液化石油气储罐毕业设计_
液化石油气储罐设计

第一章 工艺设计参数的确定液化石油气的主要组成部分由于石油产地的不同,各地石油气组成成分也不同。
取其大致比例如下:表一 组成成分 异辛烷 乙烷 丙烷 异丁烷 正丁烷 异戊烷 正戊烷 乙炔 各成分百分比0.012.2549.323.4821.963.791.190.02对于设计温度下各成分的饱和蒸气压力如下:表二,各温度下各组分的饱和蒸气压力 温度,℃ 饱和蒸汽压力,MPa异辛烷 乙烷 丙烷 异丁烷 正丁烷 异戊烷 正戊烷 乙炔 -25 0 1.3 0.2 0.06 0.04 0.025 0.007 0 -20 0 1.38 0.27 0.075 0.048 0.03 0.009 0 0 0 2.355 0.466 0.153 0.102 0.034 0.024 0 20 0 3.721 0.833 0.294 0.205 0.076 0.058 0 5071.7440.670.50.20.160.00111、设计温度根据本设计工艺要求,使用地点为太原市的室外,用途为液化石油气储配站工作温度为-20—48℃,介质为易燃易爆的气体。
从表中我们可以明显看出,温度从50℃降到-25℃时,各种成分的饱和蒸气压力下降的很厉害,可以推断,在低温状态下,由饱和蒸气压力引起的应力水平不会很高。
由上述条件选择危险温度为设计温度。
为保证正常工作,对设计温度留一定的富裕量。
所以,取最高设计温度t=50℃,最低设计温度t=﹣25℃。
根据储罐所处环境,最高温度为危险温度,所以选t=50℃为设计温度。
1、设计压力该储罐用于液化石油气储配供气站,因此属于常温压力储存。
工作压力为相应温度下的饱和蒸气压。
因此,不需要设保温层。
根据道尔顿分压定律,我们不难计算出各种温度下液化石油气中各种成分的饱和蒸气分压,如表三:表三,各种成分在相应温度下的饱和蒸气分压温度, ℃饱和蒸气分压, MPa异辛烷 乙烷 丙烷 异丁烷 正丁烷 异戍烷 正戍烷乙烯 -25 0 0.029 0.0946 0.014 0.0088 0.00095 0.000083 0 -20 0 0.031 0.127 0.0176 0.0105 0.00114 0.000109 0 0 0 0.053 0.2204 0.0359 0.0224 0.00129 0.000256 0 20 0 0.084 0.394 0.069 0.045 0.00288 0.00063 0 500 0.158 0.0825 0.1573 0.1098 0.007580.0019 0有上述分压可计算再设计温度t=50℃时,总的高和蒸汽压力P=in i i py ∑81===0.01%×0+2.25%×7+47.3%×1.744+23.48%×0.67+21.96%×0.5+3.79%×0.2+1.19%×0.16+0.02%×0.0011=1.25901 MPa因为:P异丁烷(0.2)<P液化气(1.25901)<P丙烷(1.744)当液化石油气在50℃时的饱和蒸汽压力高于异丁烷在50℃时的饱和蒸汽压力时,若无保冷设施,则取50℃时丙烷的饱和蒸汽压力作为设计压力。
30M3液化石油气储罐设计

30M3液化石油气储罐设计液化石油气储罐是一种用于储存和运输液化石油气的设备。
下面是一个关于30M3液化石油气储罐的设计方案,总字数超过1200字。
请注意,这仅仅是一个设计方案的概述,实际的设计需要详细考虑诸如材料选择、结构强度、安全措施等方面的因素。
设计方案概述:1.储罐容量:储罐的容量为30立方米,可以满足一般商业和家用液化石油气需求。
2.材料选择:储罐主要由碳钢构成,碳钢具有良好的强度和耐蚀性,适用于储存液化石油气的环境。
3.结构设计:储罐采用圆筒形结构,底部为圆锥形,底部设计合理,以便于方便排放液体和气体。
储罐顶部设有适当的进气孔和排气孔,可以实现气体的进出。
4.安全措施:a.储罐设有过压保护装置,可以及时释放过高的压力以防止储罐爆炸。
b.储罐底部设有液位传感器,用于监测液体的高度,以确保不会超过设计容量。
c.储罐设有温度传感器,用于监测储罐内部气体的温度,以防止过高温度引发事故。
d.储罐设有火灾探测器和灭火系统,以应对火灾风险。
5.排放和填充:储罐底部设有排放阀门,用于排放液体和气体。
储罐顶部设有填充阀门,用于向储罐注入液化石油气。
6.运输和安装:储罐设计合理,可以方便地运输和安装。
储罐具有适当的固定装置,以确保在运输和操作过程中的稳定性和安全性。
7.维护和保养:储罐需要定期维护和保养,以确保其正常运行和安全性。
维护包括检查和更换阀门、传感器以及涂层的重新涂覆等。
8.泄漏和环境保护:储罐设有泄漏探测系统和泄漏收集装置,能够及时检测和收集泄漏的液体或气体,以减少对环境的影响。
以上是关于30M3液化石油气储罐设计的一个简要概述。
实际的设计将需要考虑更多细节和具体要求,包括压力容器标准、安全要求和环保法规等。
