专题24 平面向量中最值、范围问题-备战2017高考技巧大全之高中数学黄金解题模板(原卷版)

合集下载

平面向量的最值问题

平面向量的最值问题

平面向量的最值问题
平面向量的最值问题指的是求平面向量的最大值和最小值的问题。

在求解平面向量的最值问题时,一般可以通过以下几种常用的方法进行求解:
1. 向量的模的最大值和最小值:对于平面向量a=(x,y),其模的最大值和最小值分别为:
最大值:|a| = √(x^2 + y^2)
最小值:|a| = 0
2. 向量的投影的最大值和最小值:对于平面向量a=(x,y),其在某个方向上的投影的最大值和最小值分别为:
最大值:|proj_u a| = |a|·cosθ,其中θ为a与u的夹角
最小值:|proj_u a| = 0
3. 向量的点乘的最大值和最小值:对于平面向量a=(x1,y1)和b=(x2,y2),其点乘的最大值和最小值分别为:
最大值:a·b = |a|·|b|·cosθ,其中θ为a与b的夹角
最小值:a·b = |a|·|b|·cosθmin,其中θmin为a与b的夹角的最小值,即θmin=0时
需要注意的是,以上方法中的最大值和最小值都是相对于给定的条件和向量范围的。

具体在实际问题中求解向量的最值时,需要根据具体的条件和向量的性质进行分析和计算。

高考数学 玩转压轴题 专题2.3 平面向量中范围、最值等综合问题

高考数学 玩转压轴题 专题2.3 平面向量中范围、最值等综合问题

专题2.3 平面向量中范围、最值等综合问题一.方法综述平面向量中的最值与范围问题是一种典型的能力考查题,能有效地考查学生的思维品质和学习潜能,能综合考察学生分析问题和解决问题的能力,体现了高考在知识点交汇处命题的思想,是高考的热点,也是难点,其基本题型是根据已知条件求某个变量的范围、最值,比如向量的模、数量积、向量夹角、系数的范围的等,解决思路是建立目标函数的函数解析式,转化为求函数的最值,同时向量兼顾“数”与“形”的双重身份,所以解决平面向量的范围、最值问题的另外一种思路是数形结合. 二.解题策略类型一 与向量的模有关的最值问题【例1】【2018河北定州中学模拟】设向量,,a b c 满足2a b ==, 2a b ⋅=-, ,c>60a c b <--=︒,则c 的最大值等于( )A. 4B. 2C. 2D. 1 【答案】A【指点迷津】由已知条件得四点共圆是解题关键,从而转化为求外接圆直径处理. 【举一反三】1、【2018辽宁沈阳东北育才学模拟】在Rt ABC ∆中, 090A ∠=,点D 是边BC 上的动点,且3AB =,4AC =,(0,0)AD AB AC λμλμ=+>>,则当λμ取得最大值时, AD 的值为( )A.72 B. 3 C. 125 D. 52【答案】D2、【2018湖南长沙市长郡中学模拟】已知向量,a b 满足: 1a b ==,且12a b ⋅=,若c xa yb =+,其中0x >,0y >且2x y +=,则c 的最小值是__________.【解析】1a b ==,且12a b ⋅=,当c xa yb =+时, 222222c x a xya b y b =+⋅+, ()222x xy y x y xy =++=+-,又0,0x y >>且22,12x y x y xy +⎛⎫+=∴≤= ⎪⎝⎭,当且仅当1x y ==时取“=”, ()2222213,2x y c x y c +⎛⎫∴≥+-=-=∴ ⎪⎝⎭的最小值是.3、【2018浙东北联盟联考】已知向量,,a b c ,满足1,2,3a b c ===, 01λ≤≤,若0b c ⋅=,则()1a b c λλ---的最大值为_________,最小值为__________.【答案】1 【解析】设()()1,1n b c a b c a nλλλλ=+----=-,n a a n n a-≤-≤+,即11n a n n -≤-≤+,()()()2222221121n b c b c bc λλλλλλ=--=+-+-()()2224911318901λλλλλ=+-=-+≤≤,由二次函数性质可得,266136139,3,111413n n n a n n ≤≤≤≤-≤-≤-≤+≤, ()1a b c λλ∴---,最大值为4,最小6131-,故答案为4, 6131-. 类型二 与向量夹角有关的范围问题【例2】已知向量→OA 与→OB 的夹角为θ,→→→→→→→-====PQ OB t OQ OA t OP OB OA ,)1(,,1,20t 在时取得最小值,当0105t <<时,夹角θ的取值范围为________________. 【分析】将PQ 表示为变量t 的二次函数PQ 1)cos 42()cos 45(2+--++=t t θθ,转化为求二次函数的最小值问题,当θθcos 45cos 210++=t 时,取最小值,由已知条件0105t <<,得关于夹角θ的不等式,解不等式得解.【指点迷津】求变量的取值范围、最值,往往要将目标函数用某个变量表示,转化为求函数的最值问题,期间要注意变量之间的关系,进而得解. 【举一反三】1、非零向量b a ,满足b a ⋅2=22b a ,2||||=+b a,则b a 与的夹角的最小值是 .【答案】3π【解析】由题意得2212a b a b ⋅=,()24a b +=,整理得22422a b a b a b +=-⋅≥⋅,即1a b ⋅≤11cos ,22a b a b a b a b ⋅==⋅≤,,3a b ππ∴≤≤,夹角的最小值为3π2、已知向量=(-2,-1),=(λ,1),则与的夹角θ为钝角时,λ的取值范围为( )A. B. C. 且λ≠2 D. 无法确定【答案】C【解析】∵与的夹角θ为钝角,∴=-2λ-1<0,解得λ>,又当λ=2时,满足向量∥,且反向,此时向量的夹角为180°,不是钝角,故λ的取值范围为λ>,且λ≠2.故选C.类型三 与向量投影有关的最值问题【例3】设1,2OA OB ==, 0OA OB ⋅=, OP OA OB λμ=+,且1λμ+=,则OA 在OP 上的投影的取值范围( )A. ⎛⎤ ⎥ ⎝⎦B. ⎛⎤⎥⎝⎦C. ⎛⎤⎥⎝⎦D. ⎛⎤⎥ ⎝⎦【答案】D当λ0=时, 0,x =当1λ0x >===,故当λ1=时,1x 取得最小值为1,即1101x x≥∴<≤,当λ0<时, 1x ====1x <05x ∴-<<综上所述]( ,15x ∈-故答案选D 【指点迷津】由已知求得OA OP→⋅→及OP→,代入投影公式,对λ分类后利用二次函数求最值,在分类讨论时需要讨论完整,不要漏掉哪种情况,讨论完可以检查下是否把整个实数全部取完。

