可测函数列的几种收敛性之间的关系
可测函数

第四章 可测函数(总授课时数 14学时)由于建立积分的需要,我们还必须引进一类重要的函数——Lebesgue 可测函数,并讨 论其性质和结构.§1 可测函数及其性质教学目的 本节将给出可测函数的定义并讨论其基本性质教学要点 可测函数有若干等价的定义. 它是一类范围广泛的函数, 并且有很好的运算封闭性. 可测函数可以用简单函数逼近, 这是可测函数的构造性特征.本节难点 可测函数与简单函数的关系. 授课时数 4学时——————————————————————————————1可测函数定义定义:设()f x 是可测集E 上的实函数(可取±∞),若[],f a a R E >∀∈可测,则称()f x 是E 上的可测函数.2可测函数的性质性质1 零集上的任何函数都是可测函数。
注:称外测度为0的集合为零集;零集的子集,有限并,可数并仍为零集 性质2 简单函数是可测函数若1ni i E E ==⋃ (i E 可测且两两不交),()f x 在每个i E 上取常值i c ,则称()f x 是E 上的简单函数;1()()i ni E i f x c x χ==∑ 其中1()0i iE ix E x x E E χ∈⎧=⎨∈-⎩ 注:Dirichlet 函数是简单函数性质3 可测集E 上的连续函数()f x 必为可测函数 设()f x 为E 上有限实函数,称()f x 在0x E ∈处连续00(,)((),)0,0,()x f x f O E O δεεδ∀>∃>⋂⊂若使得对比:设()f x 为(),a b 上有限实函数,0()(,)f x x a b ∈在处连续0lim ()()x x f x f x →=若000,0,|||()()|x x f x f x εδδε∀>∃>-<-<即当时,有00(,)((),)0,0,()x f x x O f x O δεεδ∀>∃>∈∈即当时,有 00(,)((),)0,0,()x f x f O O δεεδ∀>∃>⊂即使得()f x 在0[,]x a b ∈处连续(对闭区间端点则用左或右连续)证明:任取[]x E f a ∈>, 则()f x a >,由连续性假设知, 对(),0,x f x a εδ=-∃>使得(,)((),)()(,)x x f x f O E O a δε⋂⊂⊂+∞即(,)[]x x f a O E E δ>⋂⊂.令[](,)x f a x x E G O δ>∈=⋃则G 为开集,当然为可测集,且另外[][](,)(,)[]()()x x f a f a x x f a x E x E G E O E O E E δδ>>>∈∈⋂=⋃⋂=⋃⋂⊂所以[][](,)()x f a f a x x E E O E G E δ>>∈⊂⋃⋂=⋂,故[]f a E G E >=⋂为可测集性质4 R 中的可测子集E 上的单调函数()f x 必为可测函数。
几种收敛函数的介绍

概率论中的收敛-正文概率论中的极限定理和数理统计学中各种统计量的极限性质,都是按随机变量序列的各种不同的收敛性来研究的。
设{X n,n≥1}是概率空间(Ω,F,P)(见概率)上的随机变量序列,从随机变量作为可测函数看,常用的收敛概念有以下几种:以概率1收敛若,则称{X n,n≥1}以概率1收敛于X。
强大数律(见大数律)就是阐明事件发生的频率和样本观测值的算术平均分别以概率 1收敛于该事件的概率和总体的均值。
以概率 1收敛也常称为几乎必然(简记为α.s)收敛,它相当于测度论中的几乎处处(简记为α.e.)收敛。
依概率收敛若对任一正数ε,都有,则称{X n,n≥1}依概率收敛于X。
它表明随机变量X n与X发生较大偏差(≥ε)的概率随n无限增大而趋于零。
概率论中的伯努利大数律就是最早阐明随机试验中某事件 A发生的频率依概率收敛于其概率P(A)的。
依概率收敛相当于测度论中的依测度收敛。
r阶平均收敛对r≥1,若X n-X的r阶绝对矩(见矩)的极限,则称{X n,n≥1}r阶平均收敛于X。
特别,当r=1时,称为平均收敛;当r=2时,称为均方收敛,它在宽平稳过程(见平稳过程)理论中是一个常用的概念。
弱收敛设X n的均值都是有限的,若对任一有界随机变量Y都有,则称{X n,n≥1}弱收敛于X。
由平均收敛可以推出弱收敛。
从随机变量的分布函数(见概率分布)看,常用的有如下收敛概念。
分布弱收敛设F n、F分别表示随机变量X n、X的分布函数,若对F的每一个连续点x都有,则称X n的分布F n弱收敛于X的分布F,也称X n依分布收敛于X。
分布弱收敛还有各种等价条件,例如,对任一有界连续函数ƒ(x),img src="image/254-6.gif" align="absmiddle">。
分布弱收敛是概率论和数理统计中经常用到的一种收敛性。
中心极限定理就是讨论随机变量序列的标准化部分和依分布收敛于正态随机变量的定理。
函数序列几种收敛性之间的关系

科技视界Science &Technology VisionScience &Technology Vision 科技视界(上接第41页)难而上,积极努力参与课程建设的创新和改革,从而更好地发挥专业导论课的潜在价值和意义。
