新的混合智能优化算法及其多目标优化应用

新的混合智能优化算法及其多目标优化应用
新的混合智能优化算法及其多目标优化应用

新的混合智能优化算法及其多目标优化应用

张汉强;卢建刚;陈金水

【期刊名称】《计算机应用》

【年(卷),期】2010(030)005

【摘要】针对人工鱼群算法后期收敛速度较慢、解精度不高的不足,按照分阶段寻优和变参数寻优的改进策略,并结合禁忌搜索算法中的相关规则,提出一种新的混合智能优化算法.该算法将寻优过程分为锁定最优解或者局部解邻域和求得高精度最优解两个阶段,每个阶段设置不同的参数并结合禁忌搜索算法以提高收敛速度和最优解精度.典型函数验证表明,该算法收敛速度快、精度高;同时,对于多目标优化问题,该算法可以提高Pareto最优解集质量,扩大决策分布范围,维持决策多样性,有利于决策者作出决策.

【总页数】3页(1290-1292)

【关键词】人工鱼群算法;分阶段寻优和变参数寻优;禁忌搜索;多目标优化

【作者】张汉强;卢建刚;陈金水

【作者单位】浙江大学,工业控制技术国家重点实验室,杭州,310027;浙江大学,工业控制技术国家重点实验室,杭州,310027;浙江大学,工业控制技术国家重点实验室,杭州,310027

【正文语种】中文

【中图分类】TP273+.5

【相关文献】

1.多目标智能优化算法及其在固液混合火箭发动机系统优化设计中的应用[C], 饶大林; 池元成; 方杰; 蔡国飙

群体协同智能优化算法改进及其应用研究

群体协同智能优化算法改进及其应用研究优化问题广泛地存在于实际工程问题和科学研究中。优化问题具有解空间规模大、维数高的特点,一些传统优化算法在求解大规模优化问题时,存在计算复杂度高、时间长等问题。群体智能算法因其参数少、模型简单、易于实现等优点,已成为求解优化问题新的研究方向。随着人工智能的高速发展,电子商务、移动互联网金融无时无刻不断产生数据。 数据挖掘技术越来越受到众多领域的广泛关注。聚类技术是数据挖掘领域的一个重要分支,在无监督条件下,用于挖掘数据潜在结构,已成为人工智能领域研究热点。密度峰值快速搜索聚类算法是聚类算法中极具竞争力的一种新型聚类算法,已得到各领域广泛认可,但其仍存在手动设置参数的缺陷。本文将布谷鸟搜索算法作为主要研究对象,对其进行研究与改进,并对密度峰值快速搜索聚类算法存在缺陷进行改进。 本文主要内容和创新点如下:(1)针对布谷鸟搜索算法在处理复杂函数时,算法收敛速度慢;在处理多维数据时,算法寻优精度低,算法稳定性较差的问题,提出动态自适应步长的双重策略的布谷鸟搜索算法。算法引入动态自适应步长机制和双重评价策略,动态步长中学习因子加速算法在解空间中搜索速度,在算法迭代前期,双重评价策略中的逐列排序策略在全局搜索中快速定位,并引入动态发现概率增加全局搜索能力。(2)针对密度峰值快速搜索聚类算法存在手动设置截断距离d_c,欧式距离无法准确反映数据间的相似性等缺陷,提出布谷鸟优化的密度峰值快速搜索聚类算法。算法通过布谷鸟搜索算法优化截断距离,并引入余弦相似度,将方向与实际距离相结合,更好区分两类中间区域数据点的归属度。 仿真实验结果表明,改进密度峰值快速搜索聚类算法具有较好聚类性能。(3)基于布谷鸟优化的密度峰值快速搜索聚类算法,对银行个人信贷数据进行聚类。仿真实验结果表明,本文提出的方法能够较为有效地分析和预测银行个人信贷违约情况,帮助银行信贷部门合理地做出决策。

遗传算法在多目标优化的应用:公式,讨论,概述总括

遗传算法在多目标优化的应用:公式,讨论,概述/总括 概述 本文主要以适合度函数为基础的分配方法来阐述多目标遗传算法。传统的群落形成方法(niche formation method)在此也有适当的延伸,并提供了群落大小界定的理论根据。适合度分配方法可将外部决策者直接纳入问题研究范围,最终通过多目标遗传算法进行进一步总结:遗传算法在多目标优化圈中为是最优的解决方法,而且它还将决策者纳入在问题讨论范围内。适合度分配方法通过遗传算法和外部决策者的相互作用以找到问题最优的解决方案,并且详细解释遗传算法和外部决策者如何通过相互作用以得出最终结果。 1.简介 求非劣解集是多目标决策的基本手段。已有成熟的非劣解生成技术本质上都是以标量优化的手段通过多次计算得到非劣解集。目前遗传算法在多目标问题中的应用方法多数是根据决策偏好信息,先将多目标问题标量化处理为单目标问题后再以遗传算法求解,仍然没有脱离传统的多目标问题分步解决的方式。在没有偏好信息条件下直接使用遗传算法推求多目标非劣解的解集的研究尚不多见。 本文根据遗传算法每代均产生大量可行解和隐含的并行性这一特点,设计了一种基于排序的表现矩阵测度可行解对所有目标总体表现好坏的向量比较方法,并通过在个体适应度定标中引入该方法,控制优解替换和保持种群多样性,采用自适应变化的方式确定交叉和变异概率,设计了多目标遗传算法(Multi Objective Genetic Algorithm, MOGA)。该算法通过一次计算就可以得到问题的非劣解集, 简化了多目标问题的优化求解步骤。 多目标问题中在没有给出决策偏好信息的前提下,难以直接衡量解的优劣,这是遗传算法应用到多目标问题中的最大困难。根据遗传算法中每一代都有大量的可行解产生这一特点,我们考虑通过可行解之间相互比较淘汰劣解的办法来达到最 后对非劣解集的逼近。 考虑一个n维的多目标规划问题,且均为目标函数最大化, 其劣解可以定义为: f i (x * )≤f i (x t ) i=1,2,??,n (1) 且式(1)至少对一个i取“<”。即至少劣于一个可行解的x必为劣解。 对于遗传算法中产生大量的可行解,我们考虑对同一代中的个体基于目标函数相互比较,淘汰掉确定的劣解,并以生成的新解予以替换。经过数量足够大的种群一定次数的进化计算,可以得到一个接近非劣解集前沿面的解集,在一定精度要求下,可以近似的将其作为非劣解集。 个体的适应度计算方法确定后,为保证能得到非劣解集,算法设计中必须处理好以下问题:(1)保持种群的多样性及进化方向的控制。算法需要求出的是一组不同的非劣解,所以计算中要防止种群收敛到某一个解。与一般遗传算法进化到

