直拉法生产单晶硅

合集下载

单晶小知识直拉法

单晶小知识直拉法
生长界面形状(固液界面)
固液界面形状对单晶均匀性、完整性有重要影响,正常情况下,固液界面的宏观形状应该与热场所确定的熔体等温面相吻合。在引晶、放肩阶段,固液界面凸向熔体,单晶等径生长后,界面先变平后再凹向熔体。通过调整拉晶速度,晶体转动和坩埚转动速度就可以调整固液界面形状。
生长过程中各阶段生长条件的差异
3,磁控直拉技术与直拉法相比所具有的优点在于:
减少了熔体中的温度波度。一般直拉法中固液界面附近熔体中的温度波动达10 C以上,而施加0.2 T的磁场,其温度波动小于1℃。这样可明显提高晶体中杂质分布的均匀性,晶体的径向电阻分布均匀性也可以得到提高;
降低了单晶中的缺陷密度;
减少了杂质的进入,提高了晶体的纯度。这是由于在磁场作用下,熔融硅与坩锅的作用减弱,使坩锅中的杂质较少进入熔体和晶体。将磁场强度与晶体转动、坩锅转动等工艺参数结合起来,可有效控制晶体中氧浓度的变化;
1,在直拉法中,氧含量及其分布是非常重要而又难于控制的参数,主要是熔体中的热对流加剧了熔融硅与石英坩锅的作用,即坩锅中的O2,、B、Al等杂质易于进入熔体和晶体。热对流还会引起熔体中的温度波动,导致晶体中形成杂质条纹和旋涡缺陷。
2,半导体熔体都是良导体,对熔体施加磁场,熔体会受到与其运动方向相反的洛伦兹力作用,可以阻碍熔体中的对流,这相当于增大了熔体中的粘滞性。在生产中通常采用水平磁场、垂直磁场等技术。
直拉法的引晶阶段的熔体高度最高,裸露坩埚壁的高度最小,在晶体生长过程直到收尾阶段,裸露坩埚壁的高度不断增大,这样造成生长条件不断变化(熔体的对流、热传输、固液界面形状等),即整个晶锭从头到尾经历不同的热历史:头部受热时间最长,尾部最短,这样会造成晶体轴向、径向杂质分布不均匀。
直拉法-技术改进
一,磁控直拉技术

直拉单晶硅

直拉单晶硅

方式称为“自然对流”。自然对流的
程度大小可由格拉斯霍夫常数来判定:
熔体
Gr agT d 3
Vk 2
对于硅而言,α=1.43×10-4℃-1,vk=3 ×10-3cm2/sec,
因此,Gr=1.56 ×104△Td3。此外,Gr的临界值为105,
而根据估计实际的Gr值高达108。除非靠其它的对流方式
籽晶
单晶硅棒
石英坩埚 水冷炉壁 绝热石墨 加热器 石墨坩埚 石墨底盘 石墨轴承 电极
在熔体结晶过程中, 温度下降时,将产生由液态 转变成固态的相变化。为什 么温度下降,会导致相变化 的产生呢?这个问题的答案 可由热力学观点来解释。
一个平衡系统将有最低的自由能,假如一个系统的自由能 G高于最低值,它将设法降低G(即△G < 0)以达到平衡 状态。因此我们可以将△G < 0视为结晶的驱动力。
判断 Bo Ra d 2g
Ma
所以在表面上较大的长晶系统
主要受自然对流控制。而表面张力对流在低重力状态(例
如太空中)及小的长晶系统,才会凸现其重要性。
思考题
1、直拉单晶炉由几大部分组成? 2、什么叫直拉单晶炉的热场 ? 3、直拉单晶炉的合理热场条件是什么? 4、直拉单晶硅的工艺步骤? 5、直拉单晶硅通常选择那些晶体生长方向,为什么? 6、直拉单晶硅中如何实现无位错生长? 7、直拉单晶硅中熔体的对流分哪几种情况,分别用什么 常数来判断其对流的程度?
自然对流、晶轴旋转和坩埚旋转三种方式相互作用对熔体 流动的影响。
表面张力引起的对流
由液体的温度梯度,所造成的
表面张力的差异,而引起的对流形
态,称为表面张力对流。其对流程
度大小可由Marangoni常数来判断

