《大学物理C1(上、下)》练习册及答案教学文案
大学物理教程(上)课后习题答案解析

物理部分课后习题答案(标有红色记号的为老师让看的题)27页 1-2 1-4 1-121-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位,求:(1) 质点的运动轨迹;(2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。
解:(1)由运动方程消去时间t 可得轨迹方程,将t =21)y =或1=(2)将1t s =和2t s =代入,有11r i =, 241r i j =+213r r r i j =-=-位移的大小 231r =+= (3) 2x dxv t dt== 2(1)y dy v t dt==-22(1)v ti t j =+-2xx dv a dt==, 2y y dv a dt == 22a i j =+当2t s =时,速度和加速度分别为42/v i j m s =+22a i j =+ m/s 21-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+,式中的R 、ω均为常量。
求(1)质点的速度;(2)速率的变化率。
解 (1)质点的速度为sin cos d rv R ti R t j dtωωωω==-+ (2)质点的速率为v R ω==速率的变化率为0dvdt= 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。
求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。
解 由于 4d t dtθω== 质点在t 时刻的法向加速度n a 的大小为2216n a R Rt ω==角加速度β的大小为 24/d rad s dtωβ==77页2-15, 2-30, 2-34,2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。
《新编大学物理》(上、下全册)桑建平教材习题答案解析武汉大学出版社

第1章 质点运动学一、选择题 题1.1 : 答案:[B]提示:明确∆r 与r ∆的区别题1.2: 答案:[A]题1.3: 答案:[D]提示:A 与规定的正方向相反的加速运动, B 切向加速度, C 明确标、矢量的关系,加速度是d dtv题1.4: 答案:[C] 提示: 21r r r ∆=-,12,R R r j ri ==-,21v v v ∆=-,12,v v v i v j =-=-题1.5: 答案:[D]提示:t=0时,x=5; t=3时,x=2得位移为-3m ;仅从式x=t 2-4t+5=(t-2)2+1,抛物线的对称轴为2,质点有往返题1.6: 答案:[D]提示:a=2t=d dt v,2224t v tdt t ==-⎰,02tx x vdt -=⎰,即可得D 项题1.7:答案:[D]北v 风v 车1v 车2提示: 21=2v v 车车,理清=+v v v 绝相对牵的关系二、填空题 题1.8:答案: 匀速(直线),匀速率题1.9:答案:2915t t -,0.6 提示: 2915dxv t t dt==-,t=0.6时,v=0题1.10:答案:(1)21192y x =-(2)24t -i j 4-j(3)411+i j 26-i j 3S提示: (1) 联立22192x t y t=⎧⎨=-⎩,消去t 得:21192y x =-,dx dydt dt =+v i j (2) t=1s 时,24t =-v i j ,4d dt==-va j (3) t=2s 时,代入22(192)x y t t =+=+-r i j i j 中得411+i j t=1s 到t=2s ,同样代入()t =r r 可求得26r∆=-i j ,r 和v 垂直,即0∙=r v ,得t=3s题1.11: 答案:212/m s 提示:2(2)2412(/)dv d x a v x m s dt dt=====题1.12: 答案:1/m sπ提示: 200t dvv v dt t dt =+=⎰,11/t vm s ==,201332tv dt t R θπ===⎰,r π∆==题1.13:答案:2015()2t v t gt -+-i j 提示: 先对20(/2)v t g t =-r j 求导得,0()y v gt =-v j 与5=v i 合成得05()v gt =-+-v i j 合 201=5()2t v t gt -+-∴⎰r v i j t合0合dt=题1.14: 答案:8, 264t提示:8dQ v R Rt dt τ==,88a R τ==,2264n dQ a R t dt ⎛⎫== ⎪⎝⎭三、计算题 题1.15:解:(1)3t dv a t dt == 003v tdv tdt =∴⎰⎰ 232v t ∴= 又232ds v t dt == 20032stds t dt =∴⎰⎰ 312S t =∴ (2)又S R θ= 316S tRθ==∴(3)当a 与半径成45角时,n a a τ=2434n v a t R == 4334t t =∴t =∴题1.16:解:(1)dv a kv dt ==- 0v tdv kdt v =-∴⎰⎰, 0ln v kt v =-(*) 当012v v =时,1ln 2kt =-,ln 2t k=∴ (2)由(*)式:0ktv v e-=0kt dxv e dt -=∴,000xtkt dx v e dt -=⎰⎰ 0(1)kt v x e k-=-∴第2章 质点动力学一、选择题 题2.1: 答案:[C]提示:A .错误,如:圆周运动B .错误,m =p v ,力与速度方向不一定相同 D .后半句错误,如:匀速圆周运动题2.2: 答案:[B]提示:y 方向上做匀速运动:2y y S v t t == x 方向上做匀加速运动(初速度为0),Fa m=22tx v a d t t ==⎰,223tx x t S v dt ==⎰ 2223t t =+∴S i j题2.3: 答案:[B]提示:受力如图MgF杆'F 猫mg设猫给杆子的力为F ,由于相对于地面猫的高度不变'F mg = 'F F = 杆受力 1()F Mg F M m g =+=+ 1()F M m g a M M+==题2.4 :答案:[D] 提示:a a A22A BA B m g T m a T m a aa ⎧⎪-=⎪=⎨⎪⎪=⎩ 得45A a g = (2A B a a =,通过分析滑轮,由于A 向下走过S ,B 走过2S) 2A B a a =∴题2.5: 答案:[C]提示: 由题意,水平方向上动量守恒, 故 0(cos 60)()1010m mv m v =+ 共 0=22v v 共题2.6: 答案:[C] 提示:RθθRh-R由图可知cos h RRθ-=分析条件得,只有在h 高度时,向心力与重力分量相等所以有22cos ()mv mg v g h R Rθ=⇒=- 由机械能守恒得(以地面为零势能面)22001122mv mv mgh v =+⇒=题2.7: 答案:[B]提示: 运用动量守恒与能量转化题2.8: 答案:[D] 提示:v v y由机械能守恒得2012mgh mv v =⇒=0sin y v v θ=sin Gy Pmgv mg ==∴题2.9: 答案: [C]题2.10: 答案: [B]提示: 受力如图fT F由功能关系可知,设位移为x (以原长时为原点)2()xF mg Fx mgx kxdx x kμμ--=⇒=⎰弹性势能 2212()2p F mg E kx kμ-==二、填空题题2.11: 答案:2mb提示: '2v x bt == '2a v b == 2F m a m b==∴题2.12:答案:2kg 4m/s 2 提示:4N 8Nxy 0由题意,22/x a m s = 4x F N =8y F N = 2Fm k g a== 24/y y F a m s m==题2.13: 答案:75,1110提示: 由题意,32()105F a t m ==+ 27/5v adt m s ⇒==⎰ 当t=2时,1110a =题2.14: 答案:180kg提示:由动量守恒,=m S -S m 人人人船相对S ()=180kg m ⇒船题2.15: 答案:11544+i j 提示:各方向动量守恒题2.16:答案: ()mv +i j ,0,-mgR提示:由冲量定义得 ==()()mv mv mv --=+I P P i j i j 末初- 由动能定律得 0k k E W E ∆=⇒∆=,所以=0W 合 =W m g R -外题2.17: 答案:-12提示:3112w Fdx J -==⎰题2.18:答案: mgh ,212kx ,Mm G r - h=0,x=0,r =∞ 相对值题2.19: 答案: 02mgk ,2mg,题2.20: 答案: +=0A∑∑外力非保守力三、计算题 题2.21:解:(1)=m F xg L 重 ()mf L xg L μ=- (2)1()(1)ga F f x g m Lμμ=-=+-重(3)dv a v dx =,03(1)v LL g vdv x g dx Lμμ⎡⎤=+-⎢⎥⎣⎦⎰⎰,v =题2.22: 解:(1)以摆车为系统,水平方向不受力,动量守恒。
大学物理(机械工业出版社)上下册合集课后练习及答案

⼤学物理(机械⼯业出版社)上下册合集课后练习及答案第⼀章质点的运动1-1 已知质点的运动⽅程为:23010t t x +-=,22015t t y -=。
式中x 、y 的单位为m ,t 的单位为s。
试求:(1) 初速度的⼤⼩和⽅向;(2) 加速度的⼤⼩和⽅向。