[1]师昌绪.材料科学导论[M].北京:机械工业出版社,2001.[2]李强.美国和欧洲的材料科学与工程教育[J].高等理科教育,2002(6):33-40.[3]李云,吴玉程.《材料科学导论》课程内容及教学的改革与实践[J].合肥工业大学学报:社会科学版,2006(20):12-14.[责任编辑:薛俊歌]从相关文献材料可知,函数序列的收敛性主要分成以下几种:一致收敛性、近一致收敛性、几乎处处收敛性、和依测度收敛性.1一致收敛与几乎处处收敛的关系从定义上看,显然,在E 上一致收敛的函数列一定处处收敛,而处处收敛又一定几乎处处收敛,所以,推出在E 上的函数列一致收敛必定几乎处处收敛.反之,从二者定义显然得知,几乎处处收敛不一定一致收敛.2几乎处处收敛与近一致收敛的关系要得到这两种收敛性的关系,必须知道一个定理———叶果洛夫定理,定理内容如下:叶果洛夫定理:设E 是可测集,mE <∞,f n (x )(n ∈N )和f (x )是E上几乎处处有限的可测函数,且f n (x )在E 上几乎处处收敛于f (x ),那么,对任意δ>0,存在集E δ⊂E ,使序列f n {}在E δ上一致收敛于f (x ),而m (E -E δ)<δ.由上述叶果洛夫定理明显可知,在E 上几乎处处收敛的函数列必定一致收敛,所以此函数列必定近一致收敛.反之,在可测集E 上的可测函数列f n (x )近一致收敛于f (x ),则f n (x )几乎处处收敛于f (x ).此定理可以视为叶果洛夫定理的逆定理,不难证明:对于每个k ∈N ,有可测集E k ⊂E ,使得m (E -E k )<1k,而序列f n {}在E k 上一致收敛于f (x ).令E *=∞k =1∪E k ,令f n (x )在E *上处处收敛于f (x ).其实,当x ∈E *时,x 属于某个E k .既然f n (t )在E k 上一致收敛于f (t ),自然在t =x 处也收敛于f (x ).同时,我们断定,m (E -E *)=0,这是因为,对每个自然数k ,m (E -E *)=m ∞k =1∩≤(E -E *)≤m (E -E k )<1k,所以,m (E -E *)=0得证.即在可测集E 上的可测函数列f n (x )近一致收敛于f (x ),则f n (x )几乎处处收敛于f (x ).3几乎处处收敛与依测度收敛的关系设mE <∞,则序列f n (x )几乎处处收敛于f (x ),则f n (x )依测度收敛于f (x ).根据叶果洛夫定理知道,假设mE <∞,则由f n (x )几乎处处收敛于f (x ),推出f n (x )近一致收敛于f (x ).因此,当mE <∞,则序列f n (x )几乎处处收敛于f (x )得,对于任意ε>0,δ>0,存在可测集E δ与自然数N ,使m (E -E δ)<δ,而在E δ上有,f n (x )-f (x )<ε(当n>N ),从而当时x ∈E (f n -f ≥ε)时,x ∉E δ.这表明有E f n -f ≥ε()⊂E-Eδ,因此mEf n -f ≥ε()≤m (E-Eδ)<δ,(当n>N ),即f n (x )依测度收敛于f (x ).而依测度收敛不一定几乎处处收敛,里斯定理表明了依测度收敛于几乎处处收敛间的联系:设mE <∞,则可测函数列f n (x )在E 上依测度收敛于f (x )的充要条件是:对序列f n (x ){}的任何子列f nk (x ){},都存在子列f ni (x ){},几乎处处收敛于f (x ).4近一致收敛与依测度收敛的关系在可测集上,近一致收敛一定依测度收敛。
函数列收敛之间的关系

(x)
=
⎪⎪1 ⎨
⎪0
⎪⎩
x
∈
⎛ ⎜
⎝
j −1 ,
2n
j 2n
⎥⎦⎤,
x ∉ ⎜⎛ ⎝
j −1 ,
2n
j 2n
⎥⎦⎤,
( j = 1,2,⋯,2n )
{ } 把
f
( j
n)
,
j
=
1,2,⋯,2 n
先按 n 后按 j 的顺序逐个地排成一列:
f (1) 1
(
x)
,
f
( 1
2)
(
x),⋯,
f1(n) (x) ,
(x)
是从左边数起的第
i
个小区间上恒等于
1,而在其他地方恒等
于 0。
一般地,将 [0,1]分为 k 等分,定义第 k 组的第 i 个函数为,令
f1(x) =
f (1) 1
(
x)
,
f 2 (x) = f1(2) (x)
,
f3 (x) =
f
(2) 2
(
x)
,
f4 (x) =
f (3) 1
(
x)
,
f5 (x) =
>
0,
{ } lim mE
n→∞
x
fn (x) −
f (x)
≥σ
= 0 ,所以 fn (x) ⇒ f (x) = 0 , x ∈ [0,1]。但是若取
g(x) = 1, x ∈ [0,1],则 g(x) ∈ Lp (E) 。而
1
1
1
∫ ∫ ∫ lim
n→∞
0
fn (x)g(x)dx
=
第四章可测函数

fn
(x)
G(x)
lim n
fn (x)
也在E上可测,特别当
F ( x)
lim n
fn(x) 存在时,
它也在可测。
4、简单函数及其性质
(1)定义:设f (x) 的定义域E可分为有限个互不相交的可测集
s
E1,..., Es 即 E Ei ,使 f (x)在每个 Ei上都等于某常数 c ,则称 f (x)
则称 fn在E上几乎一致收敛于 f ,记为 fn f a.u.于E
注:1°”一致收敛”强于“收敛”, “收敛”强于“几乎处处收敛” 2°叶果洛夫定理得逆命题就是若 fn f a.u.于E ,则 fn f a.e.于E 3°叶果洛夫定理揭示了可测函数列几乎处处收敛与一致收敛的关系, 根据这个定理,对于任意几乎处处收敛的可测函数列,都可在E的一 个子集 上E当 作一致收敛的函数列来处理。
黎斯条件下的子列在叶果洛 夫条件下
(3)著名的勒贝格微分定理:若 f (x) 是[a,b]上的单调函数,则 f (x) 在[a,b]上几乎处处可导。 (4)[0,1]上的狄利克雷函数 D(x) 0 a.e.于 [0,1]
性质:
(1)1 a.e.于E
且 2
a.e.于E
,则 1
或 2
a.e.于E
,
且
1
2
a.e.于E
.