平面向量中最值、范围问题(含解析)高三数学备考冲刺

平面向量中最值、范围问题(含解析)高三数学备考冲刺

问题7平面向量中最值、范围问题一、考情分析平面向量中的范围、最值问题是热点问题,也是难点问题,此类问题综合性强,体现了知识的交汇组合.其基本题型是根据已知条件求某个变量的范围、最值,比如向量的模、数量积、向量夹角、系数的范围的等,解决思路是建立目标函数的函数解析式,转化为求函数的最值,同时向量兼顾“数”与“形”的双重身份,所以解决平面向量的范围、最值问题的另外一种思路是数形结合. 二、经验分享1.利用平面向量的数量积可以解决几何中的垂直、夹角、长度等问题,即只需将问题转化为向量形式,用向量的运算来求解.如果能够建立适当的直角坐标系,用向量的坐标运算往往更为简捷.1.平面向量线性运算问题的常见类型及解题策略2.几何图形中向量的数量积问题是近几年高考的又一热点,作为一类既能考查向量的线性运算、坐标运算、数量积及平面几何知识,又能考查学生的数形结合能力及转化与化归能力的问题,实有其合理之处.解决此类问题的常用方法是:①利用已知条件,结合平面几何知识及向量数量积的基本概念直接求解(较易);②将条件通过向量的线性运算进行转化,再利用①求解(较难);③建系,借助向量的坐标运算,此法对解含垂直关系的问题往往有很好效果.3.坐标是向量代数化的媒介,通过向量的坐标表示可将向量问题转化为代数问题来解决,而坐标的获得通常要借助于直角坐标系. 对于某些平面向量问题, 若能建立适当的直角坐标系,可以使图形中复杂的几何关系转化为简单明朗的代数关系,减少推理过程,有效地降低思维量,起到事半功倍的效果.上面两题都是通过建立坐标系将向量问题转化为函数与不等式问题求解,体现了向量解题的工具性. 三、知识拓展 1..2.四、题型分析(一) 平面向量数量积的范围问题已知两个非零向量a 和b ,它们的夹角为θ,把数量cos a b θ⋅⋅叫做a 和b 的数量积(或内积),记作a b ⋅.即a b ⋅=cos a b θ⋅⋅,规定00a ⋅=,数量积的表示一般有三种方法:(1)当已知向量的模和夹角时,可利用定义法求解,即a b ⋅=cos a b θ⋅⋅;(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a·b=x1x2+y1y2;(3)运用平面向量基本定理,将数量积的两个向量用基底表示后,再运算.【例1】【江苏省苏州市2019届高三上学期期末】如图,在边长为2的正方形ABCD中,M,N分别是边BC,CD上的两个动点,且BM+DN=MN,则的最小值是_______.【答案】【分析】由题意,以点A为原点,建立的平面直角坐标系,设点,其中,则向量求得,再由,整理得,利用基本不等式,即可求解.【解析】由题意,以点A为原点,建立如图所示的平面直角坐标系,设点,其中,则向量,所以又由,则,整理得,又由,设,整理得,解得,所以,所以的最小值为.【点评】与几何图形有关的平面向量的数量积的运算及应用,常通过建立空间直角坐标系,利用向量的数量积的坐标运算求解【小试牛刀】【江苏省盐城中学2018届高三上学期期末】已知ABC ∆的周长为6,且,,BC CA AB 成等比数列,则BA BC ⋅的取值范围是______. 【答案】【解析】因为,,BC CA AB 成等比数列,所以,从而02b <≤,所以,又,即,解得,故.(二) 平面向量模的取值范围问题 设(,)a x y =,则,向量的模可以利用坐标表示,也可以借助“形”,向量的模指的是有向线段的长度,过可结合平面几何知识求解,尤其注意,如果直接求模不易,可以将向量用基底向量表示再求.【例2】已知向量,,a b c 满足a 与b 的夹角为4π,,则c a -的最大值为 .【分析】根据已知条件可建立直角坐标系,用坐标表示有关点(向量),确定变量满足的等式和目标函数的解析式,结合平面几何知识求最值或范围. 【解析】设;以OA 所在直线为x,O 为坐标原点建立平面直角坐标系, ∵a 与b 的夹角为4π,则A (4,0),B (2,2),设C (x,y ) ∵,∴x 2+y 2-6x-2y+9=0,即(x-3)2+(y-1)2=1表示以(3,1)为圆心,以1为半径的圆,c a -表示点A,C 的距离即圆上的点与点A (4,0)的距离;∵圆心到B 的距离为,∴c a -的最大值为12+.【点评】建立直角坐标系的原则是能准确快捷地表示有关向量或点的坐标,正确找到变量间的关系,以及目标函数代表的几何意义是解题关键.【小试牛刀】【2018届山东省济南高三上学期期末】已知平面上的两个向量OA 和OB 满足OA a =,OB b =,且221a b +=, 0OA OB ⋅=,若向量,且,则OC 的最大值为__________.【答案】32【解析】因为OA a =, OB b =,且221a b +=, 0OA OB ⋅=,,,如图,取AB 中点D ,则,12OD =, ,由可得, 1DC ∴=, C ∴在以D 为圆心, 1为半径的圆上, ∴当O C ,, D 共线时OC 最大, OC ∴的最大值为312OD +=,故答案为32. (三) 平面向量夹角的取值范围问题设11(,)a x y =,22(,)b x y =,且,a b 的夹角为θ,则.【例3】已知向量→OA 与→OB 的夹角为θ,0t 在时取得最小值,当0105t <<时,夹角θ的取值范围为________________. 【分析】将PQ 表示为变量t 的二次函数PQ ,转化为求二次函数的最小值问题,当时,取最小值,由已知条件0105t <<,得关于夹角θ的不等式,解不等式得解. 【解析】由题意知,,,所以,由二次函数的图像及其性质知,当上式取最小值时,.由题意可得,,求得,所以322πθπ<<. 【点评】求变量的取值范围、最值,往往要将目标函数用某个变量表示,转化为求函数的最值问题,期间要注意变量之间的关系,进而得解.【小试牛刀】已知非零向量,a b 满足2a b = ,若函数在R 上存在极值,则a 和b 夹角的取值范围为【答案】,3ππ⎛⎤⎥⎝⎦【解析】,设a 和b 夹角为θ,因为()f x 有极值,所以,即,即1cos 2θ<,所以,3πθπ⎛⎤∈ ⎥⎝⎦. (四)平面向量系数的取值范围问题平面向量中涉及系数的范围问题时,要注意利用向量的模、数量积、夹角之间的关系,通过列不等式或等式得系数的不等式,从而求系数的取值范围.【例4】已知()2,λ=a ,()5,3-=b ,且a 与b 的夹角为锐角,则λ的取值范围是 . 【分析】a 与b 的夹角为锐角等价于0a b ⋅>,且a 与b 不共线同向,所以由0a b ⋅>,得310<λ,再除去a 与b 共线同向的情形.【解析】由于a 与b 的夹角为锐角,0>⋅∴b a ,且a 与b 不共线同向,由,解得310<λ,当向量a 与b 共线时,得65-=λ,得56-=λ,因此λ的取值范围是310<λ且56-≠λ.【点评】注意向量夹角与三角形内角的区别,向量夹角的范围是[0,]π,而三角形内角范围是(0,)π,向量夹角是锐角,则cos 0,θ>且cos 1θ≠,而三角形内角为锐角,则cos 0,θ>. 【小试牛刀】【江苏省泰州中学2018届高三10月月考】如图,在ABC ∆中,.(1)求AB BC ⋅的值;(2)设点P 在以A 为圆心, AB 为半径的圆弧BC 上运动,且,其中,x y R ∈.求xy 的取值范围.【解析】(1).(2)建立如图所示的平面直角坐标,则.设,由,得.