直拉法单晶硅 -回复

直拉法单晶硅 -回复

直拉法单晶硅-回复单晶硅是一种具有高纯度的硅晶体,具有优异的光电性能和热电性能,广泛应用于电子器件和太阳能电池等领域。

本文将以“直拉法单晶硅”为主题,详细介绍直拉法制备单晶硅的步骤和工艺。

一、什么是直拉法单晶硅?直拉法单晶硅是一种通过直接拉取的方法制备的高纯度硅晶体。

该方法通过溶解高纯度的多晶硅在熔融的硅熔体中,然后逐渐拉伸出一根单晶硅柱。

得到的单晶硅柱可以被切割成具有特定晶向的晶圆,用于制备半导体器件和太阳能电池等。

二、直拉法制备单晶硅的步骤:1. 原材料准备:选择高纯度的多晶硅作为原材料,通常其纯度需达到99.9999以上。

这种高纯度的多晶硅块通常是由卤化硅还原法制备而来。

2. 熔炼硅熔体:将高纯度多晶硅块放入石英玻璃坩埚中,然后将坩埚放入电阻加热炉中进行熔炼。

在特定的温度和保温时间下,多晶硅逐渐熔化成硅熔体。

3. 准备拉晶装置:将石英棒固定在拉晶装置上,调整装置的温度和拉伸速度等参数,使其适合拉晶过程。

4. 开始拉晶:将熔融的硅熔体与石英棒接触,通过向上拉伸石英棒,使熔体附着在棒的一端,并由此逐渐形成硅晶体。

拉晶过程中需要控制温度、拉伸速度以及拉伸方向等参数,以保证拉晶产生单晶硅。

5. 晶柱切割:拉晶结束后,得到的硅晶体为一根长柱状,可以根据具体需要切割成不同规格和方向的晶圆。

切割过程需要使用专业的切割设备和切割工艺,以获得所需的单晶硅片。

三、直拉法制备单晶硅的工艺特点:1. 高纯度:直拉法制备的单晶硅可以达到非常高的纯度要求,这对于一些对杂质含量极为敏感的电子器件非常重要。

2. 大尺寸:直拉法制备的单晶硅柱可以达到较大的尺寸,使得每次拉晶得到的单晶硅片面积更大,提高了生产效率。

3. 较低的缺陷密度:直拉法制备的单晶硅的晶界和缺陷密度较低,有利于提高电子器件的性能。

4. 可重复性好:直拉法制备单晶硅的过程相对稳定,能够实现较好的生产批量一致性和可重复性。

四、直拉法制备单晶硅的应用:1. 半导体器件:直拉法制备的单晶硅片广泛应用于集成电路、晶体管、场效应晶体管等半导体器件的制造。

单晶硅的生长方法

单晶硅的生长方法

单晶硅的生长方法1. 直拉法呀,就像我们小时候搭积木一样,一点点把单晶硅拉起来。

你看,在一个高温的坩埚里,把多晶硅熔化,然后用一根细细的籽晶去慢慢往上提拉,哇,单晶硅就这么神奇地生长出来啦!就像盖高楼一样,一层一层的。

2. 区熔法呢,这可有意思了,就好比是在一个局部区域进行一场特殊的“培育”。

把一根多晶硅棒固定,然后用一个加热环在上面移动,加热的地方就熔化啦,慢慢移动过去,单晶硅不就长出来了嘛!是不是很神奇呀!3. 外延生长法,哎呀呀,就好像给单晶硅穿上一件新衣服一样。