(2)f和g是定义在可测集E上几乎处处相等的函数,如果f是E的可测函
1 f (x), f (x) g(x),(g(x) 0 集中在零测集上)可测集。
可 测
定理 5:设 fn(x) 是E上一列(或有限个)可测函数,则
函 数
(x) inf n
fn (x)与
§ 3.2 可测函数的收敛性

83§3.2 可测函数的收敛性教学目的 使学生对可测函数序列的几乎处处收敛性, 依测度收敛性和几乎一致收敛性及它们的之间蕴涵关系有一个全面的了解.本节要点 本节引进的几种收敛是伴随测度的建立而产生的新的收敛性. 特别是依测度收敛是一种全新的收敛, 与熟知的处处收敛有很大的差异. Egorov 定理和Riesz 定理等揭示了这几种收敛之间的关系. Riesz 定理在几乎处处收敛和较难处理的依测度收敛之间架起了一座桥梁.设),,(µF X 是一测度空间. 以下所有的讨论都是在这一测度空间上进行的. 先介绍几乎处处成立的概念.几乎处处成立的性质 设)(x P 是一个定义在E 上与x 有关的命题. 若 存在一个零测度集N , 使得当N x ∉时)(x P 成立(换言之, })(:{不成立x P x N ⊂), 则称P (关于测度µ)在E 上几乎处处成立. 记为)(x P a.e.−µ, 或者)(x P a.e.在上面的定义中, 若)(x P 几乎处处成立, 则集})(:{不成立x P x 包含在一个零测度集内. 若})(:{不成立x P x 是可测集, 则由测度的单调性知道.0}))(:({=不成立x P x µ 特别地, 当测度空间),,(µF X 是完备的时候如此.例1 设给定两个函数f 和g . 若存在一个零测度集N , 使得当N x ∉时),()(x g x f = 则称f 和g 几乎处处相等, 记为g f = a.e.例2 设f 为一广义实值函数. 若存在一个零测度集N, 使得当N x ∉时,+∞<f 则称f 是几乎处处有限的, 记为+∞<f , a.e.注1 设f 是几乎处处有限的可测函数, 则存在一零测度集N, 使得当N x ∉时.+∞<f 令.~c N fI f = 则f ~是处处有限的可测函数并且 a.e..~f f =因此, 在讨论几乎处处有限的可测函数的性质时, 若在一个零测度集上改变函数的值不影响该性质, 则不妨假定所讨论的函数是处处有限的.注意, f 几乎处处有限与 a.e.M f ≤是不同的概念. a.e.M f ≤表示84存在一个零测度集N , 使得f 在c N 上有界. 显然 a.e.M f ≤蕴涵f 几乎处处有限. 但反之不然. 例如, 设),10(1)(≤<=x xx f .)0(+∞=f 则f 在)1,0(上关于L 测度是几乎处处有限的, 但在)1,0(中并不存在一个L 零测度集N 和,0>M 使得在N −)1,0(上, .)(M x f ≤ 初学者常常在这里发生误解, 应当引起注意.可测函数的几种收敛性 和定义在区间上的函数列的一致收敛一样, 可以定义在任意集上的函数列的一致收敛性. 设E 是X 的子集. )1(,≥n f f n 定义在E 上的函数. 若对任意0>ε, 存在,0>N 使得当N n ≥时, 对一切E x ∈成立,)()(ε<−x f x f n 则称}{n f 在E 上一致收敛于f , 记为..un f f n →定义1 设}{n f 为一可测函数列, f 为一可测函数.(1) 若存在一个零测度集N , 使得当N x ∉时, 有)()(lim x f x f n n =∞→, 则称}{n f 几乎处处收敛于f , 记为f f n n =∞→lim a.e., 或f f n → a.e.. (2) 若对任给的0>ε, 总有.0})({lim =≥−+∞→εµf f n n则称}{n f 依测度收敛于f , 记为.f f n → µ(3) 若对任给的0>δ, 存在可测集δE , δµδ<)(E , 使得}{n f在c E δ上一致收敛于f , 则称}{n f 几乎一致收敛于f , 记为n nf lim =f a.un., 或 f f n → a..un..容易证明, 若将两个a.e.相等的函数不加区别, 则上述几种极限的极限是唯一的. 例如, 若,a.e.f f n → g f n → a.e., 则g f = a.e.. 其证明留作习题.例3 设))),,0[(),,0([m +∞+∞M 为区间),0[∞+上的Lebesgue 测度空间. 其中)),0[(+∞M 是),0[∞+上的L 可测集所成的σ-代数, m 是1R 上的L 测度在),0[∞+上的限制. 令85.1),(1)(),1(≥−=n x I x f n n n则对任意,0>x ).(0)(∞→→n x f n 当0=x 时)(x f n 不收敛于0. 但,0})0({=m 因此在),0[∞+上.0a.e. → n f 由于对,21=ε ).(,0)),[]1,0([})21({/+∞→ → +∞=+∞∪=≥n n n m f m n 因此}{n f 不依测度收敛于0. 这个例子表明在一般情况下, 几乎处处收敛不一定能推出依测度收敛.例4 设)]),1,0[(],1,0[(m M 是]1,0[上的Lebesgue 测度空间. 