引物区。
2.
反转录提前终止
模板中有特殊的二级结构,反转录提前终止。通过提高 反转录的温度,加大反转录的反应体系以及反转录过程 中一直保持已变性的RNA模板处于50℃以上,避免以解
开二级结构的RNA再恢复原来的结构,以达到5’末端。
提供一种改进的反转录方法
1. 2.
3. 4.
5. 6.
7.
在RNase-free的0.2 mL Eppendorf 管中加入以下成分: Oligo(dT)(0.5μg) 1μL Total RNA(4~5μg) 3μL DEPC-H2O To 25 μL 混匀,70℃保温10min;50℃保温5min;稍微离心一下。 在混合物中,依次加入以下成份: 10X SSⅡ( SSⅢ )Buffer 5.0μL 10mM dNTP mix 1.0μL 0.1M DTT 2.0μL RNase Inhibitor(40U/μL) 1.0μL DEPC-H2O To 24 μL 轻轻混合,在50℃保温5min后,在50℃下将3号管中的混合成分移入 2号管中。 每个反应加入1μL SuperScriptTM Ⅱ(SSⅢ ),轻轻混匀,50℃反应 50min。 70℃放置15min以终止反应。 -20℃保存。

RACE+PCR

RACE+PCR

RACE PCRRACE(rapid-amplification ofcDNA ends)是通过PCR进行cDNA末端快速克隆的技术。

cDNA完整序列的获得对基因结构、蛋白质表达、基因功能的研究至关重要。

完整的cDNA 序列可以通过文库的筛选和末端克隆技术获得。

末端克隆技术是20世纪80年代发展起来的。

RACE的优点与筛库法相比较,有许多方面的优点1)此方法是通过PCR技术实现的,无须建立cDNA文库,可以在很短的时间内获得有利用价值的信息。

2)节约了实验所花费的经费和时间。

3)只要引物设计正确,在初级产物的基础上可以获得大量的感兴趣基因的全长。

实验室现有的RACE试剂盒的简介RACE是一种从一个相同的cDNA模板进行5‘和3‘末端快速克隆的方法。

此方法会产生较少的错误条带。

此过程中使用的酶混合物非常适合长链PCR。

使用此方法的要求是必须知道至少23-28个核苷酸序列信息,以此来设计5’末端和3‘末端RACE反应的基因特异性引物(GSPs)。

RACE引物的设计:基因特异性引物(GSPs)应该是:23-28nt50-70%GCTm值≥65度,Tm值≥70度可以获得好的结果需要实验者根据已有的基因序列设计5‘和3‘RACE反应的基因特异性引物(GSP1和GSP2).由于两个引物的存在,PCR的产物是特异性的。

反应中涉及到的一些事项cDNA的合成起始于polyA+RNA。

如果使用其它的基因组DNA或总RNA,背景会很高。

RACE PCR的效率还取决于总的mRNA中目的mRNA的量和不同的引物有不同的退火和延伸温度。

在进行5‘和3’RACE PCR的时候应该使用热启动。

表4中给出了所有引物的相互关系。

重叠引物的设计会对全长的产生有帮助。

另外,重叠的引物可以为PCR反应提供一个对照。

并不是绝对的要利用设计的引物产生重叠片段。

引物GSP中的GC含量要在50-70%之间。

这样可以使用降落PCR。

避免使用自身互补性的引物序列,否则会产生回折和形成分子内氢键。

RACE

RACE

RACE第一RACE的简介目前,全长基因的获得是生物工程及分子生物学研究的一个重点。

尽管已经有多种方法可以获得基因的全长序列,但在很多生物研究中,由于所研究的目的基因丰度较低,从而使得由低丰度mRNA通过转录获得全长cDNA很困难。

近年来发展成熟的cDNA末端快速扩增(RACE)技术为从低丰度转录快速获得全长cDNA提供了一个便捷的途径。

cDNA 末端快速扩增(rapid amplification of cDNA ends,RACE)技术是一种基于mRNA 反转录和PCR技术建立起来的、以部分的已知区域序列为起点,扩增基因转录本的未知区域,从而获得mRNA(cDNA)完整序列的方法。

简单的说就是一种从低丰度转录本中快速增长cDNA5’和cDNA3’末端,进而获得获得全长cDNA简单而有效的方法,该方法具有快捷、方便、高效等优点,可同时获得多个转录本。