在一个已经有单晶硅的衬底上,让气态的反应物沉积上去,形成新的单晶硅层,这就像给它装饰打扮一番呢!4. 气相沉积法,就如同是在空中“变魔术”,让那些气体中的硅原子乖乖地聚集在一起变成单晶硅。

比如把含硅的气体通入反应室,它们就会乖乖地在合适的地方沉积下来成为单晶硅啦,多奇妙呀!5. 分子束外延法,这可是个精细活儿呀,就像一个细心的工匠在雕琢一件艺术品。

通过精确控制分子束的流量和方向,让单晶硅完美地生长出来,厉害吧!6. 固相晶体生长法,这就像是在一个安静的角落默默努力的小伙伴。

在固体状态下,通过一些特殊的条件,让单晶硅悄悄地生长,给人一种很踏实的感觉呢!7. 助熔剂法,好比是有了一个好帮手一样。

加入助熔剂来帮助单晶硅生长,就像有人在旁边助力,让单晶硅长得更好更快呢!8. 水热法,哇哦,就如同在一个温暖的水中“孕育”着单晶硅。

在特定的温度和压力下,让单晶硅在水中生长,是不是很特别呀!9. 熔盐法,这就好像是在一个充满魔法的盐世界里让单晶硅现身。

利用熔盐作为介质,单晶硅就神奇地冒出来啦,真的好有趣呀!10. 等离子体增强化学气相沉积法,就像有一股神奇的力量在推动着单晶硅生长。

利用等离子体来增强反应,让单晶硅快快长大,太有意思啦!我觉得呀,这些单晶硅的生长方法都好神奇,各有各的独特之处,都为我们的科技发展做出了重要贡献呢!。

硅的直拉法单晶生长

硅的直拉法单晶生长

直拉法单晶硅生长:凝固结晶的驱动力
• 在熔体长成晶体的过程中(Melt Growth),藉由熔 体温度下降,将产生由液态转换成固态的相变化 (Phase Transformation)。这要从热力学观点来解 释。对于发生在等温等压的相变化,不同相之间 的相对稳定性,可有自由能G来决定。G=H—TS
• 其中H是焓,T是绝对温度,而S是熵。一个平衡 系统将具有最低的自由能。加入一个系统的自由 能△G高于最低值,它将设法降低△G以达到平衡 状态。因此我们可以将△G视为结晶的驱动力, 如图1.5所示。在温度T时,液固二相的自由能可 表示为: •
• 因此在温度T时 △G= △H-T△S • 另外在平衡的熔化温度Tm时,液固二相的 自由能是相等的,即△G=0,因此 • △G= △H-T△S=0 △S= △H/T • 其中△H即是所谓的结晶潜热。可得到 • △G= △H△T/T=△S△T • 其中△T=Tm- T,亦即所谓的过冷度,由于 凝固时,△S是个负值常数,所以△T可 • 被视为唯一的驱动力。
end
谢谢பைடு நூலகம்
• 直拉法是运用熔体的冷凝结晶驱动原理, 在固液界面处,藉由熔体温度下降,将 产生由液态转换成固态的相变化。当前 国际上供应单晶硅生长设备的主要著名 厂商是美国KAYEX公司和德国CGS公司。 这两个公司能供应生长不同直径的单晶 硅生长设备,尤其是生长直径大于 200ram的单晶硅生长设备系统。
• 为了生长质量合格(硅单晶电阻率、氧含量及氧浓度分布、 碳含量、金属杂质含量、缺陷等)的单晶硅棒,在采用直 拉法生长时,必须考虑以下问题。首先是根据技术要求, 选择使用合适的单晶生长设备;其次是要掌握一整套单 晶硅的制备工艺、技术,包括: (1)单晶硅系统内的热场 设计,确保晶体生长有合理稳定的温度梯度;(2)单晶硅 生长系统内的氩气气体系统设计; (3)单晶硅夹持技术系 统的设计;(4)为了提高生产效率的连续加料系统的设计; (5)单晶硅制备工艺的过程控制。