设计师应该与相关专业人员和当地政府机构合作,并参考现有的规范和标准,以确保储罐的设计符合要求并能够安全地运行。
3000m3液化气球罐的优化设计—(毕业设计)

本科毕业设计说明书3000m3液化气球罐的优化设计THE OPTIMAL DESIGN OF 3000m3 LPG SPHERICALTANK学院(部):专业班级:学生姓名:指导教师:年月日3000m3液化气球罐的优化设计摘要球形储罐作为一种有压储存容器,相对于一般圆筒形储存容器,具有用材少、受力情况好、占地面积小等显著优点,在石油、化工、冶金等领域广泛用于储存气体、液体或者液化气体。
本文设计了在常温下工作的3000m3的液化气球罐及其相应附件。
查阅相关资料后,确定采用16MnR钢作为球壳用钢,对其储罐形式进行了优化设计,计算比较后确定采用混合式三带球罐,支柱形式为赤道正切式,支柱根数为10根,拉杆采用可调式拉杆,根据相关设计标注进行结构设计和强度校核,最后完成相关附件的设计。
最终的成果为一张装配图和三张主要零件的零件图。
关键字:球形储罐,材料选择,结构优化,强度校核THE OPTIMAL DESIGN OF 3000m3 LPG SPHERICALTANKABSTRACTCompared to the general cylindrical storage container, the spherical tank is a kind of pressure storage containers with less material, good force, cover a small area, etc, which is widely used in storage of gases, liquids, or liquefied gas in petroleum, chemical industry, metallurgy and other fields.This paper designs the 3000㎡LPG spherical tank working at room temperature and its corresponding accessories. Referring to relevant data, I determine using 16 MnR steel as the steel spherical shell. The optimization design is carried out on the form of storage tank. After computation and comparison, I determine using hybrid three zones spherical tank with the pillar form of the equator tangent type, prop root number of 10, and adjustable draw-pole. The structure is designed and the strength is checked according to related design marks, and finally the design of the related accessories is completed. The final result of this study is a assembly drawing and three parts drawing of major parts.KEYWORDS: the spherical tank, material selection, structure optimization,strength chec目录摘要................................................ 错误!未定义书签。
100m卧式液化石油气储罐毕业设计开题报告定稿

XXX大学毕业设计开题报告201届毕业设计题目100m3卧式液化石油气储罐设计院(系)_____ 机械工程学院专业名称XXXXXXXXXX学生姓名XXX ______学生学号XXXXX指导教师XXX附件3:XXX XXXX 大学学生毕业设计(论文)开题报告表、查阅国内外文献情况(刊物名称、文献题目主要内容 )1. 国家质量技术监督局.GB150-1998《钢制压力容器》•中国标准出版社.19982. 国家质量技术监督局.《压力容器安全技术监察规程》 .中国劳动社会保障出版社.19993. 国家经济贸易委员会.JBT4736-2002《补强圈》.20024. 全国化工设备设计技术中心站.《化工设备图样技术要求》.2000.115. 郑津洋、董其伍、桑芝富.《过程设备设计》.化学工业出版社.20016. 黄振仁、魏新利.《过程装备成套技术设计指南》.化学工业出版社.20027. 国家医药管理局上海医药设计院.