所以.所以..因为,所以,当262ππθ-=时,即3πθ=时, xy 的最大值为1; 当或即0θ=或23πθ=时, xy 的最小值为0.五、迁移运用1.【江苏省南通、扬州、泰州、苏北四市七市2019届高三第一次(2月)模拟】在平面四边形中,,则的最小值为_____.【答案】【解析】如图,以A为原点,建立平面直角坐标系,则A(0,0),B(1,0),因为DA=DB,可设D(,m),因为,AB=1,由数量积的几何意义知在方向的投影为3,∴可设C(3,n),又所以,,即,==,当且仅当,即n=1,m=时,取等号,故答案为.2.【江苏省无锡市2019届高三上学期期末】已知点 P 在圆 M: (x-a)2 +(y-a+2)2=1 上, A,B 为圆 C:x2 +(y-4)2=4 上两动点,且 AB =2, 则的最小值是____.【答案】【解析】取AB的中点D,因为AB =2,R=2,CD==1,所以,=.C(0,4),M(a,a-2)当C、D、P、M在一条直线上时,|PD|最小,此时,|PD|=|CM|-|CD|-|PM|=所以,=≥19-12,当a=3时取到最小值19-12.故答案为:.3.【江苏省清江中学2019届高三第二次教学质量调研】在平面直角坐标系中,已知点为圆上的两动点,且若圆上存在点使得则正数的取值范围为________.【答案】【解析】设BD的中点为D,所以所以点D在以原点为圆心,以1为半径的圆上,所以点D的轨迹方程为,因为,所以设所以所以m表示动点到点(1,1)的距离,由于点在圆上运动,所以,所以正数m 的取值范围为.故答案为:4.【江苏省如皋市2018-2019学年高三数学第一学期教学质量调研】在△ABC 中,D 为AB 的中点,若,则的最小值是_______.【答案】.【解析】根据D 为AB 的中点,若,得到,化简整理得,即,根据正弦定理可得,进一步求得,所以,求导可得当时,式子取得最大值,代入求得其结果为,故答案为.5.【江苏省常州2018届高三上学期期末】在ABC ∆中, 5AB =, 7AC =, 3BC =, P 为ABC ∆内一点(含边界),若满足,则BA BP ⋅的取值范围为________.【答案】525,84⎡⎤⎢⎥⎣⎦【解析】由余弦定理,得,因为P 为ABC ∆内一点(含边界),且满足,所以30,4λ⎡⎤∈⎢⎥⎣⎦,则.6.【江苏省南通市2018届高三上学期第一次调研】如图,已知矩形ABCD 的边长2AB =, 1AD =.点P ,Q 分别在边BC , CD 上,且,则AP AQ ⋅的最小值为_________.【答案】424-【解析】以A 坐标原点,AB,AD 所在直线为x,y 轴建立直角坐标系,设所以AP AQ ⋅因为,所以因为,所以因此7.【江苏省如皋市2017--2018学年度高三年级第一学期教学质量调研】已知点P 是边长为23的正三角形ABC 内切圆上的一点,则PA PB ⋅的取值范围为_______.【答案】[]3,1-【解析】以正三角形ABC 的中心为原点,以AB 边上的高为y 轴建立坐标系,则,正三角形ABC 内切圆的方程为221x y +=,所以可设,则,,故答案为[]3,1-.8.【南京市、盐城市2018届高三年级第一次模拟考试】如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若,,,A B C D 四点均位于图中的“晶格点”处,且,A B 的位置所图所示,则AB CD ⋅ 的最大值为________.【答案】24【解析】先建立直角坐标系,由向量投影知AB CD ⋅ 取最大值时,即AB CD ⋅9.【江苏省泰州中学2018届高三12月月考】已知单位向量a , b 的夹角为120︒,那么2a xb -(x R ∈)的最小值是__________. 【答案】3 【解析】∴ 2a xb-的最小值为3.10.【江苏省溧阳市2017-2018学年高三第一学期阶段性调研】扇形AOB 中,弦2AB C =,为劣弧AB 上的动点, AB 与OC 交于点P ,则·OP BP 的最小值是_____________________. 【答案】14-【解析】设弦AB 中点为M,则若,MP BP 同向,则0OP BP ⋅>,若,MP BP 反向,则0OP BP ⋅<,故OP BP ⋅的最小值在,MP BP 反向时取得,此时,则:,当且仅当时取等号,即OP BP ⋅的最小值是14-. 11.已知AB 为圆O 的直径,M 为圆O 的弦CD 上一动点,8AB =,6CD =,则MA MB ⋅的取值范围是 . 【答案】[9,0]- 【解析】 试题分析:,而,所以MA MB ⋅的取值范围是[9,0]-12.在ABC ∆中, ,则角A 的最大值为_________.【答案】6π 【解析】试题分析:由题设可得,即,也即,故,由于,因此,故,所以,所以6max π=A ,应填答案6π. 13.在平面内,定点,,,A B C D 满足,动点,P M 满足,则BM 的最大值是__________.【答案】321- 【解析】 试题分析:设,则.由题设可知,且.建立如图所示的平面直角坐标系,则,由题意点P 在以A 为圆心的圆上,点M 是线段PC 的中点.故结合图形可知当CP 与圆相切时,BM 的值最大,其最大值是123-.应填答案321-.14.【2018届江苏省泰州中学高三12月月考】在矩形ABCD 中, 3AB =, 1AD =,若M , N 分别在边BC , CD 上运动(包括端点,且满足,则AM AN ⋅的取值范围是__________.【答案】[1,9]【解析】分别以AB,AD 为x,y 轴建立直角坐标系,则,设,因为,所以33xb -=,则,故,所以,故填[1,9].15.在ABC ∆中,点D 在线段BC 的延长线上,且12BC CD =,点O 在线段CD 上(与点,C D 不重合),若,则x 的取值范围是__________.【答案】()2,0- 【解析】 因为,因为12BC CD =,点O 在线段CD 上, 所以()0,2y ∈,因为,所以()2,0x ∈-.16.已知向量(),2a x =-,(),1b y =,其中x ,y 都是正实数,若a b ⊥,则2t x y =+的最小值是___________. 【答案】4【解析】由a b ⊥,得0=⋅b a ,即,所以2=xy .又x ,y 都是正实数,所以.当且仅当y x 2=时取得等号,此时2=x ,1=y ,故答案为:4.17.在ABC ∆中,已知3AB =,3C π=,则CA CB ⋅的最大值为 .【答案】32【解析】,由余弦定理得:,所以32CA CB ⋅≤,当且仅当a b =时取等号18.已知△ABC 中,4AB =,2AC =,(R λ∈)的最小值为23,若P 为边AB 上任意一点,则PB PC ⋅的最小值是 . 【答案】94-【解析】令()f λ==216λ+24(22)λ-+=,当cos 0A =时,()f λ=,因为2322>,所以2A π=,则建立直角坐标系,(0,0)A , ,设(,0)P x (04)x <<,则,,所以PB PC ⋅=(4)x x --=2(2)4x --;当cos 0A ≠时,()f λ=+1cos ]2A+≥,解得1cos 2A =,所以3A π=,则建立直角坐标系,(0,0)A , ,设(,0)P x (04)x <<,则, ,所以PB PC ⋅==259()24x --.综上所述,当52x =时,PB PC ⋅取得最小值94-.。