分析由运动⽅程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的⼤⼩和⽅向.解 (1) 速度的分量式为t txx 6010d d +-==v t ty y 4015d d -==v当t =0 时,v o x =-10 m·s-1 ,v o y =15 m·s-1 ,则初速度⼤⼩为120200s m 0.18-?=+=y x v v v设v o 与x 轴的夹⾓为α,则23tan 00-==xy αv vα=123°41′(2) 加速度的分量式为2s m 60d d -?==ta xx v , 2s m 40d d -?-==ta y y v则加速度的⼤⼩为222s m 1.72-?=+=y x a a a设a 与x 轴的夹⾓为β,则32tan -==x ya a ββ=-33°41′(或326°19′)1-2 ⼀⽯⼦从空中由静⽌下落,由于空⽓阻⼒,⽯⼦并⾮作⾃由落体运动。
现测得其加速度a =A-B v ,式中A 、B 为正恒量,求⽯⼦下落的速度和运动⽅程。
分析本题亦属于运动学第⼆类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v后再两边积分.解选取⽯⼦下落⽅向为y 轴正向,下落起点为坐标原点.(1) 由题 v vB A ta -==d d (1) ⽤分离变量法把式(1)改写为t B A d d =-vv(2)将式(2)两边积分并考虑初始条件,有=-t t B A 0d d d 0v v v vv 得⽯⼦速度 )1(Bte B A --=v由此可知当,t →∞时,BA→v 为⼀常量,通常称为极限速度或收尾速度.(2) 再由)1(d d Bt e BAt y --==v 并考虑初始条件有 t e BAy tBt yd )1(d 00?--= 得⽯⼦运动⽅程)1(2-+=-Bte B A t B A y1-3 ⼀个正在沿直线⾏驶的汽船,关闭发动机后,由于阻⼒得到⼀个与速度反向、⼤⼩与船速平⽅成正⽐例的加速度,即a = -k v 2,k 为常数。
大学物理学练习册参考答案全

大学物理学练习册参考答案单元一 质点运动学四、学生练习 (一)选择题1.B2.C3.B4.B5.B (二)填空题1. 0 02.2192x y -=, j i ρρ114+, j i ρρ82-3.16vi j =-+v v v ;14a i j =-+v vv;4. 020211V kt V -;5、16Rt 2 4 6 112M h h h =-v v(三)计算题1 解答(1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1).(2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m .(3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).2.解答 1)由t y t x ππ6sin 86cos 5==消去t 得轨迹方程:1642522=+y x 2)tdt dy v t dtdx v y x ππππ6cos 486sin 30==-==当t=5得;πππππ4830cos 48030sin 30===-=y x v vt dt dv a t dtdv a y y xx ππππ6sin 2886cos 18022-==-==当t=5 030sin 28818030cos 180222=-==-=-=πππππdt dv a a yy x 3.解答:1)()t t dt t dt d t tvv 204240+=+==⎰⎰⎰则:t t )2(42++=2)()t t t dt t t dt d ttr )312(2)2(4322++=++==⎰⎰⎰t t t )312()22(32+++=4. [证明](1)分离变量得2d d vk t v=-, 故020d d v tv vk t v =-⎰⎰, 可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.5.解答(1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).6.解答:当s 2=t 时,4.022.0=⨯==t βω 1s rad -⋅ 则16.04.04.0=⨯==ωR v 1s m -⋅064.0)4.0(4.022=⨯==ωR a n 2s m -⋅08.02.04.0=⨯==βτR a 2s m -⋅22222s m 102.0)08.0()064.0(-⋅=+=+=τa a a n单元二 牛顿运动定律(一)选择题 1.A 2.C 3.C 4.C 5 A 6.C (二)填空题 1. 022x F t COS F X ++-=ωωω2.略3. )13(35-4. 50N 1m/s5.21m m t f +∆ )()(212122221m m m t m t m t m f +∆+∆+∆6. 0 18J 17J 7J7. mr k rk (三)计算题1.解答:θμθcos )sin (f f mg =- ; θμθμsin cos +=mgf0cos sin =+=θμθθd df; 0tan =θ ; 037=θ θsin hl ==037sin 5.12. 解答;dtdvmkv F mg =--分离变量积分得 0ln(1)v tktm mdvmg F kvktmg F dt v e mg F kv mg F m k-----=??----蝌 3解答:烧断前 2221211();a L L a L w w =+=烧断后,弹簧瞬间的力不变,所以2a 不变。