因此近年来RACE技术已逐渐取代了经典的cDNA文库筛选技术,成为克隆全长cDNA序列的常用手段。

第二RACE的原理RACE 是采用PCR 技术由已知的部分cDNA 顺序来扩增出完整cDNA5’和3’末端,是一种简便而有效的方法, 又被称为锚定PCR (anchoredPCR)和单边PCR(one2side PCR)。

3’RACE的原理一)加入oligo(dT)17和反转录酶对mRNA进行反转录得到(-)cDNA;二)以oligo(dT)l7和一个35bp的接头(dT17-adaptor)为引物,其中在引物的接头中有一在基因组DNA中罕见的限制酶的酶切位点。

这样就在未知cDNA末端接上了一段特殊的接头序列。

再用一个基因特异性引物(3 amp)与少量第一链(-)cDNA退火并延伸,产生互补的第二链(+)cDNA。

三)利用3amp和接头引物进行PCR循环即可扩增得到cDNA双链。

扩增的特异性取决于3amp的碱基只与目的cDNA分子互补.而用接头引物来取代dT17一adaptor则可阻止长(dT)碱基引起的错配。

RACE技术的原理和操作

RACE技术的原理和操作

RACE(rapid-amplificationofcDNAends)是通过PCR进行cDNA末端快速克隆的技术。

cDNA完整序列的获得对基因结构、蛋白质表达、基因功能的研究至关重要。

完整的cDNA序列可以通过文库的筛选和末端克隆技术获得。

末端克隆技术是20世纪80年代发展起来的。

编辑本段优点与筛库法相比较,有许多方面的优点1)此方法是通过PCR技术实现的,无须建立cDNA文库,可以在很短的时间内获得有利用价值的信息。

2)节约了实验所花费的经费和时间。

3)只要引物设计正确,在初级产物的基础上可以获得大量的感兴趣基因的全长。

实验室现有的RACE试剂盒的简介RACE是一种从一个相同的cDNA模板进行5‘和3‘末端快速克隆的方法。

此方法会产生较少的错误条带。

此过程中使用的酶混合物非常适合长链PCR。

用此方法的要求是必须知道至少23-28个核苷酸序列信息,以此来设计5’末端和3‘末端RACE反应的基因特异性引物(GSPs)。

编辑本段引物的设计基因特异性引物(GSPs)应该是:23-28nt50-70%GCTm值≥65度,Tm值≥70度可以获得好的结果需要实验者根据已有的基因序列设计5‘和3‘RACE 反应的基因特异性引物(GSP1和GSP2).由于两个引物的存在,PCR的产物是特异性的。

编辑本段反应中涉及到的一些事项cDNA的合成起始于polyA+RNA。

如果使用其它的基因组DNA或总RNA,背景会很高。

RACEPCR的效率还取决于总的mRNA中目的mRNA的量和不同的引物有不同的退火和延伸温度。

进行5‘和3’RACEPCR的时候应该使用热启动。

4中给出了所有引物的相互关系。

重叠引物的设计会对全长的产生有帮助。

另外,重叠的引物可以为PCR 反应提供一个对照。

并不是绝对的要利用设计的引物产生重叠片段。

物GSP中的GC含量要在50-70%之间。

这样可以使用降落PCR。

避免使用自身互补性的引物序列,否则会产生回折和形成分子内氢键。

race扩增原理

race扩增原理

race扩增原理Race扩增原理Race扩增是一种常用的基因扩增技术,广泛应用于分子生物学、遗传学和生物医学研究领域。

它是通过DNA聚合酶在模板DNA上的连续合成过程,使得DNA片段在特定的温度条件下反复复制,从而实现DNA的扩增。

Race扩增是基于聚合酶链反应(PCR)技术的改进,PCR是一种通过酶催化链式反应来扩增特定DNA片段的方法。

而Race扩增则是针对某个已知DNA片段的末端序列未知的情况下,通过一系列特定的引物设计和PCR反应来扩增该DNA片段的未知序列,从而获得该DNA片段的完整序列。

Race扩增的基本原理是利用已知序列的引物和一系列特定的引物设计来扩增目标DNA片段的未知序列。

其步骤如下:1. 通过已知序列设计外向引物(3'末端向外)和反向引物(5'末端向外),并合成引物。

2. 利用外向引物进行PCR扩增,得到目标DNA片段的一个部分序列。

3. 通过已得到的部分序列设计内向引物(在已知序列的3'末端内部),并合成引物。

4. 利用内向引物进行PCR扩增,得到目标DNA片段的另一个部分序列。

5. 通过已得到的两个部分序列设计新的外向引物和反向引物,继续PCR扩增,直到得到目标DNA片段的完整序列。

Race扩增的关键在于引物设计。

对于未知序列的DNA片段,可以通过已知序列的末端部分设计引物,从而扩增未知序列。

由于PCR 反应的高度特异性,只有与引物序列完全匹配的DNA片段才能被扩增,因此引物的设计必须准确。

Race扩增还可以结合其他技术来增加扩增效率和准确性。

例如,可以利用聚合酶链反应实验中的链延伸反应(anchored PCR)来进行Race扩增,通过在反向引物的3'末端添加一个特定的序列,从而增加PCR的特异性和扩增效率。