如何解答平面向量最值问题

如何解答平面向量最值问题
x y
4x 4y
4
解题宝典
性运算法则、数量积公式来求向量模的表达式,再求
该表达式的最值,即可求得向量的模的最值.还可以根
据向量的几何意义构造出几何图形,将所求向量的模
y
≥ 1 (5 + 2 ∙4x ) = 9 ,
x y
4
4
看作三角形、四边形的一条边长,确定向量的模取最
当且仅当
∠ADC = 90°,
例3.已知直角梯形 ABCD 中,AD//BC,

1
= AM +
AN,
4x
4y
图1
有些平面向量最值问题中含有参数,要求参数的
最值或取值范围,需根据题意建立关于参数的关系
式,将问题转化为求代数式的最值问题,利用基本不
等式、函数的性质来求最值.还可以根据题意和向量加
减法的几何意义:三角形法则和平行四边形法则,画

a
(1)数列的通项公式 n ;
解:
(1)要使 C
{
-A
2m - 2
11 - 3m
2
数学篇
40
76
77
77
77
因 为 77 - 15 =(76 + 1) - 15 = 76 + C177·76 + ⋯
+C - 15 = 76(76 + C ·76 + ⋯ + C ) + 1 - 15 = 4 × 19

因为 BM = x BA + y BD = 2x BE + y BD ,






y

所以 λBN = 2x BE + y BD ,

解答平面向量最值问题的几个“妙招”

解答平面向量最值问题的几个“妙招”

思路探寻由于ΔABC 与ΔABD 的底边相同,所以它们的面积之比就是它们在AB 边上的高之比,不难发现这两个三角形的高CE 和DE 的夹角就是二面角的平面角,可直接运用射影面积法,求得两个三角形ΔABC 与ΔABD 的面积,即可解题.三、采用垂面法由二面角的平面角的定义可知两个半平面的公垂面与二面角的棱垂直,因此公垂面与两个半平面的交线所成的角,就是二面角的平面角.如图5,若平面OABC 为二面角α-a -β的公垂面,则这个二面角的平面角为∠COB .运用垂面法解题,要先根据面面垂直的判定定理证明公垂面与二面角的两个半平面都垂直,才能确定二面角的平面角.图5图6例3.如图6,在长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,BC =3,E ,F 分别为CD 1,AB 的中点.(1)求证:EF ∥平面BB 1C 1C ;(2)求二面角F -CD 1-D 的余弦值.解:(1)过程略;(2)设CD 的中点为P ,连接FP ,过点P 作CD 1的垂线,垂足为H .在长方体中,由FP ⊥CD 可得FP ⊥CD 1,因为PH ⊥CD 1,PH ⋂FP =P ,所以CD 1⊥平面FHP ,所以FH ⊥CD 1,则∠FHP 为二面角F -CD 1-D 的平面角.因为∠FPH =π2,且FP =BC =3,则HP =12DE=2所以FH =HP 2+FP 2=,所以cos ∠FHP =HPFH .即二面角F -CD 1-D 的余弦值为.运用垂面法解题时,可以找到一个与二面角的棱垂直的平面,那么根据面面垂直的判定定理可知这个平面即为二面角的公垂面.在本题中,我们根据CD 1⊥平面FHP ,确定平面FHP 为二面角的公垂面,从而找到二面角的平面角∠FHP .总之,在求解二面角问题时,我们需根据解题需求,采用三垂线法、射影面积法、垂面法来确定二面角的平面角,再根据平面几何知识,如勾股定理、正余弦定理来求平面角的大小.(作者单位:江苏省淮安市楚州中学)平面向量最值问题的常见命题形式有:(1)求两个向量数量积的最值;(2)求某个向量的模的最值;(3)求参数或代数式的最值.平面向量最值问题具有较强的综合性,对学生的运算和分析能力有较高的要求.下面以一道平面向量最值问题为例,谈一谈解答此类问题的“妙招”.题目:已知平面向量a ,b ,c (c ≠0)满足|a |=1,|b|=2,a ∙b =0,(a -b )∙c =0,若向量d 在a ,b 方向上的投影分别为x ,y ,d -a 在向量c方向上的投影为z ,则x 2+y 2+z 2的最小值为______.题目中给出的条件较多,需先根据题意理清各种关系,根据向量的模的公式、数乘运算法则、数量积公式、投影的定义建立关于x 、y 、z 的关系式,将目标式中变量的个数减少,从而将问题转化为求代数式的最值;再利用配方法、柯西不等式、导数法、数形结合法求解.一、配方配方法只适用于解答含有二次式的代数问题.若平面向量最值问题中的目标式为二次式,则可采用配方法.先将目标式配成完全平方式;然后根据完全平方式恒大于或等于0的性质,令完全平方式为0,即可求得目标式的最小值.解法1.∵a ∙b =0,∴a ⊥b,以a ,b两个向量的起点为原点建立平面直角坐标系,设a =(1,0),b =(0,2),c =(m ,n ),∵(a -b)∙c =0,∴m -2n =0,即m =2n ,∴c =(2n ,n )(n ≠0).∵d在a ,b 方向上的投影分别为x ,y ,∴d =(x ,y ),∵d -a 在c方向上的投影为z ,∴z =(d -a )∙c ||c =,吴仕明48思路探寻5的最小值为25.看作线段OP长度的平到直线2x+y-2=0的距离便可将问题转化为距离问题,通过研究点O、以及直线之间的位置关系确定目标式取最小值最后根据两点间的距离公式、点到直线的距我们从四种不同的角度寻找到解答这道平面向。

【向量专题】2.向量中最值(取值范围)问题解题策略

【向量专题】2.向量中最值(取值范围)问题解题策略

【向量专题】2.向量中最值(取值范围)问题解题策略
向量题目在高考题中除了最常见的简单运算外,还有另外一种有些难度的题目,即向量题目中的最值问题(取值范围问题),类似于其他专题,最值问题中千年不变的常见方法有利用三角函数有界性和不等式法,这次课除了这两种方法外再给出两种方法,常见的解决向量最值问题的方法有如下四种:、
向量专题中两类向量不等式。

(常被忽略)利用三角函数有界性来解,但是需要注意一下,三角函数有界性是在运算中出现正余弦的形式,所以当题目中出现了三角坐标时,又或者题目中出现了圆,椭圆,半圆的时候,如果需要设其上点的坐标,最好设成三角函数坐标的形式。

利用基本不等式解决最值问题。

利用几何图形法解决最值问题,特别需要注意在给定形状三角形内的情况。

向量中的最值来自曹老师的高中数学课00:00 29:46 注意接下来的转化:
用到了任意性注意这个结论:
---------------------------------------------------------------------------------------------------------------。