单晶硅的详细工艺流程

单晶硅的详细工艺流程

单晶硅的详细工艺流程单晶硅可是个超级有趣的东西呢!那我就来给你唠唠它的详细工艺流程吧。

一、原料准备。

单晶硅的原料那就是多晶硅啦。

多晶硅就像是一群小伙伴聚在一起,但是呢,为了得到单晶硅,得把它们变成更适合加工的状态。

这就好比要把一群有点乱乱的小朋友排好队一样。

多晶硅要先被加工成块状或者棒状,而且纯度得特别高才行哦。

纯度高就像是小朋友们都干干净净、整整齐齐的。

要是纯度不够,那后面做出来的单晶硅可就不那么完美啦。

二、晶体生长。

1. 直拉法。

这是一种很常用的方法呢。

就好像是从一群小伙伴里拉出来一个小领袖一样。

把多晶硅原料放到一个石英坩埚里,然后用加热器把它加热到超级热,热到都融化成液态了,就像把一块糖加热融化成糖浆一样。

然后呢,在这个液态的多晶硅里放入一颗小小的单晶硅籽晶,这颗籽晶就像是一个小种子。

慢慢地把籽晶往上拉,液态的多晶硅就会按照籽晶的样子一层一层地凝固,最后就长成了一根长长的单晶硅棒。

这个过程可不能着急哦,要是拉得太快或者太慢,都会影响单晶硅的质量呢。

就像种小树苗一样,浇水太多或者太少都不行。

2. 区熔法。

这个方法也很特别。

它是把多晶硅棒的一部分加热融化,然后让这个融化的区域慢慢移动,就像一个小火球在多晶硅棒上滚动一样。

在这个过程中,也是靠着籽晶来引导晶体的生长。

这种方法做出来的单晶硅纯度会更高一些,就像是经过了更严格训练的小战士一样,质量那是相当不错的。

三、加工处理。

1. 切割。

长出来的单晶硅棒可不能就这么直接用,得把它切成一片片的。

这个切割就像是切面包一样,不过可不能切得歪歪扭扭的哦。

现在有很多很厉害的切割技术,比如用金刚线切割。

切割出来的硅片要薄厚均匀,要是有的地方厚有的地方薄,就像做出来的饼干有的地方厚有的地方薄一样,是不合格的。

2. 研磨和抛光。

切好的硅片表面还不够光滑,就像刚从地里挖出来的土豆,表面坑坑洼洼的。

这时候就需要研磨和抛光啦。

研磨就像是用小砂纸轻轻地打磨,把那些不平整的地方磨掉。

直拉单晶硅工艺流程

直拉单晶硅工艺流程

直拉单晶硅工艺流程1. 原料准备直拉单晶硅工艺的第一步是原料准备。

通常使用的原料是高纯度的二氧化硅粉末。

这些二氧化硅粉末需要经过精细的加工和净化,以确保最终制备出的单晶硅质量优良。

2. 熔炼接下来是熔炼过程。

将经过净化的二氧化硅粉末与掺杂剂(通常是磷或硼)混合,然后放入石英坩埚中,在高温高压的环境下进行熔炼。

熔炼过程中,二氧化硅和掺杂剂会发生化学反应,形成多晶硅。

3. 晶棒拉制在熔炼完成后,需要进行晶棒拉制。

这一步是直拉单晶硅工艺的核心步骤。

首先,将熔融的多晶硅放入拉棒机中,然后慢慢地将晶棒拉出。

在拉制的过程中,需要控制温度和拉速,以确保晶棒的质量和直径的均匀性。

4. 晶棒切割拉制完成后,晶棒需要进行切割。

通常使用线锯或者线切割机对晶棒进行切割,将其切成薄片,即所谓的晶圆。

晶圆的直径和厚度可以根据具体的需要进行调整。

5. 晶圆抛光切割完成后,晶圆表面会有一定的粗糙度,需要进行抛光。