此外,还可以利用引物的嵌合反应(nested PCR)来进行Race扩增,通过两对引物的连续扩增,进一步提高PCR的特异性和扩增效率。

RACE原理及实验步骤

RACE原理及实验步骤
产物 鉴定
cDNA 第 一链的合成
PCR 阳性对 照
cDNA末 端快速扩

SMART技术
原理:在合成cDNA的反应中事先加进的3’末端带
Oligo(dG)的SMART引物,由于逆转录酶以mRNA 为模板合成cDNA,在到达mRNA的5’末端时碰到真核 mRNA特有的“帽子结构”,即甲基化的G时会连续在合成 的cDNA末端加上几个(dC),SMART引物的Oligo (dG)与合成cDNA末端突出的几个C配对后形成cDNA 的延伸模板,逆转录酶会自动转换模板,以SMART引物 作为延伸模板继续延伸cDNA单链直到引物的末端,这样 得到的所有cDNA单链的一端有含Oligo(dT)的起始引 物序列,另一端有已知的SMART引物序列,合成第二链 后可以利用通用引物进行扩增。由于有5’帽子结构的 mRNA才能利用这个反应得到能扩增的cDNA,因此扩 增得到的cDNA就是全长cDNA。
3'-RACE 基本原理
3’ RACE流程图
先利用mRNA的3'末端的poly(A)尾巴作为一个引物结 合位点,以Oligo(dT)30MN作为锁定引物在反转录酶MMLV 作用下,反转录合成标准第一链cDNA.利用该反转录酶具有 的末端转移酶活性,在反转录达到第一链的5'末端时自动加 上3-5个(dC)残基,退火后(dC)残基与含有SMART寡核苷 酸序列Oliogo(dG)通用接头引物配对后,转换为以SMART 序列为模板继续延伸而连上通用接头。然后用一个含有部分 接头序列的通用引物UPM(universal primer,UPM)作为上 游引物,用一个基因特异引物2(GSP 2 genespecific primer,GSP)作为下游引物,以SMART第一链cDNA为模板, 进行PCR循环,把目的基因5'末端的cDNA片段扩增出来。最 终,从2个有相互重叠序列的3'/ 5'-RACE产物中获得全长 cDNA,或者通过分析RACE产物的3'和5'端序列,合成相应引 物扩增出全长cDNA。

5’-race鉴定转录起始位点的原理

5’-race是一种用于鉴定RNA转录起始位点的实验技术,它可以帮助研究者确定基因的启动子区域和转录调控元件,对于理解基因表达调控机制具有重要意义。

本文将介绍5’-race的原理及其在实验中的应用。

一、什么是5’-race?5’-race是Rapid Amplification of cDNA Ends的缩写,翻译为cDNA末端快速扩增。

该技术最早由Frohman等人于1988年提出,并在随后的研究中不断完善和应用。

5’-race主要用于鉴定mRNA的5’端序列,揭示RNA的转录起始位置,并发现新的调控元件。

二、5’-race的原理1. 引物连接:5’-race首先通过连接一个短寡核苷酸引物到RNA的5’端,同时进行逆转录反应以合成cDNA。

这个引物称为内引物。

2. 增大cDNA:在反转录后,通过PCR技术进行cDNA的快速扩增,采用一个外引物和内引物的连接引物结合进行扩增。

3. 清除非特异产物:将PCR产物纯化后,对于其中非特异扩增的产物进行去除,留下特异的5’端cDNA。

4. 提取cDNA:将特异5’端cDNA变性后进行连接进行克隆。

5. 测序:对克隆产物测序,最终得到RNA的转录起始位点。

三、5’-race的应用1. 确定基因启动子区域:通过5’-race技术可以鉴定基因的转录起始位点,从而确定基因的启动子区域,帮助研究者进一步分析基因的转录调控机制。