数学-平面向量中的最值与范围问题

数学-平面向量中的最值与范围问题

平面向量中的最值与范围问题高中数学 会利用向量的定义及运算求解最值与范围问题.导语 平面向量中的范围、最值问题是热点问题,也是难点问题,此类问题综合性强,体现了知识的交汇组合,其基本题型是根据已知条件求某个变量的范围、最值,比如向量的模、数量积、向量的夹角、系数的范围等等,解题思路是建立目标函数的函数解析式,转化为求函数的最值,同时向量兼顾“数”与“形”的双重身份,所以解决平面向量的范围、最值问题的另外一种思路是数形结合.一、向量线性运算中的最值与范围问题例1 如图,在直角梯形ABCD 中,AB ∥CD ,∠DAB =90°,AD =AB =4,CD =1,动点P 在边BC 上,且满足=m +n (m ,n 均为正实数),求+的最小值.AP → AB → AD→ 1m 1n解 因为在直角梯形ABCD 中,AB ∥CD ,∠DAB =90°,AD =AB =4,CD =1,所以=+=-,AD → AC → CD → AC → 14AB → 所以=m +n AP → AB → AD → =m +n AB→ (AC → -14AB →)=+n ,(m -14n )AB → AC → 由P ,B ,C 三点共线得,m -n +n =m +n =1(m ,n >0),1434所以+=1m 1n (1m +1n )(m +34n )=++≥+2743n4m mn 743n 4m ·mn=+=(当且仅当3n 2=4m 2时取等号),7437+434即+的最小值为.1m 1n 7+434反思感悟 利用向量的概念及基本运算,将所求问题转化为相应的等式关系,然后用基本不等式求最值.跟踪训练1 如图所示,A ,B ,C 是圆O 上的三点,CO 的延长线与BA 的延长线交于圆O 外一点D .若=m +n ,则m +n 的取值范围是________.OC → OA → OB→答案 (-1,0)解析 由点D 是圆O 外一点,可设=λ(λ>1),BD → BA→ 则=+λ=λ+(1-λ).OD → OB → BA → OA → OB → 又因为C ,O ,D 三点共线,令=-μ(μ>1),OD → OC→ 则=--(λ>1,μ>1),所以m =-,n =-,OC → λμOA → 1-λμOB→ λμ1-λμ则m +n =--=-∈(-1,0).λμ1-λμ1μ二、向量数量积的最值与范围问题例2 在边长为1的正方形ABCD 中,M 为边BC 的中点,点E 在线段AB 上运动,则·EC→ 的取值范围是( )EM→ A. B.[12,2][0,32]C.D .[0,1][12,32]答案 C解析 将正方形放入如图所示的平面直角坐标系中,设E (x ,0),0≤x ≤1.则M,C (1,1),(1,12)所以=,=(1-x ,1),EM → (1-x ,12)EC → 所以·=·(1-x ,1)=(1-x )2+.EM → EC → (1-x ,12)12因为0≤x ≤1,所以≤(1-x )2+≤,121232即·的取值范围是.EC → EM → [12,32]反思感悟 建立适当的坐标系,将平面向量数量积的运算坐标化,然后利用二次函数,基本不等式等求最值或范围.跟踪训练2 在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.动点E 和F 分别在线段BC 和DC 上,且=λ,=,则·的最小值为________.BE → BC → DF → 19λDC → AE→ AF → 答案 2918解析 根据题意,可知DC =1,·=(+)·(+)=(+λ)·=AE → AF → AB → BE → AD → DF → AB → BC→ (AD → +19λDC → )·+·+λ·+·=1++-≥1+2-=,当且仅当λ=时,AB → AD → 19λAB → DC → BC → AD → 19BC → DC→ 29λλ211819118291823等号成立.三、向量模的最值问题例3 向量a ,b 满足|a |=1,a 与b 的夹角为,则|a -b |的最小值为________.π3答案 32解析 |a -b|2=(a -b )2=a 2-2a·b +b 2=1-2×1×|b|cos +|b|2π3=|b|2-|b|+1=2+≥,(|b |-12)3434所以|a -b|≥,当|b|=时取得最小值.3212跟踪训练3 已知|a +b |=2,向量a ,b 的夹角为,则|a |+|b |的最大值为________.π3答案 433解析 将|a +b |=2两边平方并化简得(|a |+|b |)2-|a ||b |=4,由基本不等式得|a ||b |≤2=(|a |+|b |2),故(|a |+|b |)2≤4,即(|a |+|b |)2≤,即|a |+|b |≤,当且仅当|a |=|b |=时,(|a |+|b |)2434163433233等号成立,所以|a |+|b |的最大值为.433四、向量夹角的最值问题例4 已知|a |=1,向量b 满足2|b -a |=b ·a ,设a 与b 的夹角为θ,则cos θ的最小值为________.答案 255解析 ∵|a |=1,∴设a =(1,0),b =(x ,y ),∴b -a =(x -1,y ),由2|b -a |=b ·a 得,2=x ,则x >0,(x -1)2+y 2∴4(x -1)2+4y 2=x 2,∴y 2=-x 2+2x -1,34∴cos θ=====a ·b|a ||b |xx 2+y 2xx 2-34x 2+2x -1x14x 2+2x -11-(1x )2+2x +14=,1-(1x -1)2+54∴当=1即x =1时,cos θ取最小值.1x 255反思感悟 将向量夹角的大小问题转化为夹角余弦值的大小,利用函数求最值或范围.跟踪训练4 已知向量a ,b 满足a =(t ,2-t ),|b |=1,且(a -b )⊥b ,则a ,b 的夹角的最2小值为( )A.B.π6π4C. D.π3π2答案 C解析 因为(a -b )⊥b ,所以(a -b )·b =0,a ·b =b 2,cos 〈a ,b 〉====a ·b |a ||b ||b |2|a ||b ||b ||a |1|a |=,12t 2-42t +8又因为2t 2-4t +8=2[(t -)2+2]≥2[(-)2+2]=4,2222所以0<cos 〈a ,b 〉≤,所以a ,b 的夹角的最小值为.12π3课时对点练1.已知向量m =(a -1,1),n =(2-b ,2)(a >0,b >0),若m ∥n ,则m ·n 的取值范围是( )A .[2,+∞) B .(0,+∞)C .[2,4) D .(2,4)答案 C解析 因为m ∥n ,所以2a -2=2-b ,所以2a +b =4,所以b =4-2a >0,所以0<a <2,所以m ·n =2a +b -ab =4-ab =4-a (4-2a )=2a 2-4a +4=2(a -1)2+2∈[2,4).2.如图,在△ABC 中,点D 是线段BC 上的动点,且=x+y ,则+的最小值为( )AD → AB → AC→ 1x 4y A .3 B .4 C .5 D .9答案 D解析 由图可知x ,y 均为正,且x +y =1,∴+=(x +y )=5++1x 4y (1x +4y )y x 4xy≥5+2=9,当且仅当=,y x ·4x y y x 4x y 即x =,y =时等号成立,1323则+的最小值为9.1x 4y3.在△ABC 中,AB =,BC =2,∠B =150°,点D 是AC 边上的一点(包括端点),点M 3是AC 的中点,则·的取值范围是( )BM→ BD → A. B. C. D .[0,1](0,12)[0,12][12,1]答案 B解析 因为点M 是AC 的中点,所以=+,BM → 12BA → 12BC → 因为点D 是AC 边上的一点(包括端点),所以=λ,λ∈[0,1],CD → CA→ -=λ-λ,=λ+(1-λ),BD → BC → BA → BC → BD → BA → BC → 则·=·[λ+(1-λ)]BM → BD → (12BA → +12BC →)BA → BC → =λ2+·+(1-λ)2.12BA → 12BA → BC → 12BC → 因为AB =,BC =2,∠B =150°,3所以2=3,·=-3,2=4,BA → BA → BC → BC → 所以·=-λ.BM → BD→ 1212因为0≤λ≤1,则0≤-λ≤.121212故·的取值范围是.BM → BD→ [0,12]4.设O (0,0),A (1,0),B (0,1),点P 是线段AB 上的一个动点,=λ,AP → AB→ 若·≥·,则实数λ的取值范围是( )OP→ AB → PA → PB → A.≤λ≤1 B .1-≤λ≤11222C.≤λ≤1+ D .1-≤λ≤1+12222222答案 B解析 ∵=λ,=(1-λ)+λ=(1-λ,λ),=λ=(-λ,λ),·≥·AP → AB → OP → OA → OB → AP → AB → OP→ AB → PA → ,PB →∴(1-λ,λ)·(-1,1)≥(λ,-λ)·(λ-1,1-λ),∴2λ2-4λ+1≤0,解得1-≤λ≤1+,因为点P 是线段AB 上的一个动点,所以22220≤λ≤1,即满足条件的实数λ的取值范围是1-≤λ≤1.225.