大学物理C1练习题答案(新版)

大学物理C1练习题答案(新版)大学物理C1练习题答案力学练习题(一)一、选择题1.D2.B3.B4.D二、填空题1. 2sin A t -ωω 210,1,2,2k k +=πω2. 17.27 2.73(m)r i j ?=+ 0.350.06(m /i j =+v 1.16(m /s)=v3. (1)10 m ,(2)15.7 m三、计算题1. 232210(SI)3t x t ==+v 2./s)=±v力学练习题(二)一、选择题1.D2.D3.C 二、填空题1. sin g -θ cos g θ 2c o s g θv2. 3243t t - 2126t t -3. 55.9/min v m = '东偏北2636或26.6 4. 1212()F m m g m m +-+ 2112(2)m F m g m m ++ 三、计算题1. (1)0mg2. 00(1)R R t μ=+v v v 0(2)ln 2R R t s μμ==v3. (1)7m /s (2)11m /s 222(3)4m/s 605m/s 605m/s t n a a a ===力学练习题(三)一、选择题1.C2.A3.A4.D二、填空题1. 6m /s2. 12J3. 18N s ?三、计算题1. (1)26.49N (2)4.7N s ?2. 12.96m /s3. 0.301m /s力学练习题(四)一、选择题1.C2.B3.B D二、填空题1. 4s 15m/s2.12Ma 3. ln 2J k三、计算题1. 2(1)0.5rad /s - (2)0.25N m -? (3)75rad2. 2(1)10.3rad /s 1(2)9.08rad s -? 力学练习题(五)一、选择题1.C2.D3.B二、填空题1. 0.4rad /s2. 2112(kg m s )k -?? 3(N m)k ?三、计算题1. 21212()m t g m μ+=v v 2. 0(1)78.8=θ (2)4.87m /s (3)3.95J3. 0(1)4ω 22003(2)2W mr =ω 振动和波动练习题(一)一、选择题1.B 2.B 3.D二、填空题1.2,4,12s π-,2π-,2cos()22t ππ-,sin()22t πππ--,2cos()222t πππ--,π2.4T ,12T ,6T3.1︰1三、计算题1.(1)22.010cos(4)3x t m ππ-=?+(2)242.010cos(4)3x t m ππ-=?+ 2.(1)200/k N m =(2)0,0.1,0t x m ===v (3)0.1cos(10)x t m =振动和波动练习题(二)一、选择题1.C 2.C二、填空题1111221122sin sin cos cos A A tg A A -++,2,0,1,2k k ?π?=±=,(21),0,1,2k k ?π?=±+= 2.3cos(5)6t π+,)2t π+ 3.F kx =-,cos[()]x y A t uω?=-+,波沿传播方向传播x 距离落后的时间,波沿传播方向传播x 距离落后的相位。
(完整版)大学物理学上下册习题与答案

习题九一、选择题9.1 关于高斯定理的理解有下面几种说法,其中正确的是:(A) 如果高斯面上E处处为零,则该面内必无电荷.(B) 如果高斯面内无电荷,则高斯面上E处处为零.(C) 如果高斯面上E处处不为零,则高斯面内必有电荷.(D) 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零.[A(本章中不涉及导体)、 D ] 9.2有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A)03 q . (B) 04 q (C) 03 q . (D) 06 q [D ]q题图9.19.3面积为S 的空气平行板电容器,极板上分别带电量q ,若不考虑边缘效应,则两极板间的相互作用力为(A)S q 02(B)S q 022 (C) 2022S q (D) 202Sq [B ]9.4 如题图9.2所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷q ,M 点有负电荷q .