2. 发现新的转录起始位点:对于未知基因或未知转录本,5’-race可以帮助研究者发现新的转录起始位点,进一步研究其功能及调控机制。

3. 肿瘤基因的研究:在肿瘤基因研究中,通过5’-race技术可以鉴定肿瘤相关基因的启动子区域和转录调控元件,对于肿瘤的发生和发展具有重要意义。

四、5’-race的优势与局限1. 优势:5’-race技术可以在较短的时间内鉴定RNA的转录起始位点,帮助研究者快速了解基因的转录调控机制。

2. 局限:5’-race技术对于RNA的质量和纯度要求较高,同时在设计引物和PCR条件优化上也需要一定的技术经验。

RACE技术2解析


基因特异性引物(GSPS)应该是
23-28nt 50-70%GC Tm值≥65度,Tm值≥70度可以获得好的结果 需要实验者根据已有的基因序列设计5‘和 3‘RACE反应的基因特异性引物(GSP1和 GSP2).由于两个引物的存在,PCR的产物是特 异性的。
反应中涉及到的一些事项
引物(根据已知序列设计)和PolyT引物PCR即
可。大多实验者反映一次PCR可以搞定。
SMARTTM 3‘-RACE的原理
5'-RACE :5'-RACE相对较难,目前流行几种5'RACE。其一为加接头(传统),根据接头引物和自 己设计特异引物PCR,可以设计巢式PCR二次扩 增。另外,有利用反向PCR技术,连接成环在 PCR。还有,GENE公司一种 smartRACEPCR,利 用反转酶末断加C特点,直接加上多G接头,转换模 板而无需用连接酶加接头。利用mR原理图
SMARTTM 5'-RACE的原理
先利用mRNA的3‘末端的poly(A)尾巴作为 一个引物结合位点,以Oligo(dT)30MN作 为锁定引物在反转录酶MMLV作用下,反转 录合成标准第一链cDNA.利用该反转录酶具 有的末端转移酶活性,在反转录达到第一链 的5’末端时自动加上3-5个(dC)残基,退 火后(dC)残基与含有SMART寡核苷酸序列 Oliogo(dG)通用接头引物配对后,转换为 以SMART序列为模板继续延伸而连上通用接 头。
RACE 是采用PCR技 术由已知的部分 cDNA 顺序来扩增出 完整cDNA5’和3’ 末端,是一种简便而有 效的方法, 又被称为 锚定 PCR (anchoredPCR)和单边 PCR(one2side PCR)。
RACE技术主要分类

RACE技术


引物(根据已知序列设计)和PolyT引物PCR即
可。大多实验者反映一次PCR可以搞定。
SMARTTM 3‘-RACE的原理
5'-RACE :5'-RACE相对较难,目前流行几种5'RACE。其一为加接头(传统),根据接头引物和自 己设计特异引物PCR,可以设计巢式PCR二次扩 增。另外,有利用反向PCR技术,连接成环在 PCR。还有,GENE公司一种 smartRACEPCR,利 用反转酶末断加C特点,直接加上多G接头,转换模 板而无需用连接酶加接头。利用mRNA的3‘末端的
验证基因特异性引物的对照
利用两个GSPS进行阳性对照:(只有两个 GSP可以产生重叠的时候才可以采用此步。) 为了确定RNA样品中目的基因确实表达,利 用两个GSP和接头连接的cDNA来产生阳性对 照。可以产生两个引物之间的重叠大小的片 段。如果没有这个片段,应该重复cDNA的合 成,或者从一个不同的组织或细胞来源进行 cDNA的合成。
SMARTTM 3‘-RACE的原理图
SMARTTM 5'-RACE的原理
先利用mRNA的3‘末端的poly(A)尾巴作为 一个引物结合位点,以Oligo(dT)30MN作 为锁定引物在反转录酶MMLV作用下,反转 录合成标准第一链cDNA.利用该反转录酶具 有的末端转移酶活性,在反转录达到第一链 的5’末端时自动加上3-5个(dC)残基,退 火后(dC)残基与含有SMART寡核苷酸序列 Oliogo(dG)通用接头引物配对后,转换为 以SMART序列为模板继续延伸而连上通用接 头。
反应中涉及到的一些事项
降落PCR可以明显的增加RACE PCR产物的 特异性。在最开始的循环中,退火温度高于 AP1引物的Tm值,可以增加对特异性条带的 扩增。随后的退火和延伸的温度降回到AP1的 温度,可以进行随后的PCR循环。

RACE技术的原理和操作

RACE技术的原理和操作RACE(Rapid Amplification of cDNA Ends)技术是一种用于扩增cDNA末端序列的方法,广泛应用于克隆和鉴定未知基因的研究中。