如图,在平行四边形ABCD 中,∠BAD =,AB =2,AD =1,若M ,N 分别是边AD ,CD π3上的点,且满足==λ,其中λ∈[0,1],则·的取值范围是( )MDAD NCDC AN→ BM→ A .[-3,-1] B .[-3,1]C .[-1,1] D .[1,3]答案 A解析 以A 为原点,AB ,垂直于AB 所在的直线分别为x ,y 轴建立平面直角坐标系(图略),则B (2,0),A (0,0),D .(12,32)∵满足==λ,λ∈[0,1],MDAD NCDC ∴=+=+(1-λ)=+(1-λ)=+(1-λ)(2,0)=,AN → AD → DN → AD → DC → AD → AB → (12,32)(52-2λ,32)=+=-+(1-λ)=(-2,0)+(1-λ)=,BM → BA → AM → AB → AD → (12,32)(-32-12λ,32(1-λ))·=·AN → BM → (52-2λ,32)(-32-12λ,32(1-λ))=+×(1-λ)(52-2λ)(-32-12λ)3232=λ2+λ-3=2-.(λ+12)134∵λ∈[0,1],二次函数的对称轴为λ=-,12则函数在[0,1]上单调递增,故当λ∈[0,1]时,λ2+λ-3∈[-3,-1].6.设0≤θ<2π,已知两个向量=(cos θ,sin θ),=(2+sin θ,2-cos θ),则向量OP 1→ OP2→长度的最大值是( )P 1P 2——→ A. B. C .3 D .22323答案 C解析 ∵=-=(2+sin θ-cos θ,2-cos θ-sin θ),P 1P 2——→ OP2→ OP 1→ ∴||==≤3.P 1P 2——→ (2+sin θ-cos θ)2+(2-cos θ-sin θ)210-8cos θ2当cos θ=-1时,||有最大值3.P 1P 2——→ 27.已知△ABC 的三边长AC =3,BC =4,AB =5,P 为AB 边上任意一点,则·(-)CP→ BA → BC → 的最大值为________.答案 9解析 根据题意,建立直角坐标系,如图,∴A (0,3),B (4,0),C (0,0),∴=(4,-3),AB→ =+=+λ=(0,3)+(4λ,-3λ)=(4λ,3-3λ),λ∈[0,1],CP → CA → AP → CA → AB→ ∴·(-)=·=(4λ,3-3λ)·(0,3)=9-9λ∈[0,9],CP→ BA → BC → CP → CA → ∴·(-)的最大值为9.CP→ BA → BC → 8.若a =(2,2),|b |=1,则|a +b |的最大值为________.答案 2+12解析 因为|b |=1,设b =(cos θ,sin θ),则a +b =(2+cos θ,2+sin θ),则|a +b|===(2+cos θ)2+(2+sin θ)24(cos θ+sin θ)+9≤==2+1,当且仅当sin=1时取等号.42sin (θ+π4)+99+42(22+1)22(θ+π4)9.已知向量a ,b 满足|a |=1,|b |=2,a ·(a +b )=2.求|a -λb |的最小值.解 由|a |=1,a ·(a +b )=2,可知a ·b =1,根据向量求模公式得|a -λb |=,4λ2-2λ+1易知,当λ=时,|a -λb |取得最小值为.143210.△ABC 中,AB =2,AC =2,∠BAC =45°,P 为线段AC 上任意一点,求·的取2PB→ PC → 值范围.解 设=t (0≤t ≤1),PC→ AC → 则=(1-t ),AP → AC → 因为=-=-(1-t ),PB → AB → AP → AB → AC → 所以·=[-(1-t )]·t PB → PC → AB → AC → AC → =t ·-t (1-t )2AB → AC → AC → =2×2t ·cos 45°-t (1-t )×(2)222=8t 2-4t =82-.(t -14)12因为0≤t ≤1,所以-≤·≤4,12PB→ PC → 所以·的取值范围为.PB → PC→ [-12,4]11.如图,在△ABC 中,已知AB =2,AC =3,∠BAC =θ,点D 为BC 的三等分点.则·AD→ 的取值范围为( )BC→A. B.(-113,133)(13,73)C.D.(-53,73)(-53,553)答案 C解析 ∵=+=+AD → AB → BD → AB → 13BC→=+(-)=+,AB → 13AC → AB → 23AB → 13AC → ∴·=·(-)AD → BC → (23AB → +13AC →)AC → AB → =-||2+||2+·23AB → 13AC → 13AB → AC →=-×4+×9+×2×3cos θ=2cos θ+.23131313∵-1<cos θ<1,∴-<2cos θ+<.531373∴·∈.AD → BC → (-53,73)12.如图,延长线段AB 到点C ,使得=2,D 点在线段BC 上运动,点O ∉直线AB ,满AB → BC→ 足=λ+μ,则λμ的取值范围是( )OD → OA → OB→A.B.[-32,0][-2,23]C.D .[-1,1][-34,0]答案 C解析 不妨设AB =2BC =2,BD =x ,x ∈[0,1],由平面向量三点共线可知,= + ,OB → 22+x OD → x2+x OA→ ∴=-,OD → 2+x 2OB → x 2OA → ∴λ=-,μ=,x ∈[0,1],x22+x2则λμ=-=-(x 2+2x ),(2+x )x414∴λμ∈.[-34,0]13.已知平面向量a ,b ,c 满足|a |=|b |=|c |=1,若a ·b =,则(a +b )·(2b -c )的取值范围是( )12A .[1,2+]B .[1,3+]33C .[3-,2+]D .[3-,3+]3333答案 D解析 因为a ·b =,设a 与b 的夹角为θ,12则a·b =|a|·|b|cos θ=,解得θ=,而|a|=|b|=|c|=1,则可设a =(1,0),由θ=可得b =12π3π3.(12,32)由|c |=1,设c =(sin α,cos α),则(a +b )·(2b -c )=2a·b +2b 2-a·c -b·c=1+2-sin α-(12sin α+32cos α)=3-=3-sin.(32sin α+32cos α)3(α+π6)所以当α=时取得最大值为3+,当α=时取得最小值为3-,所以(a +b )·(2b -c )的4π33π33取值范围为[3-,3+].3314.已知|a |=|b |=a ·b =2,c =(2-4λ)a +λb ,则(c -a )·(c -b )的最小值为________.答案 -4952解析 ∵c -a =(1-4λ)a +λb ,c -b =(2-4λ)a +(λ-1)b ,∴(c -a )·(c -b )=[(1-4λ)a +λb ]·[(2-4λ)a +(λ-1)b ]=(16λ2-12λ+2)a 2+(-8λ2+7λ-1)a ·b +(λ2-λ)b 2,代入|a |=|b |=a ·b =2,原式=52λ2-38λ+6,∴当λ=时,原式取得最小值,为-.1952495215.已知正三角形ABC 按如图所示的方式放置,AB =4,点A ,B 分别在x 轴的正半轴和y轴的正半轴上滑动,则·的最大值是________.OA → OC →答案 12解析 设∠OAB =θ,θ∈,(0,π2)则A (4cos θ,0),C ,(4cos θ+4cos (2π3-θ),4sin (2π3-θ))所以·=4cos θ·OA → OC → [4cos θ+4cos (2π3-θ)]=4cos θ(2cos θ+2sin θ)3=4cos 2θ+4+4sin 2θ3=8sin +4,θ∈,(2θ+π6)(0,π2)故当2θ+=,即θ=时,·有最大值12.π6π2π6OA → OC → 16.已知向量a =(,-1),b =.3(12,32)(1)求与a 平行的单位向量c ;(2)设x =a +(t 3+3)b ,y =-k ·t a +b ,若存在t ∈[0,2],使得x ⊥y 成立,求k 的取值范围.解 (1)设c =(x ,y ),根据题意得Error!解得Error!或Error!∴c =或c =.(32,-12)(-32,12)(2)∵a =(,-1),b =,3(12,32)∴a·b =0.∵x ⊥y ,∴-kt |a |2+(t 2+3)|b |2=0.∵|a |=2,|b |=1,∴t 2-4kt +3=0.问题转化为关于t 的二次方程t 2-4kt +3=0在[0,2]内有解.令f (t )=t 2-4kt +3,则当2k ≤0,即k ≤0时,∵f (0)=3,∴方程t 2-4kt +3=0在[0,2]内无解.当0<2k ≤2,即0<k ≤1时,由Δ=16k 2-12≥0,解得k ≤-或k ≥,∴≤k ≤1.323232当2k >2,即k >1时,由f (2)≤0得4-8k +3≤0,解得k ≥,∴k >1.78综上,实数k 的取值范围为.[32,+∞)。