基于优化问题的多目标布谷鸟搜索算法

基于优化问题的多目标布谷鸟搜索算法

基于优化问题的多目标布谷鸟搜索算法 关键字:布谷鸟搜索、元启发式算法、多目标、最优化 摘要:在工程设计方面,很多问题都是典型的多目标问题,而且,都是复杂的非线性问题。现在我们研究的优化算法就是为了解决多目标化的问题,使得与单一目标问题的解决有明显的区别,计算结果和函数值有可能会增加多目标问题的特性。此时,元启发式算法开始显示出自己在解决多目标优化问题中的优越性。在本篇文章中,我们构造了一个新的用于解决多目标优化问题的算法——布谷鸟搜索算法。我们通过一系列的多目标检验函数对其的有效性已经做出来检验,发现它可以应用于解决结构设计等问题中去,例如:光路设计、制动器设计等。另外,我么还对该算法的主要特性和应用做了相关的分析。 1.简介 在设计问题中经常会考虑到很多多重的复杂问题,而且这些问题往往都具有很高的非线性性。在实际中,不同的目标之间往往会有分歧和冲突,有时候,实际的最优化解决方案往往不存在,而一些折中的和近似的方案往往也可以使用。除了这些挑战性和复杂性以外,设计问题还会受到不同设计目标的约束,而且还会被设计代码、设计标准、材料适应性、和可用资源的选择,以及

设计花费等所限制,甚至是关于单一目标的全局最优问题也是如此,如果设计函数有着高度的非线性性,那么全局最优解是很难达到的,而且,很多现实世界中的问题经常是NP-hard的,这就意味着没有一个行之有效的算法可以解决我们提出的问题,因此,对于一个已经提出的问题,启发式算法和科学技术与具体的学科交叉知识经常被用于其中,用来作为解决问题的向导。 另一方面,元启发算法在解决此类优化问题方面是非常有效的,而且已经在很多刊物和书籍中得以运用,与单一目标的优化问题相反的是,多目标优化问题具有典型的复杂性和困难性,在单一目标的优化问题中我们必须去找出一个最优化的解决方法,此方法在问题的解决中存在着一个单一的点,并且在此问题中不包括那些多重的、平均优化的点,对于一个多目标的优化问题,存在着名为Pareto-front的多重的复杂的优化问题,为了了解我们所不熟悉的Pareto-front问题,我们需要收集并整理很多不同的方法,从而,此计算结果将会随着近似解的变化、问题的复杂度和解决方法的多样性而有所变化甚至增加。在理论上,此类解决方法应包括问题并且应相对的有一致无分歧的分布情况,然而,还没有科学的方法可以证明这种解决方法可以在实际中得以应用。 从问题的出发点我们可以得知,算法可以在单一目标优化问题中运行的很好,但是却不能在多目标的优化问题中直接的运用,除非是在特殊的环境与条件下才可以应用。例如,使用一些

智能优化算法综述

智能优化算法的统一框架 指导老师:叶晓东教授 姓名:李进阳 学号:2 班级:电磁场与微波技术5班 2011年6月20日

目录 1 概述 (3) 2群体智能优化算法.................................. 错误!未定义书签。 人工鱼群算法 (4) 蚁群算法 (5) 混合蛙跳算法 (9) 3神经网络算法 (10) 神经网络知识点概述 (10) 神经网络在计算机中的应用 (11) 4模拟退火算法 (15) 5遗传算法.......................................... 错误!未定义书签。 遗传算法知识简介 (17) 遗传算法现状 (18) 遗传算法定义 (19) 遗传算法特点和应用 (20) 遗传算法的一般算法 (21) 遗传算法的基本框架 (26) 6总结 (28) 7感谢 (29)