令.1,)(≥=n x x f n n则对任意0>δ, }{n f 在]1,0[δ−上一致收敛于0.由于δδ=−])1,1((m 可以任意小, 因此0a..un. → n f . 又显然.0a.e. → n f例5 设)]),1,0[(],1,0[(m M 是]1,0[上的Lebesgue 测度空间. 令.1,,,1,1[≥=−=n n i ni n i A i n L 将}{i n A 先按照n 后按照i 的顺序重新编号记为}{n E . 显然.0)(→n E m 令)()(x I x f n E n =, 1≥n ,.0)(=x f对任意0>ε, 由于.,0)(})({∞→→=≥−n E m f f m n n ε故}{n f 依测度收敛于f . 但}{n f 在]1,0[上处处不收敛. 事实上, 对任意]1,0[0∈x , 必有无穷多个n E 包含0x , 也有无穷多个n E 不包含0x . 故有无穷多个n 使得,1)(0=x f n 又有无穷多个n 使得.0)(0=x f n 因此}{n f 在0x 不收敛. 这个例子表明依测度收敛不能推出几乎处处收敛. 例3和例4表明, 依测度收敛和几乎处处收敛所包含的信息可能相差很大.几种收敛性之间的关系 为叙述简单计, 以下我们设所讨论的函数都是实值可测函数. 但以下结果对几乎处处有限的可测函数也是成立的由(见注1的说明).引理2 设+∞<)(X µ. 若.a.e.f f n → 则对任意0>ε有86.0)}{(lim =≥−∞=∞→U n i i n f f εµ 证明 设0>ε是一给定的正数. 任取X x ∈, 若对任意,1≥n 存在,n i ≥ 使得.)()(ε≥−x f x f i 则)()(x f x f n 不收敛于. 这表明IU ∞=∞=≥−1}{n n i i f fε)}.()(:{/x f x f x n → ⊂由于,a.e.f f n → 因此由上式知道.0}{1=≥−∞=∞=IU n n i i f f εµ 由于+∞<)(X µ, 由测度的上连续性, 我们有0}{}{lim 1=≥−= ≥−∞=∞=∞=∞→IU U n n i i n i i n f f f f εµεµ. ■ 容易证明, 若,a..un.f f n → 则f f n → a.e.(其证明留作习题). 下面的定理表明当+∞<)(X µ时, 其逆也成立.定理3 (叶戈洛夫)若+∞<)(X µ, 则f f n → a.e.蕴涵.a..un.f f n →证明 设+∞<)(X µ, .a.e.f f n → 由引理2 , 对任意0>ε, 有.0}{lim =≥−∞=∞→U n i i n f f εµ 于是对任意的0>δ和自然数1≥k , 存在自然数k n 使得.2}1{k n i i k k f f δµ< ≥−∞=U 令.}1{1U U ∞=∞=≥−=k n i i kk f f E δ 由测度的次可数可加性我们有 .2}1{)(11δδµµδ=≤ ≥−≤∑∑∞=∞=∞=k k k n i i k k f f E U 往证在c E δ上, }{n f 一致收敛于f . 事实上, 由De Morgan 公式得87.1,}1{}1{1≥<−⊂<−=∞=∞=∞=k k f f k f f E kk n i i k n i i c I I I δ (1) 对任意0>ε, 取k 足够大使得.1ε<k则由(1)式知道, 当k n i ≥时对一切c E x δ∈, 有.1)()(ε<<−kx f x f i 即在c E δ上}{n f 一致收敛于f . 这就证明了f f n → a..un.. 定理证毕. 注 2 在叶戈洛夫定理中, 条件+∞<)(X µ不能去掉. 例如, 若令),()(),[x I x f n n +∞= .1≥n 则}{n f 在1R 上处处收敛于0. 但容易知道}{n f 不是几乎一致收敛于0.定理4 若+∞<)(X µ, 则f f n → a.e.蕴涵.f f n → µ证明 设+∞<)(X µ, .a.e.f f n → . 由引理2 , 对任意0>ε有.0}{lim =≥−∞=∞→U n i i n f f εµ 由测度的单调性立即得到()≤≥−∞→}{lim εµf f n n .0}{lim =≥−∞=∞→U n i i n f f εµ 即.f f n → µ ■ 本节例3表明, 在定理4中, 条件+∞<)(X µ不能去掉.定理5 (Riesz)若,f f n → µ 则存在}{n f 的子列}{k n f , 使得.a.e.f f k n →证明 设.f f n → µ 对任意0>ε和0>δ, 存在1≥N , 使得当Nn ≥时, 有δεµ<≥−})({f f n .于是对任意自然数1≥k , 存在自然数k n , 使得.21})1({k n k f f k <≥−µ (2)88我们可适当选取k n 使得L ,2,1,1=<+k n n k k . 往证.a.e.f f k n → 令L I ,2,1,}1{=<−=∞=i k f f E ik n i k . 对任意i E x ∈, 当i k ≥时, .1)()(kx f x f k n <− 这表明}{k n f 在i E 上收敛于f . 