巧解平面向量中的最值问题

巧解平面向量中的最值问题

可以了,不应该把大量时间浪费在体育活动上。首先,要改变父母 要性时,曾说过四句话:“没有强度就没有体育,没有强度就没有
对健康的认识,要让他们认识到健康不仅仅是身体健康,还包括 健康体质,没有强度就没有大众健康,没有强度就不可能成为体
心理健康、社会适应良好和道德健康。其次,要让他们对体育的功 育强国。”可见强度的重要意义。因此,只要保证学生膳食平衡、运
高三数学的复习需要对学生的知识进行联系、对解决综合问 题的能力进行提升,突破“不是做不到,只是想不到”的瓶颈,促进 知识的内化。为此,问题的提出要围绕核心知识,在知识的交汇处 设计问题;教师通过问题串以及典型的例题,组织知识、思想方法 的复习,使学生能抓住核心主干,掌握基本技能和思想方法。
教师在课堂上应该引导学生探究知识点间的联系和区别,让 知识点连成线、构成面、织成网,使得知识在脑海中经历“由厚到 薄”的过程;而不是将复习课变成“知识点+训练”的简单模式。在 本节课里,核心知识是平面向量数量积,由实数不等式类比得到 平面向量也有此不等式成立。学生在分析中发现平面向量中的最 值、范围的求解可以类比实数不等式求解,逐步形成完整的知识 体系和解题方法。因此,教师要结合复习的核心知识与思想方法, 对整节课作一个整体有序、结构合理、纵横联系、逐步深入的设 计,使之成为知识网络的建构过程。
[4]李百惠,吴双胜,王海俊,马军,张世伟,等.全国五城市儿
的重要原因之一,那么如何更好地促进学生体质健康?家校合作 童青少年运动状况调查[A].膳食营养、身体活动与健康:达能营
的体育模式是值得推荐的一个措施,家长除了要多和孩子交流外, 养中心第十一次学术年会[C],2008.
也要加强与学校交流,这样不仅能了解学生的学习情况,而且能
灵活运用公式的能力。只有拥有熟悉的知识、严谨的思维、熟练的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【高考地位】平面向量中的最值和范围问题,是一个热点问题,也是难点问题,这类试题的基本类型是根据给出的条件求某个量的最值、范围,如:向量的模、数量积、夹角及向量的系数.解决这类问题的一般思路是建立求解目标的函数关系,通过函数的值域解决问题,同时,平面向量兼具“数”与“形”的双重身份,解决平面向量最值、范围问题的另一个基本思想是数形结合.在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中高档题.【方法点评】方法一 利用基本不等式求平面向量的最值使用情景:一般平面向量求最值问题解题模板:第一步 利用向量的概念及其基本运算将所求问题转化为相应的等式关系;第二步 运用基本不等式求其最值问题; 第三步 得出结论.例1设M 是△ABC 内一点,且23AB AC ⋅=,30BAC ∠=︒,定义()(,,)f M m n p =,其中m ,n ,p 分别是△MBC ,△MCA ,△MAB 的面积,若1()(,,)2f M x y =,则14x y +的最小值是( )A .8B .9C .16D .18例 2 如右图所示,已知点G 是ABC ∆的重心,过点G 作直线与,AB AC 两边分别交于,N M 两点,且,AM x AB AN y AC ==,则2x y +的最小值为( )A .2B .13C .3223+ D .34【变式演练1】如图所示,已知点G 是ABC ∆的重心,过点G 作直线与,AB AC 两边分别交于,M N 两点,且,AM x AB AN y AC ==,则x y +的最小值为( )A .2B .13 C .43 D .34【变式演练2】已知点A (1,-1),B (4,0),C (2,2).平面区域D 由所有满足AP AB AC λμ=+(1≤λ≤a ,1≤μ≤b )的点P (x,y )组成的区域.若区域D 的面积为8,则a+b 的最小值为 . 【变式演练3】平行四边形ABCD 中,60,1,2,BAD AB AD P ∠===为平行四边形内一点,且22AP =,若),(R AD AB AP ∈+=μλμλ,则2u λ+的最大值为 .方法二 利用向量的数量积m n m n ⋅≤求最值或取值范围使用情景:涉及数量积求平面向量最值问题解题模板:第一步 运用向量的加减法用已知向量表示未知向量;第二步 运用向量的数量积的性质求解; 第三步 得出结论.例3 已知OAB ∆的顶点坐标为(0,0)O ,(2,9)A ,(6,3)B -, 点P 的横坐标为14,且OP PB λ=,点Q 是边AB 上一点,且0OQ AP ⋅=. (1)求实数λ的值与点P 的坐标; (2)求点Q 的坐标;MNA BGQ(3)若R 为线段OQ (含端点)上的一个动点,试求()RO RA RB ⋅+的取值范围.【变式演练4】已知向量,a b 不共线,t 为实数.(Ⅰ)若OA a =,OB tb =,1()3OC a b =+,当t 为何值时,,,A B C 三点共线; (Ⅱ)若||||1a b ==,且a 与b 的夹角为120,实数1[1,]2x ∈-,求 ||a xb -的取值范围.【变式演练5】若直线10()ax y a a R +-+=∈与圆224x y +=交于A 、B 两点(其中O 为坐标原点),则AO AB ⋅的最小值为( )A .1B .2C .3D .4方法三 建立直角坐标系法使用情景:一般向量求最值或取值范围类型解题模板:第一步 根据题意建立适当的直角坐标系并写出相应点的坐标;第二步 将平面向量数量积的运算坐标化;第三步 运用适当的数学方法如二次函数的思想、基本不等式的思想、三角函数思想等求解即可.