晶圆抛光是为了去除表面的缺陷和提高表面的光洁度,以便后续的加工和制备。

6. 接触式氧化晶圆抛光完成后,需要进行接触式氧化。

这一步是为了在晶圆表面形成一层氧化层,以改善晶圆的电学性能和机械性能。

7. 晶圆清洗最后,晶圆需要进行清洗。

清洗过程中,会使用一系列的溶剂和超声波设备,将晶圆表面的杂质和污垢清洗干净,以确保晶圆的纯净度和光洁度。

通过以上步骤,直拉单晶硅工艺就完成了。

最终得到的单晶硅晶圆可以用于制备太阳能电池、集成电路和光电器件等各种应用。

直拉单晶硅工艺流程虽然复杂,但可以制备出质量优良的单晶硅,为半导体产业的发展提供了重要的支持。

直拉法单晶硅的工艺流程

直拉法单晶硅的工艺流程

直拉法单晶硅的工艺流程
直拉法生长单晶硅的主要工艺流程为:准备→开炉→生长→停炉。

准备阶段先清洗和腐蚀多晶硅,去除表面的污物和氧化层,放人坩埚内。

K4T51163QG-HCE6再准备籽晶,籽晶作为晶核,必须挑选晶格完整性好的单晶,其晶向应与将要拉制的单晶锭的晶向一致,籽晶表面应无氧化层、无划伤。

最后将籽晶卡在拉杆卡具上。

开炉阶段是先开启真空设各将单晶生长室的真空度抽吸至高真空,一般在102Pa以上,通入惰性气体(如氩)及所需的掺杂气体,至一定真空度。

然后,打开加热器升温,同时打开水冷装置,通入冷却循环水。

硅的熔点是1417℃,待多晶硅完全熔融,坩埚温度升至约14⒛℃。

生长过程可分解为5个步骤:引晶→缩颈→放肩→等径生长→收尾。

引晶又称为下种,是将籽晶与熔体很好地接触。

缩颈是在籽晶与生长的单晶锭之问先收缩出晶颈,晶颈最细部分直径只有2~3mm。

放肩是将晶颈放大至所拉制晶锭的直径尺寸,再等径生长硅锭.直至耗尽坩埚内的熔体硅。

最后收尾结束单晶生长。

晶体生长中,控制拉杆提拉速度和转速、坩埚温度及坩埚反向转速是很重要的,硅锭的直径和生长速度与上述囚素有关。

在坩埚温度、坩埚反向转速一定时,主要通过控制拉杆提拉速度来控制硅锭的生长。

即籽晶熔接好后先快速提拉进行缩颈,再渐渐放慢提拉度进行放肩至所需直径,最后等速拉出等径硅锭。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直拉法生产单晶硅
设备:直拉单晶炉
直拉单晶炉
直拉单晶炉
直拉单晶炉
直拉单晶炉主要由炉体、电气部分、加热系统、水冷 系统、真空系统和氩气装置六大部分组成。 一、炉体
炉体包括主架、主炉室、副炉室等部件 。
主架由底座、立柱组成,是炉子的支撑机构。
主炉室是炉体的心脏,有炉底 盘、下炉筒、上炉筒以及炉盖组 成,他们均为不锈钢焊接而成的 双层水冷结构,用于安装生长单 晶的热系统、石英坩埚及原料等。
直拉法的特点
设备和工艺简单,生产效率高,易于制造大直径 单晶硅。 易于控制单晶中的杂质浓度,可以制备低阻单晶。
生产温度高,硅料易被坩埚污染,使晶体的纯度 下降。
直拉法生产单晶硅
1、清 炉
冷却停加热6-8 小时后,打开炉 膛清理挥发物。
2、装料
3、抽空、通氩气 4、加热、熔硅
5、种晶 籽晶相当于在硅熔体中加入了一个定向晶核,使晶体按 晶核的晶向定向生长,制得所需晶向单晶。