今将一试验电荷0q 从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A) A <0 , 且为有限常量. (B) A >0 , 且为有限常量.(C) A =∞. (D) A =0. [D ,0O V ]-题图9.29.5静电场中某点电势的数值等于 (A)试验电荷q 0置于该点时具有的电势能.(B)单位试验电荷置于该点时具有的电势能. (C)单位正电荷置于该点时具有的电势能.(D)[C ]9.6已知某电场的电场线分布情况如题图9.3所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度M N E E . (B) 电势M N U U .(C) 电势能M N W W . (D) 电场力的功A >0.[C ] 二、计算题9.7 电荷为q 和2q 的两个点电荷分别置于1x m 和1x m 处.一试验电荷置于x 轴上何处,它受到的合力等于零? x2q q 0解:设试验电荷0q 置于x 处所受合力为零,根据电力叠加原理可得022220000(2)(2)ˆˆ0041414141q q q q q q i i x x x x 即:22221(2)0121011x x x x22212210x x x x2610(322)x x x m 。
大学物理上下册课后习题答案

习题1-1. 已知质点位矢随时间变化的函数形式为r =R(cosωt i+sinωt j) 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。
解:1)由r=R(cosωt i+sinωt j)知x = R cosωty = R sinωt消去t可得轨道方程x2+y2=R22)v=ddtr= −ωR sinωt i+ωRcosωt jv =[(−ωR sinωt)2+(ωR cosωt)2]12=ωR1-2. 已知质点位矢随时间变化的函数形式为r=4t2i+(3+2t)j,式中r的单位为m,t的单位为s.求:(1)质点的轨道;(2)从t=0到t=1秒的位移;(3)t =0和t =1秒两时刻的速度。
解:1)由r=4t2i+(3+2t)j可知x = 4t2y = 3 + 2t消去t得轨道方程为:x=(y−3)22)v =d d rt = 8t i + 2 jr =∫1v dt =∫1(8t i + 2 j )dt = 4i + 2 j3) v (0) = 2 jv (1) = 8i + 2 j1-3. 已知质点位矢随时间变化的函数形式为r = t 2 i + 2t j ,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速 度和法向加速度。
解:1)v =d d rt = 2t i + 2j a =d d v t = 2i2)v = [(2t)2+ 4] 12= 2(t 2+1) 12a t = dv = 2tdt t 2+1a = a 2 − a 2 =2n tt 2 +11-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升 降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。
解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为y = v t + 1at 2(1)图 1-41 0 21gt 2y 2 = h + v 0t − (2)2 y 1 = y 2(3)解之t =2d g + a1-5. 一质量为m 的小球在高度h 处以初速度v 0 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的d r, d v , d v .d t d t d t 解:(1)x = v 0 t式(1)y = h − 1gt 2式(2) 21 gt2 ) jr (t) = v 0 t i + (h -2(2)联立式(1)、式(2)得y = h − gx 22v 02(3)d r = v 0 i - gt j 而 落地所用时间 t = 2hgdt 所以 d r = v 0i - 2gh j d v = −g j dtdtv = v 2x + v 2y = v 02 + (−gt)2dv = g 2 t = g 2ghdt [ v 2 + ( gt ) 2 ] 1 2 ( v 2 + 2gh ) 120 01-6. 路灯距地面的高度为h 1 ,一身高为h 2 的人在路灯下以匀速v 1 沿直线行走。
大学物理I练习册参考答案