例3 在ABC ∆中,O 为中线AM 上一个动点,若2AM =,则()OA OB OC ⋅+的最小值是__________.例 4 在Rt ABC ∆中,BC a =,若长为2a 的线段PQ 以A 点为中点,问PQ 与BC 的夹角θ取何值时BP CQ ⋅的值最大?并求出这个最大值.【变式演练6】如图,在等腰直角三角形ABC 中,,D ,E 是线段BC 上的点,且,则的取值范围是( )A .B .C .D .【变式演练7】在平面上,121212,1,AB AB OB OB AP AB AB ⊥===+.若12OP <,则OA 的取值范围是( )A .⎥⎦⎤⎢⎣⎡25,0 B .⎥⎦⎤⎢⎣⎡27,25 C .⎥⎦⎤⎢⎣⎡2,25 D .722⎛ ⎝【高考再现】1. 【2016年高考四川理数】在平面内,定点A ,B ,C ,D 满足DA =DB =DC ,DA ⋅DB =DB ⋅DC =DC ⋅DA =-2,动点P ,M 满足AP =1,PM =MC ,则2BM的最大值是( ) (A )434 (B )494(C )37634+ (D )372334+2.【2016高考浙江理数】已知向量a 、b , |a | =1,|b | =2,若对任意单位向量e ,均有 |a ·e |+|b ·e |≤6 ,则a ·b 的最大值是 . 3.【2015高考福建,理9】已知1,,AB AC AB AC t t⊥== ,若P 点是ABC ∆ 所在平面内一点,且4AB AC AP ABAC=+,则PB PC ⋅ 的最大值等于( )A .13B .15C .19D .214.【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 . 5.【2015高考浙江,理15】已知12,e e 是空间单位向量,1212e e ⋅=,若空间向量b 满足1252,2b e b e ⋅=⋅=,且对于任意,x y R ∈,12010200()()1(,)b xe ye b x e y e x y R -+≥-+=∈,则0x = ,0y = ,b = .6.【2015高考湖南,理8】已知点A ,B ,C 在圆221x y +=上运动,且AB BC ⊥,若点P 的坐标为(2,0),则PA PB PC ++的最大值为( ) A.6 B.7 C.8 D.97.【2015高考上海,文13】已知平面向量a 、b 、c 满足b a ⊥,且}3,2,1{|}||,||,{|=c b a ,则||c b a ++的最大值是 .【反馈练习】1.【 2017届湖南长沙长郡中学高三摸底测试数学试卷,理15】已知AD 是ABC ∆的中线,(,)AD AB AC R λμλμ=+∈,0120,2A AB AC ∠=•=-,则||AD 的最小值是 .2. 【2017届浙江名校协作体高三上学期联考数学试卷,理15】已知点()1,0A m -,()1,0B m +,若圆C :2288310x y x y +--+=上存在一点P ,使得0PA PB ⋅=,则正实数...m 的最小值为 .3.【 2017届山西大学附中高三二模测试数学试卷,理15】在直角梯形,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===分别为,AB AC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DE 上变动(如图所示).若AP ED AF λμ=+,其中,R λμ∈,则2λμ-的取值范围是___________.4.【 2016届湖北省沙市中学高三考前最后一卷理科数学试卷,理14】已知(1,0)A ,曲线:C e ax y =恒过点B ,若P 是曲线C 上的动点,且AB AP ⋅的最小值为2,则a = .5.【 2016届江苏省苏锡常镇四市高三教学情况调研二数学试卷,理16】在平面直角坐标系xOy 中,设点(1 0)A ,,(0 1)B ,,( )C a b ,,( )D c d ,,若不等式2(2)()()CD m OC OD m OC OB OD OA -⋅+⋅⋅⋅≥对任意实数a b c d ,,,都成立,则实数m 的最大值是 .6.【 016届江苏省南京市高三第三次学情调研测试数学试卷,理14】在半径为1的扇形AOB 中,∠AOB =60o,C 为弧上的动点,AB 与OC 交于点P ,则⋅OP BP 的最小值是 .7.【 2016届江苏省扬州中学高三3月质量检测数学试卷,理15】平行四边形ABCD 中,60,1,2,BAD AB AD P ∠===为平行四边形内一点,且22AP =,若),(R ∈+=μλμλ,则2u λ+的最大值为 .8.【 2016届浙江省绍兴市一中高三9月回头考数学试卷,文15】已知向量αβγ、、满足1α=,αββ-=,()()0αγβγ-⋅-=.若对每一确定的β,γ的最大值和最小值分别是m n 、,则对任意β,m n -的最小值是 .9.【 2014-2015学年江苏省盐城市高一下学期期末考试数学试卷,理14】已知正方形ABCD 的边长为1,直线MN 过正方形的中心O 交边,AD BC 于,M N 两点,若点P 满足2(1)OP OA OB λλ=+-(R λ∈),则PM PN ⋅的最小值为 .10. 【2016届江苏省泰州中学高三上学期第二次月考数学试卷,理18】设ABC ∆是边长为1的正三角形,点321,,P P P 四等分线段BC (如图所示).(1)求112AB AP AP AP ⋅+⋅的值; (2)Q 为线段1AP 上一点,若112AQ mAB AC =+,求实数m 的值; (3)P 为边BC 上一动点,当PA PC ⋅取最小值时,求PAB ∠cos 的值.。

相关文档
最新文档