《化工工艺设计手册》.化学工业出版社.1996 8. 蔡纪宁.《化工设备机械基础课程设计指导书》 .化学工业出版社.2003年9.贺匡国.《化工容器及设备简明设计手册》.化学工业出版社.2002年8月10. 邵金玲.液化气储罐设计探讨[J].石油化工设备,1999 11. 万倩雯.液化石油气储罐的设计[J].河南化工,2000 12. 焦伟.卧式储罐储液体积的计算[J].煤气与热力,2001 13. 李圣明.液化石油气储罐设计的几个问题 [J].山西化工,200114. 王利畏.液化石油气储罐充液高度的计算 [J].科技情报开发与经济,200615. GB150-89《钢制压力容器》 16. JB4731-2000《钢制卧式容器》 17. 劳动部.压力容器安全技术监察规程[M].北京:劳动部锅炉压力容器安全杂志社,199018. 郑津洋,董其伍,桑芝富主编 .过程设备设计[M].北京:化学工业出版社,2005 19. Perry,R.H.,and Green,D. W Chemical Engineers' HeddMoGkaW-Hill,1984、与选题相关的调研报告(调研的时间、地点、内容) 1、调研时间和地点调研时间:2012.2.20-2012.4.8 共 6 周调研地点:XXX 机械有限公司等 2、调研内容液化石油气贮罐是盛装液化石油气的常用设备,由于该气体具有易燃易爆的 特点,因此在设计这种储罐时,要注意与一般气体贮罐的不同点, 尤其是安全与 防火,还要注课题名称 课题来源 姓名loom 卧式液化石油气储罐设计自拟XXX | 学号 | XXXX课题类型 导师 专业设计 XXXXX意在制造、安装等方面的特点。
最新20M3液化石油气储罐设计(1)

20M3液化石油气储罐设计(1)摘要本设计按过程装备与控制工程专业教学计划要求,在完成专业核心课程《过程设备设计》学习后,这对此课程安排的课程设计。
其目的是强化理论知识,并进行实践训练,培养学生解决工程实际问题的能力。
我的主要任务是完成20M3液化石油气储罐设计。
儿储罐属于存储压力容器(代号C)主要用于储存、盛装气体、液体、液化气体等介质的压力容器。
按照国家最新压力容器标准、规范进行设计,本着可靠、经济、适用的原则选取。
本次设计分成两个阶段,一为设计计算、绘制装备图草图,二为用CAD绘制总装配图。
本次设计按照工艺人员给定的工艺条件,计算确定储罐的轮廓尺寸的设计计算及相关的结构设计,其具体内容包括工艺设计、机械设计、技术条件的编制等等。
本次储罐设计是在孙海洋XX老师的耐心指导下完成的,XX老师对本次设计给予了莫大的帮助,对此表示由衷感谢。
前言 (2)第一章工艺计算 (3)1.1设计存储量 (3)1.2设计压力 (3)1.3设计温度确定 (4)第二章机械设计 (5)2.1承压壳体设计 (5)2.2零部设计 (9)第三章各种接管总体布局 (18)第四章强度计算校核 (19)4.1水压试验 (19)4.2应力校核 (20)4.3稳定性条件 (22)4.4补强计算 (22)4.5气密性试验 (25)总结 (26)参考文献: (27)前言压力容器的用途十分广泛。
它是在石油化学工业、能源工业、科研和军工等国民经济的各个部门都起着重要作用的设备。
压力容器一般由筒体、封头、法兰、密封元件、开孔和接管、支座等六大部分构成容器本体。
此外,还配有安全装置、表计及完成不同生产工艺作用的内件。
压力容器由于密封、承压及介质等原因,容易发生爆炸、燃烧起火而危及人员、设备和财产的安全及污染环境的事故。
目前,世界各国均将其列为重要的监检产品,由国家指定的专门机构,按照国家规定的法规和标准实施监督检查和技术检验。
根据设计要求和任务条件,通过工艺设计、工艺计算、材料选择、容器类别等进行初步的设计计算和草图的绘制。
液化石油气储罐课程设计

液化石油气储罐课程设计一、课程目标知识目标:1. 让学生掌握液化石油气的基本概念、性质和用途;2. 使学生了解液化石油气储罐的结构、工作原理及安全操作要求;3. 帮助学生掌握液化石油气的储存、运输和使用的相关知识点。
技能目标:1. 培养学生运用所学知识分析液化石油气储罐的能力;2. 提高学生实际操作液化石油气储罐的安全意识和技能;3. 培养学生通过小组合作、探讨问题,提高解决问题的能力。
情感态度价值观目标:1. 培养学生对液化石油气资源的合理利用和环境保护意识;2. 增强学生的安全意识,使其在使用液化石油气过程中能够自觉遵守相关规定;3. 激发学生对化学学科的兴趣,培养其探究精神和创新意识。
课程性质:本课程为化学学科的一节实践性课程,结合理论知识与实际操作,旨在提高学生对液化石油气储罐的认识和应用能力。
学生特点:考虑到学生所在年级,已具备一定的化学基础知识和实验操作技能,对新鲜事物充满好奇心,但安全意识尚需加强。
教学要求:注重理论与实践相结合,强调安全操作,培养学生的动手能力、思考能力和团队合作精神。