令.1U ∞==i i E E 则}{k n f 在E 上收敛于f . 往证.0)(=c E µ 由De Morgan 公式, 我们有.}1{11I IU ∞=∞=∞=≥−==i i i k n c i c k f f E E k 利用(2)容易得到.1)(1≤c E µ 因此由测度的上连续性并且利用(2), 我们有.021lim })1({lim }1{lim )(=≤≥−≤ ≥−=∑∑∞=∞→∞=∞→∞=∞→i k k i ik n i ik n i ck f f k f f E k k µµµU 这就证明了.a.e.f f k n → ■定理6 设+∞<)(X µ. 则f f n → µ当且仅当}{n f 的任一子列}{k n f 都存在其子列}{k n f ′, 使得).(a.e.∞→′ → ′k f f k n证明 必要性(此时不需设+∞<)(X µ). 设.f f n → µ 显然}{n f 的任一子列}{k n f 也依测度收敛于 f. 由定理 5 , 存在}{k n f 的子列}{k n f ′, 使得).(a.e.∞→′ → ′k f f k n充分性. 用反证法. 若}{n f 不依测度收敛于f , 则存在,0>ε 使得.0}({/ → ≥−εµf f n 于是存在0>δ和}{n f 的子列}{kn f , 使得 .})({δεµ≥≥−f f kn 由此知}{k n f 的任何子列}{k n f ′都不能依测度收敛于f . 由定理4, }{k n f ′也不89能a.e.收敛于f . 这与定理所设的条件矛盾. 故必有.f f n → µ ■定理5和定理6给出了依测度收敛和几乎处处收敛的联系. 利用这种联系, 常常可以把依测度收敛的问题转化为几乎处处的问题. 而几乎处处收敛是比较容易处理的.例 6 设)1(,,,≥n g f g f n n 是有限测度空间),,(µF X 上的几乎处处有限的可测函数, ,f f n → µ .g g n → µ 又设h 是2R 上的连续函数. 则).,(),(.g f h g f h n n → µ特别地, .fg g f n n → µ证明 不妨设)1(,,,≥n g f g f n n 都是处处有限的. 设),(k k n n g f h 是),(n n g f h 的任一子列. 由定理6, 存在}{k n f 的子列}{k n f ′使得).(a.e.∞→′ → ′k f f k n 同理存在}{k n g ′的子列, 不妨仍记为}{k n g ′, 使得).(a.e.∞→′ → ′k g g k n 既然h 是连续的, 因此有).,(),( a.e.g f h g f h k k n n → ′′这表明),(n n g f h 的任一子列),(k k n n g f h , 都存在其子列),(k k n n g f h ′′使得).,(),( a.e.g f h g f h k k n n → ′′ 再次应用定理6, 知道).,(),(.g f h g f h n n → µ 特别地, 若取,),(xy y x h = 则得到.fg g f n n → µ ■小结 本节介绍了几乎处处收敛, 依测度收敛和几乎一致收敛, 它们是伴随测度的建立而产生的新的收敛性.几种收敛性之间有一些蕴涵关系. 其中最重要的是Egorov 定理和Riesz 定理.利用Riesz 定理,可以把较难处理的依测度收敛的问题化为几乎处处收敛的问题.习题 习题三, 第18题—第28题.。
函数列的几种收敛性

函数列的几种收敛性王佩(西北师范大学数学与信息科学学院甘肃兰州730070)摘要: 讨论和总结函数列的收敛、一致收敛、处处收敛,几乎处处收敛、几乎处处一致收敛、依测度收敛、近乎收敛、近乎一致收敛、强收敛及其它们之间的关系和相关命题.关键词:函数列;收敛;Several kinds of convergence for the sequence of funcationsWang pei(College of Mathematics and Information Science,Northwest Normal University,Lanzhou730070,China)Abstract:This article discusses and summarizes the relationship between the convergence, uniform convergence,everywhere convergence,almost everywhere convergence,almost everywhere uniform convergence,convergence in measure,nearly convergence,nearly uniform convergence and strong convergence for the sequence of funcations.Key words: the sequence of funcations; convergence;一、几种收敛的定义1、收敛的定义定义1:设{}n a为数列,a为定数.