1概述 近年来,随着人工智能应用领域的不断拓广,传统的基于符号处理机制的人工智能方法在知识表示、处理模式信息及解决组合爆炸等方面所碰到的问题已变得越来越突出,这些困难甚至使某些学者对强人工智能提出了强烈批判,对人工智能的可能性提出了质疑。众所周知,在人工智能领域中,有不少问题需要在复杂而庞大的搜索空间中寻找最优解或准优解。像货朗担问题和规划问题等组合优化问题就是典型的例子。在求解此类问题时,若不能利用问题的固有知识来缩小搜索空间则会产生搜索的组合爆炸。因此,研究能在搜索过程中自动获得和积累有关搜索空间的知识,并能自适应地控制搜索过程,从而得到最优解或准有解的通用搜索算法一直是令人瞩目的课题。智能优化算法就是在这种背景下产生并经实践证明特别有效的算法。 2群体智能优化算法 自然界中群体生活的昆虫、动物,大都表现出惊人的完成复杂行为的能力。人们从中得到启发,参考群体生活的昆虫、动物的社会行为,提出了模拟生物系统中群体生活习性的群体智能优化算法。在群体智能优化算法中每一个个体都是具有经验和智慧的智能体 (Agent) ,个体之间存在互相作用机制,通过相互作用形成强大的群体智慧来解决复杂的问题。自 20世纪 90年代模拟蚂蚁行为的蚁群算法(ACO)提出以来,又产生了模拟鸟类行为的微粒群算法 ( PSO)、模拟鱼类生存习性的人工鱼群算法、模拟青蛙觅食的混合蛙跳算法 ( SFLA)等。这些群体智能优化算法的出现,使原来一些复杂的、难于用常规的优化算法进行处理的问题可以得到解决,大大增强了人们解决和处理优化问题的能力,这些算法不断地用于解决工程实际中的问题,使得人们投入更大的精力对其理论和实际应用进行研究。群体智能优化算法本质上是一种概率搜索,它不需要问题的梯度信息具有以下不同于传统优化算法的特点: ①群体中相互作用的个体是分布式的,不存在直接的中心控制,不会因为个别个体出现故障而影响群体对问题的求解,具有较强的鲁棒性; ②每个个体只能感知局部信息,个体的能力或遵循规则非常简单,所以群体智能的实现简单、方便; ③系统用于通信的开销较少,易于扩充; ④自

浅析多目标优化问题

浅析多目标优化问题 【摘要】本文介绍了多目标优化问题的问题定义。通过对多目标优化算法、评估方法和测试用例的研究,分析了多目标优化问题所面临的挑战和困难。 【关键词】多目标优化问题;多目标优化算法;评估方法;测试用例 多目标优化问题MOPs (Multiobjective Optimization Problems)是工程实践和科学研究中的主要问题形式之一,广泛存在于优化控制、机械设计、数据挖掘、移动网络规划和逻辑电路设计等问题中。MOPs有多个目标,且各目标相互冲突。对于MOPs,通常存在一个折衷的解集(即Pareto最优解集),解集中的各个解在多目标之间进行权衡。获取具有良好收敛性及分布性的解集是求解MOPs的关键。 1 问题定义 最小化MOPs的一般描述如下: 2 多目标优化算法 目前,大量算法用于求解MOPs。通常,可以将求解MOPs的算法分为两类。 第一类算法,将MOPs转化为单目标优化问题。算法为每个目标设置权值,通过加权的方式将多目标转化为单目标。经过改变权值大小,多次求解MOPs 可以得到多个最优解,构成非支配解集[1]。 第二类算法,直接求解MOPs。这类算法主要依靠进化算法。进化算法这种面向种群的全局搜索法,对于直接得到非支配解集是非常有效的。基于进化算法的多目标优化算法被称为多目标进化算法。根据其特性,多目标进化算法可以划分为两代[2]。 (1)第一代算法:以适应度共享机制为分布性策略,并利用Pareto支配关系设计适应度函数。代表算法如下。VEGA将种群划分为若干子种群,每个子种群相对于一个目标进行优化,最终将子种群合并。MOGA根据解的支配关系,为每个解分配等级,算法按照等级为解设置适应度函数。NSGA采用非支配排序的思想为每个解分配虚拟适应度值,在进化过程中,算法根据虚拟适应度值采用比例选择法选择下一代。NPGA根据支配关系采用锦标赛选择法,当解的支配关系相同时,算法使用小生境技术选择最优的解进入下一代。 (2)第二代算法:以精英解保留机制为特征,并提出了多种较好的分布性策略。代表算法如下。NSGA-II降低了非支配排序的复杂度,并提出了基于拥挤距离的分布性策略。SPEA2提出了新的适应度分配策略和基于环境选择的分布性策略。PESA-II根据网络超格选择个体并使用了基于拥挤系数的分布性策略。

多目标优化实例和matlab程序

NSGA-II 算法实例 目前的多目标优化算法有很多, Kalyanmoy Deb 的带精英策略的快速非支配排序遗传算法(NSGA-II) 无疑是其中应用最为广泛也是最为成功的一种。本文用的算法是MATLAB 自带的函数gamultiobj ,该函数是基于NSGA-II 改进的一种多目标优化算法。 一、 数值例子 多目标优化问题 424221********* 4224212212112 12min (,)10min (,)55..55 f x x x x x x x x x f x x x x x x x x x s t x =-++-=-++-≤≤??-≤≤? 二、 Matlab 文件 1. 适应值函数m 文件: function y=f(x) y(1)=x(1)^4-10*x(1)^2+x(1)*x(2)+x(2)^4-x(1)^2*x(2)^2; y(2)=x(2)^4-x(1)^2*x(2)^2+x(1)^4+x(1)*x(2); 2. 调用gamultiobj 函数,及参数设置: clear clc fitnessfcn=@f; %适应度函数句柄 nvars=2; %变量个数 lb=[-5,-5]; %下限 ub=[5,5]; %上限 A=[];b=[]; %线性不等式约束 Aeq=[];beq=[]; %线性等式约束 options=gaoptimset('paretoFraction',0.3,'populationsize',100,'generations', 200,'stallGenLimit',200,'TolFun',1e-100,'PlotFcns',@gaplotpareto); % 最优个体系数paretoFraction 为0.3;种群大小populationsize 为100,最大进化代数generations 为200, % 停止代数stallGenLimit 为200, 适应度函数偏差TolFun 设为1e-100,函数gaplotpareto :绘制Pareto 前端 [x,fval]=gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,options)