大学物理I练习册参考答案第一篇:大学物理I练习册参考答案大学物理I练习册参考答案力学部分:010004:(1)010011:(2)010014:(2)010016:(3)010044: B010057: D010095: B010098: C011002: 3t011009:011030:011039: 5m/s;17m/s011061: 4.8m/s;3.15rad22011012:ϖϖϖdv=ωRcosωtj-ωRsinωti;o011067: dt020003:(1)020012: C020015: B, D021002: 2g,0021016:(μcosθ-sinθ)g030023: B030028: D030038: D030061: D030069:(3)031005:031054: k/(mr);-k/(2r)2v0031062: 12J032046: h==4.25m;v=[2gh(1-μctgα)]1/2=8.16m/s 2g(1+μctgα)040001: A040011: B040020: C040030: B040032: C040054: A040064: D040070: C040076: C040090: C222040097: D040099: D041019: R1v1/R2;mvR/R112-1/2041043: Ma/2 ()041078: M/9042031: 156N;118N042005:电磁学部分1.B2.A3.C4.C5.2ε0A6.–2Ax,-2Byqd7.rλλ,ln02πε0r2πε0rUR1lnR2R1(2)Ek=4.8⨯10J , v=1.03⨯10m/s -778.(1)F=9.EP=0;UPC=⎰CPEdr=⎰rCRrλλdr=lnC 2πε0r2πε0R10.B11.B12.B13.C14.A15.D16.D17.q4πε0r2, 水平向左18.A19.εrC0,σ0,U0E0W0,εrεrεr20.看书P6721.看书P6722.C23.A24.D25.C27.μ0Iμ0IμI+=1.08⨯10-3T,垂直纸面向外28,0,垂直纸面向里2πR4R4πa29.μ0I, -2μ0I, ±2μ0I, ±2μ0I30, 2BIR,π/42;水平向右IaB,Ia2B34.πmga+b2μ0Ilna-b31,35.I1的磁场B=μ0I1,方向垂直向里,因此由安培定律(1)AD受I1的磁力FAD=I2aB 2πr=μ0I1I2a,方向向左。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(B) 2 mv. (D) 2mv.
B
C
[
]
7. 在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向
发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空
气阻力)
(A) 总动量守恒.
(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.
(C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.
(D) 2 R/T , 0.
[
]
3.
质点作曲线运动,
r
表示位置矢量,v
表示速度,
a
表示加速度,S
表示路程,a 表示切向加速度,下列表达式中,
(1) dv / d t a , (3) dS / d t v ,
(2) dr / dt v ,
(4)
dv / dt
at .
(A) 只有(1)、(4)是对的.
(1) 子弹射入沙土后,速度随时间变化的函数式; (2) 子弹进入沙土的最大深度.
16. 一人从 10 m 深的井中提水.起始时桶中装有 10 kg 的水,桶的质量 为 1 kg,由于水桶漏水,每升高 1 m 要漏去 0.2 kg 的水.求水桶匀速地从 井中提到井口,人所作的功.
二、刚体定轴转动
一、选择题
(D) 总动量在任何方向的分量均不守恒.
[
]
8. 一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其中一
块作自由下落,则另一块着地点(飞行过程中阻力不计)
(A) 比原来更远.
(B) 比原来更近.
(C) 仍和原来一样远.
(D) 条件不足,不能判
定.
[
]
9. 如图,在光滑水平地面上放着一辆小车,车上左端
《大学物理 C1(上、 下)》练习册及答案
大学物理 C(上、下)练习册
质点动力学 刚体定轴转动 静电场 电场强度 电势 静电场中的导体 稳恒磁场 电磁感应 波动、振动 光的干涉 光的衍射
注:本习题详细答案,结课后由老师发放
一、质点动力学
一、选择题
1.
以下几种运动形式中,加速度
a
(D)
GMm
R1 R2 R12
(E) GMm R1 R2 R12 R22
[
]
二 填空
11. 灯距地面高度为 h1,一个人身高为 h2,在灯
下以匀速率 v 沿水平直线行走,如图所示.他的头顶
在地上的影子 M 点沿地面移动的速度为
vM =
.
h1
h2 M
O
12. 质量分别为 m1、m2、m3 的三个物体 A、B、C,用
(D) 在两种情况下,由于摩擦而产生的热相
等.