若对任给的正数ε,总存在正整数N,使得当n>N时有ε<-ana,则称数列{}n a收敛于a,定数a称为数列{}n a的极限,并记作limn→∞an=a,或()∞→→naan.定义2:设f为定义在[)+∞,a上的函数,A为定数.若对任给的ε>0,存在正数M(≥a),使得当x>M时有 |f(x)-A|<ε,则称函数f当x趋于+ ∞时以A 为极限,记作limx→∞f(x)=A或f(x)→A(x→+ ∞).用c.表示.2、一致收敛的定义设函数列{fn(x)}与函数f(x)定义在同一数集E上,若对任意的ε>0,总存在自然数N,使得当n>N时,对一切x∈E都有| fn(x)- f(x)|<ε,则称函数列{fn (x)}在E上一致收敛于f(x),记作fn(x)→ f(x),(n→∞)x∈E.用u.c.表示.3、几乎处处收敛的定义设函数列{fn (x)}与函数f(x)定义在同一可测集E上,若函数列{fn(x)}在E上满足mE(fn (x)→ f(x))=0,(其中“→”表示不收敛于),则称{fn(x)}在E上几乎处处收敛于f(x),记作limn→∞ fn(x)= f(x)a.e.于E,或fn→fa.e.于E.用a.c.表示.4、几乎处处一致收敛设函数列{fn (x)}与函数f(x)定义在同一可测集E上,若函数列{fn(x)}在E上满足mE(fn (x)−→−uc f(x))=0,(其中“−→−uc”表示不一致收敛于),则称{fn (x)}在E上几乎处处一致收敛于f(x),记作limn→∞fn(x)= f(x)a.e.于E,或fn−→−uc f a.e.于E.用a.u.c.表示.5、依测度收敛设函数列{fn(x)}是可测集E上一列a.e.有限的可测函数,若有E上一列a.e.有限的可测函数f(x)满足下列关系:对任意σ>0有limnmE [|f n-f|≥σ]=0,则称函数列{f n}依测度收敛于f,或度量收敛于f记为:fn(x)⇒ f(x).6、近乎收敛若νδ>0,∃ Eσ⊂E,使得m Eσ< δ,且f n(x)−→−c f(x) (在E- Eσ上),则称函数列{fn (x)}在E上近乎收敛于函数f(x),记为fn(x)−→−c n. f(x)或简记为fn−→−c n. f.用n.c.表示.7、近乎一致收敛若νδ>0,∃ Eσ⊂E,使得m Eσ< δ,,且f n(x)−→−c u. f(x)在E- Eσ上),则称函数列{fn (x)}在E上近乎一致于函数f(x),记为fn(x)−−→−c u n.. f(x)或f n−−→−c u n.. f.用n.u.c.表示.8、强收敛设fn (x),f(x)属于L p,若fn(x),f(x)得距离)()(f xfxn-敛于0(当n→+ ∞),则称fn (x)强收敛于f(x),简记为:fn−→−强 f.二、几中收敛的关系1 一致收敛与处处收敛、几乎处处收敛的关系若{fn(x)}在E上一致收敛,则在E上逐点收敛,即处处收敛,处处收敛一定几乎处处收敛.但几乎处处收敛不一定处处收敛,处处收敛也不一定一致收敛.2 处处收敛、几乎处处收敛与依测度收敛的关系2.1依测度收敛不论是在有限可测集上,还是在一般可测集上,即“从整体上”推不出几乎处处收敛.例1 依测度收敛而处处不收敛的函数.取E=(]1,0,将E等分,定义两个函数:f(1)1(x)=⎧⎨⎩⎥⎦⎤⎝⎛∈⎥⎦⎤⎝⎛∈1,21x,0,21,01x,f(1)2(x)=⎧⎨⎩.1,21,1,21,0x⎥⎦⎤⎝⎛∈⎥⎦⎤⎝⎛∈x,然后将(]10,四等分、八等分等等.一般地,对每个n,作2n个函数:f(n)j (x)=⎧⎨⎩.2,21,0,2,21x1⎥⎦⎤⎝⎛-∉⎥⎦⎤⎝⎛-∈nnnnjjxjj,j=1,2,…,2n.把{ f(n)j,j=1,2,…,2n.}先按n后按j的顺序逐个地排成一列:f(1)1(x),f(1)2(x),…,f(n)1(x),f(n)2(x),…,f(n)2n(x), (1)f(n)j(x)在这个序列中是第N=2n-2+j个函数.可以证明这个序列是依测度收敛于零的.这是因为对任何σ>0,E[|f(n)j -0|≥σ]或是空集(当σ>1),或是⎥⎦⎤⎝⎛-nnj2,21j(当0<σ≤1),所以m(E[|f(n)j -0|≥σ])≤n21(当σ>1时,左端为0).于是当N=2n-2+j(j=1,2,…,2n)趋于∞时,n→∞.由此可见lim N→∞ m(E[|f(n)j-0|≥σ])=0,即f(n)j(x)⇒0.但是函数列(1)在(]1,0上的任何一点都不收敛.事实上,对任何点x0∈(]1,0,无论n多么大,总存在j,使x0∈⎥⎦⎤⎝⎛-nnj2,21j,因而f(n)j (x)=1,然而f(n)j+1(x)=0或f(n)j-1(x)=0,换言之,对任何x0∈(]1,0,在{f(n)j (x)}中必有两子列,一个恒为1,另一个恒为零,所以序列(1)在(]1,0上任何点都是发散的.2.2反过来,一个a.e,收敛的函数列也可以不是依测度收敛的.例2 取E=(0,+∞),作函数列:f(n)(x)=⎧⎨⎩(](),,,0,0x1+∞∈∈nxn,n=1,2,….显然fn (x)→1(n→+∞),当x∈E.但是当0<σ<1时,E[|fn-1|≥σ]=(n, +∞),且m(n, +∞)=∞.