智能优化算法作业

一、优化算法及其应用 1.简介 共轭梯度法(Conjugate Gradient )是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse 矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。 在各种优化算法中,共轭梯度法是非常重要的一种。其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。 2.算法原理 共轭梯度法是利用目标函数梯度逐步产生共轭方向作为线搜索方向的方法,每次搜索方向都是在目标函数梯度的共轭方向,搜索步长通过一维极值算法确定。 设二次函数为1 ()2T T f X C b X X AX =++,其中C 为常数,,b X 为n 维列向 量,A 为对称正定矩阵,用共轭梯度法求()f X 的极小点: 共轭梯度法探索的第一步是沿负梯度方向。即()k X 点按()()()k k S f X =-?方向找到(1)k X +,然后沿着与上一次探索方向()k S 相共轭的方向(1)k S +进行探索直达到最小点*X 。 令()(1)(1)()k k k k S f X S β++=-?+。 上式的意义就是以原来的负梯度()()()k k f X S -?=的一部分即()k k S β,加上新的负梯度()(1)k f X +-?,构造(1)k S +。 在上式中k β的选择,应使n 维欧氏空间n E 中的两个非零向量()k S 与(1)k S +关于矩阵A 共轭。即 (1)() (0,1,2,...1)T k k S AS k n +??==-?? 因 1()2 T T f X C b X X AX =++ ,故有()f X b AX ?=+ 若令 ()()()()k k k g f X b AX =?=+ ()(1)(1)(1)k k k g f X b AX +++=?=+

智能优化方法论文

研究生课程论文及评阅书 (2013—2014学年下学期) 论文题目:几种现代优化算法的比较研究课程名称:智能优化方法及应用 任课教师:周永权 授课时间:2014年2月日至2014年6月日 学号:2013081203402 姓名:吴丽佳 专业名称:计算机应用技术 所在学院:信息科学与工程学院

课程论文格式要求 1.课程论文一律使用标准A4复印纸打印,以左侧为准装订成册,本页装订在封面的背面。 2.课程论文格式按照《广西民族大学学报》论文的格式要求实行。 3.论文打印的格式要求: (1)论文标题(使用黑体二号加黑;一级标题、二级标题、三级标题分别使用宋体三号、四号及小四号并加黑); (2)摘要、关键字(需使用宋体小四号); (3)正文(使用宋体小四号,行距23磅); (4)参考文献(使用宋体五号)。 4.“任课教师的评语”放在最后,单独一页。

几种现代优化算法的比较研究 摘要:现代最优化算法比较常见的有遗传算法、粒子群算法、群体复合形进化算法、鱼群算法、模拟退火算法和蚁群算法。文章主要是对遗传算法、粒子群算法和鱼群算法三个算法的优化性能进行比较。首先介绍了三个算法的基本思想和算法优化过程,以此可以了解三种算法有着自身的特点和优势,促进理解后面不同的优化结果和改进方向。文章中,将三种算法分别对这三个函数用VC编出程序,得出优化结果,再针对结果分析算法。三个典型函数特点各不同,但对算法的优化能力要求都比较高,在不同方面考验了算法的收敛和爬山功能。最后,通过分析三个函数的九个优化结果,提出这三种算法的优点和不足,并列出改进措施。从分析结果可以看出遗传算法要优于另两种算法,并且其改进的余地也是最大的,粒子群算法的优化结果次之,鱼群算法的优化结果相对来说是最差的,但三种算法都可以进行改进以达到更好的优化结果。 关键词:优化;遗传算法;粒子群算法;鱼群算法;比较 Abstract: Modern optimization includes genetic algorithm, particle swarm algorithm, multi-complex algorithm, fish school algorithm, Simulated Annealing algorithm and ant colony algorithm. The paper mainly compares the optimization abilities of genetic algorithm, particle swarm algorithm and fish school algorithm. Firstly, the article introduces the basic ideas and the optimization processes of the three algorithms, from which the characteristics and advantages of the three algorithms will be found out, after that, the optimization results and the ways of improvements behind will be understood easily. Secondly, the three algorithms program with VC for the three functions, so get the results of optimization and analyze them. The three representative functions have specialties from each other, but they have one same point which is having much more demands on the algorithms, which tests the abilities of astringency and mountain climbing. At last, through analyzing the nine optimization results of three functions, the paper explains the advantages and the disadvantages of the three algorithms, and puts forward the improvement means. From the conclusion, genetic algorithm is much better than the other two optimization algorithms, and its room of improvement is the most maximum in the three algorithms too. The article also