[
]
10. 质量为 m 的一艘宇宙飞船关闭发动机返回地球时,可认为该飞船
只在地球的引力场中运动.已知地球质量为 M,万有引力恒量为 G,则当它
从距地球中心 R1 处下降到 R2 处时,飞船增加的动能应等于
(A) GMm R2
(B) GMm R22
(C) GMm R1 R2 R1 R2
保持不变的运动是:
(A)单摆的运动;
(B)匀速率圆周运动;
(C)行星的椭圆轨道运动;
(D)抛体运动 。
[
]
2. 质点沿半径为 R 的圆周作匀速率运动,每 T 秒转一圈.在 2T 时间
间隔中,其平均速度大小与平均速率大小分别为
(A) 2 R/T , 2 R/T.
(B) 0 , 2 R/T
(C) 0 , 0.
1. 人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点
上,则卫星的
(A)动量不守恒,动能守恒.
(B)动量守恒,动能不守恒.
(C)对地心的角动量守恒,动能不守恒.
(D)对地心的角动量不守恒,动能守恒.
[
]
2. 一质点作匀速率圆周运动时,
(A) 它的动量不变,对圆心的角动量也不变.
(B) 它的动量不变,对圆心的角动量不断改变.
x
表达式为 PA = P0 – b t ,式中 P0 、b 分别为正值
m2 B m3 C
常量,t 是时间.在下列两种情况下,写出物体 B 的动量作为时间函数的表
达式:
(1)
开始时,若 B 静止,则 PB1=__________________;
(2)
开始时,若B的动量为 – P0,则 PB2 = _____________.
(B) 只有(2)、(4)是对的.
(C) 只有(2)是对的.
(D) 只有(3)是对的.
[
]
4.
一运动质点在某瞬时位于矢径
r
的端点处,其速度大小的表达式为
(A) dr ; (B) dr ; (C) d | r | ; (D)
dt
dt
dt
dx dt
2
ddyt
2
ddtz
2
[
]
5. 质点作半径为 R 的变速圆周运动时的加速度大小为(v 表示任一时刻
(C) 它的动量不断改变,对圆心的角动量不变.
(D) 它的动量不断改变,对圆心的角动量也不断改
变.
[
]
3. 如图所示,A、B 为两个相同的绕着轻绳的定滑
轮.A 滑轮挂一质量为 M 的物体,B 滑轮受拉力 F,而且
质点的速率)
(A) dv . dt
(B) V 2 . R
(C) dv v 2 .
(D)
dt R
dv dt
2
v4 R2
1/ 2
.[ຫໍສະໝຸດ ]6. 质量为 m 的质点,以不变速率 v 沿图中正三角形 ABC 的水平光滑轨
道运动.质点越过 A 角时,轨道作用于质点的冲量
A
的大小为
(A) mv. (C) 3 mv.
三、计算题 14. 有一质点沿 x 轴作直线运动,t 时刻的坐标为 x = 4.5 t2 – 2
t3 (SI) .试求: (1) 第 2 秒内的平均速度; (2) 第 2 秒末的瞬时速度; (3) 第 2 秒内的路程.
15. 质量为 m 的子弹以速度 v 0 水平射入沙土中,设子弹所受阻力与速度反 向,大小与速度成正比,比例系数为K,忽略子弹的重力,求:
一根细绳和两根轻弹簧连接并悬于固定点 O,如 图.取向下为 x 轴正向,开始时系统处于平衡状
m1 A
态,后将细绳剪断,则在刚剪断瞬时,物体 B 的加
速度
aB
=_______;物体
A
的加速度
a
A
=______.
13. 两个相互作用的物体 A 和 B,无摩擦地在一
条水平直线上运动.物体 A 的动量是时间的函数,
F
放着一只箱子,今用同样的水平恒力 F 拉箱子,使它由小
车的左端达到右端,一次小车被固定在水平地面上,另一次
小车没有固定.试以水平地面为参照系,判断下列结论中正确的是
(A) 在两种情况下, F 做的功相等.
(B) 在两种情况下,摩擦力对箱子做的功相等.
(C) 在两种情况下,箱子获得的动能相等.