这说明{ fn}不依测度收敛于1.2.3尽管两种收敛区别很大,一种收敛不能包含另一种收敛,但是下列定理反映出它们还是有密切联系的.定理1(黎斯F.Riesz)设在E上{fn }测度收敛于f,则存在子列{ fni}在E上a.e.收敛于f.定理2(勒贝格Lebesgue) 设(1) mE<∞;(2) {fn}是E上a.e.有限的可测函数列;(3) {fn }在E上a.e.收敛于a.e.有限的函数f,则 fn(x)⇒f(x).定理3设fn(x)⇒f(x), f n(x)⇒g(x),则f(x)=g(x)在E上几乎处处成立.3 几乎处处收敛与近一致收敛3.1 在有限可测集上,几乎处处收敛一定近一致收敛叶果洛夫(Eτopob )定理:设mE<+∞,f和f1,f2,…,fn,…都是E上几乎处处有限的可测函数,若limn→∞f n(x)=f(x),a.e.于E,则对任何σ>0,存在可测集Eσ⊂E,使得m Eσ<σ,且在E-Eσ上{ f n(x)}一致收敛于f(x).3.2 在一般可测集上(mE=+∞),几乎处处收敛不一定近一致收敛Eτopob定理中mE<+∞的条件不可少.例如考虑可测函数例fn (x)=Χ(0,n)(x),n=1,2,…, x∈(0, ∞).它在(0, ∞)上处处收敛于f(x)≡1,但在(0, ∞)中的任一个有限测度集外均不一致收敛于f(x)≡1.又如取E= (0,+ ∞),则mE=+∞,作E上函数列:fn (x)=⎧⎨⎩[)().,,0;,0x1+∞∈∈nxn,n=1,2,…, limn→∞fn(x)= f(x)≡1 (0<x<∞)取δ=1, 则对任何可测集Eδ⊂E,若m Eδ<δ=1,故m(E-Eδ)= ∞,于是集E-Eδ无界.取ε=1/2,对任意N存在n=N+1和x0>N+1,且x∈E-Eδ时,| fn(x)-f(x0)|=|0-1|>ε.所以在E-Eδ上{ fn(x)}不一致收敛于f(x).3.3 不论在有限还是一般可测集上,近一致收敛一定几乎处处收敛叶果洛夫(Eτopob )定理的逆定理成立可说明这一结论.设可测集E上可测函数列fn (x) 近一致收敛于f(x),则fn(x)几乎处处收敛于f(x).4 近一致收敛与依测度收敛4.1 无论是在有限还是一般可测集上,近一致收敛一定依测度收敛设f和f1,f2,…,fn,…都是E上几乎处处有限的可测函数,若{ fn(x)}在E上近一致收敛于f(x),则fn(x)⇒ f(x).证明由条件对任意δ>0及σ>0,存在N=N(σ,δ)及E的可测子集Eδ,且m Eδ=δ,当n≥N时,对一切x∈E-Eδ,| fn(x)- f(x)|<σ,因此,对任意x 0∈E-Eδ,x∈()()∞=<-NnxfxfEn,σE-Eδ()∞=<-⊂NnnfxfE.x)(σ于是对任何x∈E- ∞=<-NnffEnσ= ∞=≥-NnnffEσ,必有x∈Eδ,即∞=≥-Nn nf fE σ⊂E δ综上所述,对δ>0,σ>0,存在N=N(σ,δ),当n ≥N 时,m( ∞=≥-Nn n f f E σ)≤m E δ<δ,从而mE[|f n -f|≥σ]<δ.由依测度收敛的定义可知,f n (x)⇒ f(x). 4.2 不论在有限可测集还是一般可测集上,依测度收敛不一定近一致收敛,但必有子列近一致收敛.依测度收敛但不几乎处处收敛的例子同时也说明依测度收敛不一定近一致收敛.5 几乎处处收敛与强收敛5.1几乎处处收敛不一定强收敛例 f n (x) =⎧⎨⎩.110,0,10,n ≤≤=<<x n x n x 及,显然在[]1,0上f n 处处收敛于f=0,然而并不强收敛于f.事实上f n -f ={dx n n ⎰12}21=n →∞(n →∞). 5.2 强收敛不一定几乎处处收敛例 )(f k i = ⎧⎨⎩.,1,0,,1,1⎥⎦⎤⎢⎣⎡-∉⎥⎦⎤⎢⎣⎡-∈k i k i x k i k i x令Φn (x)= )(f k i,Φ(x)=0.则:()()x x n φφ-={()⎰1x n φ}21=k1→0(n →∞),Φn (x)−→−强 Φ(x),而Φn (x)在任一点都不收敛.6 依测度收敛与强收敛6.1强收敛一定依测度收敛可证明,对任何ε>0,设E n (ε)=E{x:|f n (x)-f(x)|≥0},),(|)()(|)(|)()(f|22εεεn n n nmE dx x f x f E dx x f x E ≥-≥-⎰⎰f n →f,∴mE n (ε)→0,即f n (x)⇒f(x). 6.2 依测度收敛不一定强收敛例 E=[]10,,在E 上作函数列如下: f 1(1)(x)=1 x ∈[)10,, f 1(2)(x)= ⎧⎨⎩01 ⎪⎭⎫⎢⎣⎡∈⎪⎭⎫⎢⎣⎡∈1,2121,0x x … f i (k)(x)= ⎧⎨⎩01[)⎪⎭⎫⎢⎣⎡--∈⎪⎭⎫⎢⎣⎡-∈k i k i x k i k i ,11,0,1x (i=1,2…,k) 上述的函数列记为Φ1(x ), Φ2(x ), Φ3(x ),…, Φn (x ),…,可证Φn (x )⇒Φ(x )≡0,但却处处不收敛于Φ(x ).证明 若ε>1, E n (ε)为空集,显然lim n →∞E n (ε)=0;若0<ε≤1,则E n (ε)=E{x:| Φn (x )-Φ(x )|≥ε}=⎪⎭⎫⎢⎣⎡k i k ,1-i ,所以mE{x:| Φn (x )-Φ(x )|≥ε}=k1,于是当n →∞,显然k →∞.