通过本课程的学习,使学生能够将所学知识应用于实际生活,提高解决问题的能力。
后续教学设计和评估将以具体学习成果为依据,确保课程目标的实现。
二、教学内容1. 液化石油气的基本概念与性质:包括液化石油气的定义、制备方法、主要成分及其物理化学性质。
相关教材章节:第二章“气体与溶液”,第三节“液化石油气的性质与制备”。
2. 液化石油气储罐的结构与工作原理:介绍储罐的类型、结构、工作原理及安全附件。
相关教材章节:第三章“化学实验设备”,第四节“液化石油气储罐及其安全附件”。
3. 液化石油气的储存、运输与使用:涉及液化石油气的储存方式、运输工具、使用规范及注意事项。
相关教材章节:第四章“化学试剂的储存与运输”,第一节“液化石油气的储存与运输”。
4. 液化石油气储罐的安全操作:讲解安全操作规程、事故处理方法及应急预案。
液化石油气卧式储罐课程设计

前言随着我国石油化工行业的快速发展,液化石油气作为炼油化工的副产品,以其经济高效、清洁环保以及灵活方便的优势占据着城乡能源市场,储配站的液化石油气通常采用球形储罐或卧式储罐进行储存。
液化石油气是一种低碳的烃类混合物,主要由乙烷、乙烯、丙烷、丙烯、丁烷、丁烯及少量的戊烷、戊烯等组成。
常温常压下是气态,在加压和降低温度的条件下变成液体。
气态相对密度为空气的2倍,液化石油气的饱和蒸气压随温度升高而急剧增加,其膨胀系数较大,一般为水的10倍以上,气化后体积膨胀250~ 300倍。
液化石油气是一种极易燃烧、爆炸的石油化工原料,其储罐属于具有较大危险的储存容器之一。
因此,在满足设施功能要求下,储罐具有良好的安全性是设计的首要问题。
目前我国普遍采用的常温压力贮罐一般有两种形式:球形储罐和圆筒形储罐。
球形储罐与圆筒形储罐相比,前者具有投资少,金属耗量少,占地面积少等优点,但加工制造及安装复杂,焊接工作量大,故安装费用较高。
一般储存总量大于500m3或单罐容积大于200m3时选用球形储罐比较经济。
而圆筒形贮罐具有加工制造安装简单,安装费用少等优点,但金属耗量大占地面积大。
所以在总贮量小于500m3,单罐容积小于100m3时选用卧式贮罐比较经济。
圆筒形贮罐按安装方式可分为卧式和立式两种。
在一般中、小型液化石油气站内大多选用卧式圆筒形贮罐,,只有某些特殊情况下(站内地方受限制等)才选用立式。
本次设计对液化石油气卧式储罐进行设计计算。
主要内容包括储罐工艺参数计算、储罐的结构设计、储罐的强度计算、应力校核、绘制设备总图以及针对一些安全问题提出对策措施。
各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。
目录1 概述 ................................................... 错误!未定义书签。
设计任务及原始参数................................... 错误!未定义书签。
液化石油气储罐设计

液化石油气储罐设计
1.储罐材料选择:
2.结构设计:
3.安全阀和泄压装置:
储罐设计需要考虑到可能发生的过压和过温情况。
为了确保储罐内部压力在可接受范围内,应安装安全阀和泄压装置。
这些装置将会在压力过高或温度过高时自动释放气体。
4.罐体绝热:
由于液化石油气的低温特性,储罐设计需要确保罐体具有良好的绝热特性。
这可以通过采用绝热材料来实现,其中包括内部绝热层、外部绝热层和真空层等。
5.地震设计:
储罐的地震设计是非常重要的,特别是对于经常发生地震的地区。
储罐的结构应具备足够的抗震能力,以确保在地震发生时储罐不会受到严重损坏。
6.罐体检测和监测系统:
储罐应配备完备的检测和监测系统,以实时监测储罐内的压力、温度和液位等参数。
这有助于及时发现潜在的故障,并采取相应的措施进行修复和保养。
7.罐体密封系统:
储罐的密封系统对于防止气体泄漏和液体挥发至关重要。
密封系统应设计为可靠的,并在罐体发生压力变化时能够保持稳定的密封效果。
综上所述,液化石油气储罐设计应综合考虑储罐的材料选择、结构设计、安全阀和泄压装置、罐体绝热、地震设计、检测和监测系统以及罐体密封系统等关键要素。
通过合理的设计和建造,可以确保液化石油气储罐的安全运行,防止事故发生,保护人员和环境的安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液化石油气储罐毕业设计_目录绪论....................................................................................... ............ (2)第一章设计参数的选择1.1 设计题目....................................................................................... ............ (3)1.2 原始数据....................................................................................... ............ (3)1.3 设计压力....................................................................................... ........ . (3)1.4 设计温第2页(共58页)度....................................................................................... ........ . (3)1.5 主要元件材料的选择....................................................................................... ........... .. (3)第二章容器的结构设计2.1 圆筒厚度的设计....................................................................................... ........... . (4)2.2 封头壁厚的设计....................................................................................... .......... .. (4)2.3 筒体和封头的结构设计....................................................................................... .......... .. (5)2.4 人孔的选第3页(共58页)择....................................................................................... ........ (6)2.5 接管,法兰,垫片和螺栓(柱)............................................................................... .................. (6)2.6 鞍座选型和结构设计....................................................................................... ......... . (9)第三章开孔补强设计3.1 补强方法判别..................................................................................... .......... . (11)3.2 有效补强范围....................................................................................... ........ (11)3.3 有效补强面第4页(共58页)积....................................................................................... ........ (12)3.4 补强面积....................................................................................... ........ .. (12)第四章强度计算4.1 水压试验校核....................................................................................... ........ (13)4.2 圆筒轴向弯矩计算....................................................................................... ........ . (13)4.3 圆筒轴向应力计算并校核.................................................................................... .. . (14)4.4 切向剪应力的计算及校第5页(共58页)核.................................................................................... .. . (15)4.5 圆筒周向应力的计算和校核.................................................................................... .. (16)4.6 鞍座应力计算并校核.................................................................................... .. (18)4.7地震引起的地脚螺栓应力.................................................................................... .. (20)附录:参考文献.............................................................................. ........ (22)第6页(共58页)第7页(共58页)绪论液化石油气贮罐是盛装液化石油气的常用设备, 由于该气体具有易燃易爆的特点, 因此在设计这种贮罐时, 要注意与一般气体贮罐的不同点, 尤其是安第8页(共58页)全与防火, 还要注意在制造、安装等方面的特点。
目前我国普遍采用常温压力贮罐, 常温贮罐一般有两种形式: 球形贮罐和圆筒形贮罐。
球形贮罐和圆筒形贮罐相比: 前者具有投资少, 金属耗量少, 占地面积少等优点, 但加工制造及安装复杂, 焊接工作量大, 故安装费用较高。
一般贮存总量大于500m 3或单罐容积大于200m 3时选用球形贮罐比较经济; 而圆筒形贮罐具有加工制造安装简单, 安装费用少等优点, 但金属耗量大占地面积大, 所以在总贮量小于500m 3, 单罐容积小于100m 3时选用卧式贮罐比较经济。
圆筒形贮罐按安装方式可分为卧式和立式两种。
在一般中、小型液化石油气站内大多选用卧式圆筒形贮罐, 只有某些特殊情况下(站内地方受限制等) 才选用立式。
本文主要讨论卧式圆筒形液化石油气贮罐的设计。
第9页(共58页)液化石油气呈液态时的特点。
(1) 容积膨胀系数比汽油、煤油以及水等都大, 约为水的16倍, 因此, 往槽车、贮罐以及钢瓶充灌时要严格控制灌装量, 以确保安全;(2) 容重约为水的一半。
因为液化石油气是由多种碳氢化合物组成的, 所以液化石油气的液态比重即为各组成成份的平均比重, 如在常温20℃时, 液态丙烷的比重为0. 50, 液态丁烷的比重为0. 56~0. 58, 因此, 液化石油气的液态比重大体可认为在0. 51左右, 即为水的一半。
卧式液化石油气贮罐设计的特点。
卧式液化石油气贮罐也是一个储存压力容器, 也应按GB150《钢制压力容器》进行制造、试验和验收; 并接受劳动部颁发《压力容器安全技术监察规程》(简称容规) 的监督。
液化石油气贮罐, 不论是卧式还是球罐都属第三类压力容器。
贮罐主要有筒体、封头、人孔、支座以及第10页(共58页)机械设计设计说明书各种接管组成。
贮罐上设有液相管、液相回液管、气相管、排污管以及安全阀、压力表、温度计、液面计等。
第一章设计基础承受介质静压力作用的密闭容器统称为压力容器。
压力容器设计的一般过程为:按用户提供的设计条件图确定压力容器的设计参数,选择合适材料,按相关标准进行结构设计并进行强度校核,最后出具设计图机械设计设计说明书纸,计算文件及说明文件。
对一个刚进行压力容器设计人员来说,还应了解以下一些内容。
1.1压力容器标准体系机械设计设计说明书1.2 参数定义1.2.1压力:除注明者外,压力均为表压力。
1.2.2工作压力:在正常情况下,容器顶部可能达到的最高压力。
1.2.3设计压力:设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条件,其值不低于工作历力,一般为工作压力的1.05~1.1倍。
1.2.4计算压力:在相应设计温度下,用以确定元件厚度压力,其中包括液柱静压力。
当元件所承受的液柱静压力小于5%设计压力时,可忽略不计。
1.2.5设计温度:容器在正常工作情况下,设定的元件的金属温度(沿元件金属截面的温度平均值),设计温度与设计压力一起作为设计载荷条件。
1.2.6计算厚度:按各公试计算得到的厚度,需要时,尚应计入其他载荷所需厚度。
机械设计设计说明书1.2.7设计厚度:计算厚度与腐蚀裕量之和。
1.2.8名义厚度:设计厚度加上钢材厚度负偏差后向上圆整至钢材标准规格的厚度,即标注在图样上的厚度。
1.2.9有效厚度:名义厚度减去腐蚀裕量和钢材厚度负偏差。
其值小于设计厚度。
1.2.10厚度附加量C:厚度附加量是钢材厚主负偏差C1与腐蚀裕量C2之和。
1.2.11钢材厚度负偏差C1:钢板或钢管的厚度负偏按钢材标准的规定,当钢材的厚度负偏差不大于0.25mm,且不超过名义厚度的6%,负偏差可忽略不计。
1.2.12腐蚀裕量C2:为防止容器元件由于腐蚀、机械磨损而导致厚度削弱减薄,而预先增加的一个厚度量。