先将籽晶降至液面数毫米处暂停片刻,使籽晶温度尽量 接近熔硅温度,然后将籽晶浸入熔硅,使头部熔解,接 着籽晶上升,生长单晶硅。
6、缩颈(引晶) 将籽晶快速提升,缩小结晶直径 目的:抑制位错从籽晶向晶体延伸
7、放肩 放慢生长速度,晶体硅直径增大
8、等径
等直径生长
9、收尾 单晶拉完时,由于热应力作用,尾部会产生大量位错,并 沿着单晶向上延伸,延伸的长度约等于一个直径。
三、加热系统
四、水冷系统
水冷系统包括总进水管道、分水器、各路冷却水管 道以及回水管道。由循环水系统来保证水循环正常运 行。 水冷系统的正常运行非常重要,必须随时保持各部 位冷却水路畅通,不得堵塞或停水,轻者会影响成晶 率,严重会烧坏炉体部件,造成巨大损失。
五、真空系统
真空系统主要分两部分:主炉室真空系统和副炉室 真空系统。 六、氩气净化装置 氩气系统包括液氩储罐,汽化器、气阀、氩气流 量计等部件。氩气纯度为5N,在单晶生长过程中起 保护作用,一方面及时携带熔体中的挥发物经真空 泵排出;另一方面又及时带走晶体表面的热量,增 大晶体的纵向温度梯度,有利于单晶生长。
悬浮区熔法(FZ法)
特点: 可重复生长、提纯单晶,单晶纯度较CZ法高; 无需坩埚、石墨托,污染少; 单晶直径不及CZ法


重复
直拉法生产单晶硅(CZ法) 直拉法的特点 直拉单晶炉
直拉单晶炉主要由炉体、电气部分、加热系统、水冷 系统、真空系统和氩气装置六大部分组成。
悬浮区熔法(FZ法)


1.什么是直拉法?
副炉室包括副炉筒、籽晶旋转 机构、软轴提拉室等部件,是单 晶硅棒的接纳室。
籽晶旋转及提升机构,提供籽 晶的旋转及提升的动力和控制 系统。 坩埚的旋转及提升机构,提供 坩埚的旋转及上升的动力和控 制系统。 主、副炉室的升降机构,通过 液压对炉室进行升降。
二、电气部分
作用:控制晶体生长的基本工艺参数,如:熔 硅温度、籽晶轴和坩埚的升降速度及旋转速度,并 通过调节这些参数,控制单晶直径的变化。 单晶炉控制系统主要包括速度控制单元、加热控 制单元、等径生长控制单元、水温和设备运行巡检 及状态报警、继电控制单元等部分。
直拉法生产单晶硅(CZ法)
把原料(块状多晶硅)放入石英 坩埚中,在单晶炉中加热融化。 再将一根直径只有5mm的棒状晶 种(称籽晶)浸入硅汤中。 在合适的温度下,硅汤中的硅原 子会顺着晶种的硅原子排列结构 在固液交界面上形成规则的结晶, 成为单晶体。 把晶种微微的旋转向上提升,硅 汤中的硅原子会在前面形成的单 晶体上继续结晶,并延续其规则 的原子排列结构。
悬浮区熔法(FZ法)
方法: 依靠熔体表面张力,使熔区悬浮于多晶硅与 下方长出的单晶之间,通过熔区的移动而进行提纯和生 长单晶硅。
原料: ቤተ መጻሕፍቲ ባይዱ晶硅棒
悬浮区熔法(FZ法)
⑴ 将多晶料棒仅靠籽晶。
⑵ 将多晶料棒靠近籽晶一端形成 一个熔化区,并使籽晶微熔,熔化 区靠表面张力支持而不流淌 ⑶ 同速向下移动多晶料棒和晶 体,相当于熔化区向上移动,单 晶逐渐长大,而料棒不断缩短, 直至多晶料棒全部转变为单晶体。
2.什么是悬浮区熔法? 3.直拉单晶炉主要由哪几部分组成?
相关文档
最新文档