多目标优化算法与求解策略

多目标优化算法与求解策略 2多目标优化综述 2.1多目标优化的基本概念 多目标优化问题(Multi-objective Optimization Problem,MOP)起源于许多实际复杂系统的设计、建模和规划问题,这些系统所在的领域包括工业制造、城市运输、资本预算、森林管理、水库管理、新城市的布局和美化、能量分配等等。几乎每个重要的现实生活中的决策问题都要在考虑不同的约束的同时处理若干相互冲突的目标,这些问题都涉及多个目标的优化,这些目标并不是独立存在的,它们往往是祸合在一起的互相竞争的目标,每个目标具有不同的物理意义和量纲。它们的竞争性和复杂性使得对其优化变得困难。 多目标最优化是近20多年来迅速发展起来的应用数学的一门新兴学科。它研究向量目标函数满足一定约束条件时在某种意义下的最优化问题。由于现实世界的大量问题,都可归结为含有多个目标的最优化问题,自70年代以来,对于多目标最优化的研究,在国内和国际上都引起了人们极大的关注和重视。特别是近10多年来,理论探索不断深入,应用范围日益广泛,研究队伍迅速壮大,显示出勃勃生机。同时,随着对社会经济和工程设计中大型复杂系统研究的深入,多目标最优化的理论和方法也不断地受到严峻挑战并得到快速发展。近几年来,将遗传算法(Genetic Algorithm,GA)应用于多目标优化问题成为研究热点,这种算法通常称作多目标优化进化算法或多目标优化遗传算法。由于遗传算法的基本特点是多方向和全局搜索,这使得带有潜在解的种群能够一代一代地维持下来。从种群到种群的方法对于搜索Pareto解来说是十分有益的。 一般说来,科学研究与工程实践中许多优化问题大都是多目标优化问题。多目标优化问题中各目标之间通过决策变量相互制约,对其中一个目标优化必须以其它目标作为代价,而且各目标的单位又往往不一致,因此很难客观地评价多目标问题解的优劣性。与单目标优化问题的本质区别在于,多目标优化问题的解不是唯一的,而是存在一个最优解集合,集合中

混合群智能优化算法研究及应用

混合群智能优化算法研究及应用 优化问题广泛地存在于科学研究和工程实践中。群智能优化算法是优化算法中最新的一个分支,也是最热门的发展方向。群智能优化算法是通过模拟自然界中生物间相互合作、共享信息等群体行为而建立起来的随机搜索算法,相较于经典优化算法具有结构简单、易于实现等优点。不同的群智能优化算法是模拟不同生物行为形成的,所以它们各具特点和适用场景。然而,单一的群智能优化算法均有其局限性,如搜索精度不够高、收敛速度慢、性能受参数影响较大和容易陷入局部最优等。将不同群智能优化算法有机结合,设计混合群智能优化算法是一种提高算法性能的有效方法,具有重要的研究意义。本文的主要研究内容及创新点包括以下几个方面:(1)针对单目标数值优 化问题提出了一种基于跟随蜂搜索的自适应粒子群算法(Follower Bee Search Based Adapitve Particle Swarm Optimization,F-APSO)。首先在经典粒子群算法粒子飞行轨迹分析的基础上提出了一种自适 应的粒子群算法(Adapitve Particle Swarm Optimization,APSO), 提高了算法在求解单峰问题时的性能。然后提出了一种针对自适应粒子群算法的稳定性分析方法,基于该方法对APSO进行了稳定性分析,给出了能够保证算法稳定的参数取值条件。接着通过引入人工蜂群算法中的跟随蜂搜索,提高了算法的开拓性,并将APSO的稳定性条件拓展到了 F-APSO中。仿真实验表明F-APSO在求解单目标数值优化问题时在解的质量和时间消耗上都具有良好表现。将F-APSO用于解决矿山生产排程优化问题,与原有生产方案相比优化后的方案在不同铁

智能优化算法(蚁群算法和粒子群算法)

7.1 蚁群优化算法概述 ?7.1.1 起源 ?7.1.2 应用领域 ?7.1.3 研究背景 ?7.1.4 研究现状 ?7.1.5 应用现状

7.1.1 蚁群优化算法起源 20世纪50年代中期创立了仿生学,人们从生物进化的机理中受到启发。提出了许多用以解决复杂优化问题的新方法,如进化规划、进化策略、遗传算法等,这些算法成功地解决了一些实际问题。

20世纪90年代意大利学者M.Dorigo,V.Maniezzo,A.Colorni等从生物进化的机制中受到启发,通过模拟自然界蚂蚁搜索路径的行为,提出来一种新型的模拟进化算法——蚁群算法,是群智能理论研究领域的一种主要算法。

背景:人工生命 ?“人工生命”是来研究具有某些生命基本特征的人工系统。人工生命包括两方面的内容。 ?研究如何利用计算技术研究生物现象。?研究如何利用生物技术研究计算问题。

?现在关注的是第二部分的内容,现在已经有很多源于生物现象的计算技巧。例如,人工神经网络是简化的大脑模型,遗传算法是模拟基因进化过程的。 ?现在我们讨论另一种生物系统-社会系统。更确切的是,在由简单个体组成的群落与环境以及个体之间的互动行为,也可称做“群智能”(swarm intelligence)。这些模拟系统利用局部信息从而可能产生不可预测的群体行为(如鱼群和鸟群的运动规律),主要用于计算机视觉和计算机辅助设计。

?在计算智能(computational intelligence)领域有两种基于群智能的算法。蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization)。前者是对蚂蚁群落食物采集过程的模拟,已经成功运用在很多离散优化问题上。