下面将详细介绍RACE技术的原理和操作步骤。

一、原理:RACE技术是通过逆转录反应将RNA转录成cDNA,然后利用特殊的引物设计,通过聚合酶链式反应(PCR)进行扩增,最终得到所需的cDNA末端序列。

RACE技术主要包括5'-RACE和3'-RACE两个步骤。

5'-RACE:用于扩增未知序列的5'端操作步骤:1.提取总RNA,并进行逆转录反应,得到第一链cDNA。

2.利用聚dT载体和逆转录酶进行第二链合成。

3.利用内源引物(如具有较高表达的基因的已知序列)和外源引物A 进行PCR扩增。

4. 应用Nested PCR进行第二轮扩增,内嵌引物(nested primer)会在前一轮PCR反应的基础上扩增更长的特异性产物。

5.得到扩增的特异性产物后,纯化PCR产物并进行测序分析,获得5'端的未知序列。

3'-RACE:用于扩增未知序列的3'端操作步骤:1.提取总RNA,并进行反转录反应。

2.利用特异性引物(如基因的已知3'端序列)和逆转录酶进行第一轮PCR扩增。

3. 利用Nested PCR进行第二轮扩增,内嵌引物(nested primer)会在前一轮PCR反应的基础上扩增更长的特异性产物。

4.纯化PCR产物并进行测序分析,获得3'端的未知序列。

二、操作:1. 提取总RNA:一般使用RNAiso Plus试剂或类似试剂从细胞或组织中提取总RNA。

2. 逆转录反应:利用逆转录酶将RNA转录成cDNA。

逆转录酶一般有M-MLV逆转录酶和SuperScript III等。

3.第一链合成:利用聚克隆酶将逆转录的cDNA合成第一链,即得到第一链cDNA。

4.第二链合成:利用特殊的引物和逆转录酶将第一链cDNA合成第二链。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主题:RACE技术
概述:
近年来随着生物技术的不断发展,出现了许多克隆新基因的方法和手段,cDNA 末端快速扩增技术(rapid amplification of cDNA ends,RACE)是一种基于PCR从低丰度的转录本中快速扩增cDNA的5'和3'末端的有效方法,以其简单、快速、廉价等优势而受到越来越多的重视。

目的:
1.可用于cDNA文库的构建及筛选。

2.应用RACE克隆已知片段的旁侧内部序列。

3.RACE可用于克隆同源基因的同源片段,为寻找同源基因提供了一种手段。

4.RACE技术与生物信息学,例如EST库相结合,具有快速,高效克隆新基因的特点。

原理:
RACE是采用PCR技术由已知的部分cDNA顺序来扩增出完整cDNA5’和3’末端,是一种简便而有效的方法, 包括单边PCR和锚定PCR。

操作步骤:
1、3’RACE-PCR
3’-RACE的步骤是:利用mRNA的3’末端的poly(A)尾巴作为一个引物结合位点,以连有SMART寡核营酸序列通用接头引物的Oligo(dT)30MN作为锁定引物反转录合成标准第一链cDNA。

然后用一个基因特异引物GSP1(gene specific primer, GSP)作为上游引物,用一个含有部分接头序列的通用引物UPM(universal primer ,UPM)作为下游引物,以cDNA第一链为模板,进行PCR 循环,把目的基因3’末端的DNA片段扩增出来。

2、5’RACE-PCR
5‘-RACE的步骤是先利用mRNA的3‘末端的poly(A)尾巴作为一个引物结合位点,以Oligo(dT)30MN作为锁定引物在反转录酶MMLV作用下,反转录合成标准第一链cDNA。

利用该反转录酶具有的末端转移酶活性,在反转录达到第一链的5‘末端时自动加上3-5个(dC)残基,退火后(dC)残基与含有SMART 寡核苷酸序列Oliogo(dG)通用接头引物配对后,转换为以SMART序列为模板继续延伸而连上通用接头。

然后用一个含有部分接头序列的通用引物UPM(universal primer, UPM)作为上游引物,用一个基因特异引物2(GSP 2 gene specific primer, GSP)作为下游引物,以SMART第一链cDNA为模板,进行PCR循环,把目的基因5‘末端的cDNA片段扩增出来。

最终,从2个有相互重叠序列的3' / 5‘-RACE产物中获得全长cDNA,或者通过分析RACE 产物的3‘和5‘端序列,合成相应引物扩增出全长cDNA。

相关文档
最新文档