多目标优化进化算法比较综述

龙源期刊网 https://www.360docs.net/doc/486914040.html, 多目标优化进化算法比较综述 作者:刘玲源 来源:《决策与信息·下旬刊》2013年第07期 摘要多目标优化是最优化领域的一个重要研究方向,本文简要介绍了多目标优化的模型和几种多目标优化的进化算法,并对算法进行了简要比较。 关键词多目标优化粒子群遗传算法蚁群算法人工免疫系统 中图分类号:TP391 文献标识码:A 一、背景 多目标优化(Multiobjective OptimizaTionProblem,MOP)是最优化的一个重要分支,多目标问题中的各目标往往是有着冲突性的,其解不唯一,如何获得最优解成为多目标优化的一个难点,目前还没有绝对成熟与实用性好的理论。近年来,粒子群算法、遗传算法、蚁群算法、人工免疫系统、等现代技术也被应用到多目标优化中,使多目标优化方法取得很大进步。本文将其中四种多目标优化的进化算法进行一个简单的介绍和比较。 二、不同算法介绍 (一)多目标遗传算法。 假定各目标的期望目标值与优先顺序已给定,从优先级最高的子目标向量开始比较两目标向量的优劣性,从目标未满足的子目标元素部分开始每一级子目标向量的优劣性比较,最后一级子目标向量中的各目标分量要全部参与比较。给定一个不可实现的期望目标向量时,向量比较退化至原始的Pareto排序,所有目标元素都必须参与比较。算法运行过程中,适应值图景可由不断改变的期望目标值改变,种群可由此被引导并集中至某一特定折中区域。当前种群中(基于Pareto最优概念)优于该解的其他解的个数决定种群中每一个向量解的排序。 (二)人工免疫系统。 人工免疫算法是自然免疫系统在进化计算中的一个应用,将抗体定义为解,抗原定义为优化问题,抗原个数即为优化子目标的个数。免疫算法具有保持个体多样性、搜索效率高、群体优化、避免过早收敛等优点。其通用的框架是:将优化问题的可行解对应抗体,优化问题的目标函数对应抗原,Pareto最优解被保存在记忆细胞集中,并采取某种机制对记忆集进行不断更新,进而获得分布均匀的Pareto最优解。 (三)多目标PSO约束算法。

09第九章 多目标优化算法

第九章多目标优化算法习题与答案 1. 填空题 (1)多目标优化问题由于存在目标,使得同时优化的对象增多。由于目标之间往往相互冲突,某一目标性能的提高会引起其他目标性能的,因此只能通过的方法使所有目标尽可能达到最优。 (2)多目标优化问题需要求解一个由不同程度折中的组成的解集,并且需要保证解集的和,这就导致多目标优化问题的求解难度远远大于单目标优化问题。 解释: 本题考查多目标优化算法的基础知识。 具体内容请参考课堂视频“第9章多目标优化算法”及其课件。 答案: (1)多个,降低,权衡折中 (2)最优解,收敛性,均匀性 2.如何理解多目标优化问题? 解释: 本题考查多目标优化问题的形式和实质。 内容请参考课堂视频“第9章多目标优化算法”及其课件。 答案: 多目标优化问题由于存在多个目标,优化对象增多,且目标之间往往是相互冲突的,某一目标性能的提高会引起其他目标性能的降低,因此只能通过权衡折中的方法使所有目标尽可能达到最优。不同于单目标优化只需求得一个最优解,多目标优化需要求解一个由不同程度折中的最优解组成的解集,且需同时保证解集的收敛性和均匀性。例如,购买汽车时考虑到汽车性能和价格两个方面,往往

当性能较好时性能优良且价格昂贵,而性能较差时价格低廉,人们总是想得到价格便宜同时性能又好的汽车,但这两方面往往不能同时兼优,只能在某一方面有所偏重,这就形成了一个以汽车性能(比如百米加速时间)和价格为两个冲突目标的多目标优化问题。 3. 试举例说明Pareto 支配关系具有传递性。 解释: 本题考查Pareto 支配关系的性质。 内容请参考课堂视频“第9章多目标优化算法”及其课件。 答案: 假设两目标最小优化的三个个体,123=(2,2)=(3,3)=(4,4)C C C ,,,则1 2C C , 2 3C C ,又因为1 3C C ,所以Pareto 支配关系具有传递性。 4. 考虑一个具有两个目标最小化问题,20个个体的进化群体,进行Pareto 非支配排序分层。20个个体定义如下:C 1=(9,1),C 2=(7,2),C 3= (5,4),C 4=(4,5),C 5=(3,6),C 6=(2,7),C 7=(1,9),C 8=(10,1),C 9=(8,5),C 10=(7,6),C 11=(5,7),C 12=(4,8),C 13=(3,9),C 14=(10,5),C 15=(9,6),C 16=(8,7),C 17=(7,9),C 18=(10,6),C 19=(9,7),C 20=(8,9) 解释: 本题考查基于Pareto 支配的排序方法。 内容请参考课堂视频“第9章多目标优化算法”及其课件。 答案: 由于{}18C C ;{}2349,,C C C C ;{}234510,,,C C C C C ;{}345611,,,C C C C C ; {} 45612 ,,C C C C ; {} 56713 ,,C C C C ; {} 12348914 ,,,,,C C C C C C C ;{} 1234591015 ,,,,,,C C C C C C C C ; {} 234569101116 ,,,,,,,C C C C C C C C C ;

多目标优化的求解方法

多目标优化的求解方法 多目标优化(MOP)是数学规划的一个重要分支,是多于一个的数值目标函数在给定区域上的最优化问题。 多目标优化问题的数学形式可以描述为如下: 多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。目前主要有以下方法: (1)评价函数法。常用的方法有:线性加权和法、极大极小法、理想点法。评价函数法的实质是通过构造评价函数式把多目标转化为单目标。 (2)交互规划法。不直接使用评价函数的表达式,而是使决策者参与到求解过程,控制优化的进行过程,使分析和决策交替进行,这种方法称为交互规划法。常用的方法有:逐步宽容法、权衡比替代法,逐次线性加权和法等。 (3)分层求解法。按目标函数的重要程度进行排序,然后按这个排序依次进行单目标的优化求解,以最终得到的解作为多目标优化的最优解。 而这些主要是通过算法来实现的, 一直以来很多专家学者采用不同算法解决多目标优化问题, 如多目标进化算法、多目标粒子群算法和蚁群算法、模拟退火算法及人工免疫系统等。

在工程应用、生产管理以及国防建设等实际问题中很多优化问题都是多目标优化问题, 它的应用很广泛。 1)物资调运车辆路径问题 某部门要将几个仓库里的物资调拨到其他若干个销售点去, 在制定调拨计划时一般就要考虑两个目标, 即在运输过程中所要走的公里数最少和总的运输费用最低, 这是含有两个目标的优化问题。利用首次适配递减算法和标准蚁群算法对救灾物资运输问题求解, 求得完成运输任务的最少时间, 将所得结果进行了比较。 2)设计 如工厂在设计某种新产品的生产工艺过程时, 通常都要求产量高、质量好、成本低、消耗少及利润高等, 这就是一个含有五个目标的最优化问题; 国防部门在设计导弹时, 要考虑导弹的射程要远、精度要最高、重量要最轻以及消耗燃料要最省等,这就是一个含有四个目标的最优化问题。Jo等人将遗传算法与有限元模拟软件结合应用于汽车零件多工序冷挤压工艺的优化。Chung等人也成功应用遗传算法对锻件工艺进行了优化。 3)投资 假设某决策部门有一笔资金要分配给若干个建设项目, 在确定投资方案时, 决策者总希望做到投资少收益大。Branke等人采用基于信封的多目标进化算法成功地解决了计划投资地选择问题。 4)模拟移动床过程优化与控制 一个工业化模拟移动床正常运行时, 一般有七股物料进、出吸附塔, 其中起关键作用的物料口将作为决策量引起目标值的变化。根据实际生产要求通常包括生产率、产品纯度、吸附剂消耗量等多个目标。模拟移动床分离过程由于其过程操作变量的强耦合性、工艺机理的复杂性及分离性能的影响因素繁多性, 需要众多学者对其操作优化和过程控制进行深入的研究。Huang等人利用TPS 算法解决了模拟移动床多个冲突目标的最大最小的问题, 并与NSGA2 算法的结果进行了比较。吴献东等人运用粒子群算法开发出一种非线性模拟移动床( SMB )色谱分离过程的优化策略。 5)生产调度 在离散制造生产系统中, 一个工件一般经过一系列的工序加工完成, 每道工序需要特定机器和其他资源共同完成, 各工件在各机器上的加工顺序(称技术约束条件)通常是事先给定的。车间调度的作用

几种智能优化方法

1.遗传算法 遗传算法(Genetic Algorithms, GA)是由美国密歇根大学的John H.Holland教授及其学生于20世纪60年代末到70年代初提出的。在1975年出版的《自然与人工系统的自适应性》一书中,Holland系统地阐述了遗传算法的基本原理和方法,提出了对遗传算法的理论发展极为重要的模板理论。 遗传算法基本思想: 遗传算法是根据问题的目标函数构造一个适值函数,对于有多个解构成的种群进行评估、遗传运算、选择,经多代繁殖,获得适应值最好的个体作为问题的最优解。具体描述如下。 1)产生初始种群 遗传算法是一种基于群体寻优的方法,算法运行时是以一个种群在搜索空间进行搜索。一般是采用随机方法产生一个初始种群。也可以采用其他方法构造一个初始种群。 2)根据问题的目标函数构造适值函数 在遗传算法中使用适值函数来表征种群中每个个体对其生存环境的适应能力,每个个体具有一定的适应值。适应值是种群中个体生存机会的唯一确定值。适值函数直接决定着群体的进化行为。适值函数基本上依据优化的目标函数来确定。为了能够直接将适值函数与群体中的个体优劣相联系,在遗传算法中适应值规定为非负,并且在任何情况下总是希望越大越好。 3)根据适应值的好坏不断选择和繁殖 在遗传算法中自然选择规律的体现就是以适应值的大小决定的概率分布来进行计算选择。个体的适应值越大,该个体被遗传到下一代的概率越大;反之,个体适应值越小,该个体被遗传到下一代的概率越小。被选择的个体两两进行繁殖,繁殖产生的个体组成新的种群。这样的选择和繁殖的过程不断重复。 4)若干代后得到适应值最好的个体即为最优解 在若干代后,得到适应值最好的个体所对应的解即被认为是问题的最优解。 遗传算法构成要素: a)种群和种群大小 种群是有染色体构成的。每个个体就是一个染色体,每个染色体对应着问题的一个解。种群中个体的数量称为种群大小或种群规模。种群规模通常采用一个不变的常数。一般来说种群规模越大越好,但是种群规模增大也将导致运算时间的增大。在一些特殊情况下,群体规模也可能采用与遗传代数相关的变量,以获取更好的优化效果。 b)编码方法(Encoding Scheme) 编码方法也称为基因的表达方法。在遗传算法中,种群中每个个体,即染色体是由基因构成的。所以染色体与要优化的问题的解如何进行对应,就需要通过基因来进行表示,即染色体进行正确的编码(一般用二进制编码)。正确地对染色体进行编码来表示问题的解是遗传算法的基础工作,也是最重要的工作。 c)遗传算子(Genetic Operator) 遗传算子包括交叉(Crossover)和(Mutation)。遗传算子模拟了每一代中创造后代的繁殖过程,是遗传算法的精髓。 交叉是最重要的遗传算子,它同时对两个染色体进行操作,组合二者的特性产生新的后代。交叉最简单的方式是在双亲的染色体上随机地选择一个断点,将断点的右段相互交换,从而形成两个新的后代。这种方式对于二进制编码最适合。遗传算法的性能很大程度上取决于采用的交叉运算的方式。 交叉率定义为各代中交叉产生后代数与种群中个体数的比。显然,较高的交叉率将达到更大的解空间,从而减小停止在非最优解上的机会;但交叉率过高,会因过多搜索不必要的

高维多目标优化算法及其应用研究

华中科技大学博士学位论文 目录 摘要............................................................I Abstract..........................................................III 目录............................................................VI 1绪论 1.1研究背景与意义 (1) 1.2高维多目标优化研究现状 (4) 1.3研究趋势与展望 (10) 1.4预备知识 (11) 1.5本文主要工作与组织结构 (15) 2非规则前沿面高维多目标问题优化算法 2.1引言 (19) 2.2非规则前沿面高维多目标问题优化算法 (21) 2.3算法测试与结果分析 (31) 2.4汽车碰撞可靠性设计 (38) 2.5本章小结 (39) 3多样性保持高维多目标优化算法 3.1引言 (41) 3.2雷达映射介绍与分析 (44) 3.3多样性保持高维多目标优化算法 (47) 3.4算法测试与结果分析 (56) 3.5本章小结 (68) 4昂贵高维多目标问题优化算法 4.1引言 (71) 4.2昂贵高维多目标优化算法 (74) 4.3优化算法分析 (82) 4.4算法测试与结果分析 (86) 4.5本章小结 (98)

华中科技大学博士学位论文 5基于多目标优化光伏最大功率点追踪方法 5.1引言 (100) 5.2光伏系统离线MPPT控制器 (102) 5.3基于RSEA的MPPT算法 (102) 5.4仿真实验对比与分析 (108) 5.5本章小结 (112) 6基于高维多目标优化的高阶滤波器设计 6.1引言 (113) 6.2滤波器介绍及高维多目标问题构造 (115) 6.3高阶滤波器设计方法 (120) 6.4实验结果与分析 (123) 6.5本章小结 (128) 7总结与展望 7.1全文总结 (129) 7.2尚待研究的工作 (130) 致谢 (132) 参考文献 (134) 附录1攻读学位期间发表和撰写的学术论文 (149) 附录2博士学位论文章节内容与博士期间论文的关系 (151) 附录3攻读博士学位论文期间参加的科研课题 (152) 附录4攻读博士学位期间申请专利 (153)

基于群集智能的最优化算法研究及其应用

基于群集智能的最优化算法研究及其应用当前经济管理和工程领域遇到的众多问题,例如设施选址问题、车辆路径问题、网络流设计问题等,均可归结为最优化问题。随着科技与社会的发展,现实优化问题也日趋复杂,朝着高维度、非线性、大规模等方向发展,这为优化理论的研究提出了新的挑战。传统的优化理论方法包括单纯形法、二次规划法、牛顿法、内点法、梯度法等。传统方法的不足之处有两点:1)待优化问题需满足特定的数学特性,例如可凸性、可导性、可微性等;2)解决大规模复杂优化问题的能力有限,无法满足实际管理与工程优化的需求。 群集智能作为新型仿生启发式算法,由于其机制简单、智能高效等优点正成为新的研究热点,已被成功用于许多优化问题的求解。本文考虑群集智能中不同的生物模拟视角及搜索行为的差异,选取粒子群算法(particle swarm optimization,PSO)与细菌觅食算法(bacterial foraging optimization,BFO)作为群集智能的代表算法进行研究。针对当前群集智能算法研究的不足之处进行改进,主要的研究问题与贡献如下:(1)针对传统PSO算法历史信息利用率较低、种群多样性丧失较快、较差个体无退出机制的缺陷,提出一种正交混合学习PSO 算法。利用正交实验设计构建类似新陈代谢机制的粒子置换策略,提高种群多样性;同时,为了加快粒子的收敛速度,设计了混合学习机制,使粒子以一定概率向个体与全局两部分信息分别进行学习。 通过数值实验验证了所提算法的有效性。(2)传统PSO对复杂问题的求解性能仍有待提升。尽管人们提出了多群体PSO(MS-PSO)以避免传统PSO对复杂问题早熟收敛,但仍存在众多不足。例如,当前绝大多数MS-PSO均针对特定问题域进行优化,对其它问题表现较弱;没有考虑多群体间的竞争关系;群体规模为预设值且固定。 针对上述不足,提出了异质多群体自适应PSO算法。在种群中建立包含了同质个体的异质子群模型。各子群使用不同的搜索策略;设计了自适应竞争机制,根据实时搜索表现动态地调节异质群体的规模;研究了两种互补的搜索机制和两种不同的种群规模迁移模型。仿真结果表明,所提策略有效提升了算法对不同问题域的搜索性能。 (3)针对传统BFO算法存在求解精度较低、收敛速度较慢、算法性能随问题

相关文档
最新文档