故lim n →∞E n (ε)=0,从而Φn (x )⇒Φ(x ),而对任x 0∈[)10,,Φn (x 0)中总有无穷个1,无穷个0,即{Φn (x )}处处不收敛.三、相关命题及证明命题1 f n ..a c E −−→ f ⇔ f n ..n c E−−→ f 证明 “⇒” 由定义立得“⇐” 设f n ..n c E−−→ f ,则∀K ,∃E k ⊂E,使得m E k <k1,且 f n .kc E E -−−−→f 记 E 0= ∞=1k k E ,则m E 0=0,E- E 0= ∞=-1)(k k E E∴ f n .kc E E -−−−→f 且m E 0=0 即f n ..a c E −−→ f 证毕命题 2 f n ...n u c E −−−→f ⇔f n ..n c E−−→f 证明 “⇒” 由定义立得“⇐” 设f n ..n c E −−→f ,则由命题1知 f n ..a c E−−→ f 而 m E<∞,故由叶果洛夫定理有 f n ...n u c E−−−→ f 证毕命题 3 若f n ...n u c E−−−→f ,则f n ⇒f命题 4 若f n ⇒f ,则∃{k n f }⊂{f n },使得k n f ...n u c E−−−→f (k →∞) 证明 任取定{εk }→0,{δk }→0,且∑∞=1k k δ<∞,则由“⇒” 的定义知:可取定 n 1>N(ε1, δk ),使得 m E(|1f n -f|≥ε1)< δ12n > n 1, 2n > N(ε2, δ2), 使得 m E(|1f n -f|≥ε2)< δ2… … …∀ δ>0,由∑∞=1k k δ<∞知,∃K 1,使得∑∞=1k k δ<δ记 E δ=)|(|1k k k n f f E k ε≥-∞= 则 m E δ<δ又∀ δ>0,由{εk }→0,知∃K 2,使得εk 2<ε,于是当k ≥k 0=max{k 1,k 2},且x ∈(E- E δ)时,有 |k n f (x )-f(x)|< εk <ε∴k n f (x )..u c E Eδ-−−−→f (k →∞) 且m E δ<δ 即 k n f ...n u c E−−−→f (k →∞) 证毕命题 5 f n ⇒f ⇔ {k n f }⊂{f n },∃ {1f k n }⊂{k n f },使得1f k n ⇒f (i →∞)证明∀ σ>0,记a n=m E(|f n -f|≥σ) (n=1,2,…)∀ δ>0, f n ⇒f,则由“⇒”的定义有 lim n →∞a n =lim n →∞m E(|f n -f|≥σ)=0故∀ {k n a }⊂{a n },∃ {i n a }⊂{k n a },使得 lim n →∞k n a =0即∀{kn f }⊂{f n },∃ {1f k n }⊂{kn f },使得lim n →∞m E (|1f k n -f|≥σ)=0 亦即1f k n ⇒f (i →∞)“⇐” 设∀{k n f }⊂{f n },∃ {1f k n }⊂{k n f },使得lim i →∞i n a =lim i →∞m E (|1f k n -f|≥σ)=0∴ lim n →∞a n =0 即 lim n →∞m E(|f n -f|≥σ)=0亦即 f n ⇒f 证毕命题 6 ∀{k n f }⊂{f n },∃ {1f k n }⊂{k n f },使得1f k n ⇒f (i →∞)则有{k n f }⊂{f n },∃ {1f k n }⊂{k n f },使得1f k n ...n u c E−−−→f (i →∞) 证明“⇒”设∀{k n f }⊂{f n },∃ {1f k n }⊂{k n f },使得1f k n ⇒f (i →∞)则由命题4知:{1f k n }⊂{k n f },使得 1f k n ...n u c E−−−→f (i →∞) 综上所述,结论成立.“⇐” 设∀{k n f }⊂{f n },∃ {1f k n }⊂{k n f },使得1f k n ...n u c E−−−→f (i →∞) 则由命题3知: 1f k n ⇒f (i →∞)综上述,结论成立.命题7 若∀{k n f }⊂{f n },∃{k n f }⊂{f n },使得 1f k n ...n u c E−−−→f (i →∞) 则∃{m n f }⊂{f n },使得m n f ...n u c E−−−→f (m →∞)命题8 若∀{k n f }⊂{f n },∃{k n f }⊂{f n },使得1f k n ..a c E−−→ f (i →∞) 则∃{m n f }⊂{f n },使得m n f ..a c E−−→ f (m →∞). 命题7和命题8的结论是容易证明的,不再叙述.命题9 若f n ..n c E −−→f,则∃{k n f }⊂{f n },使得k n f ..a c E−−→f(k →∞)命题10 ∃{k n f }⊂{f n },使得k n f ...n u c E−−−→f (k →∞)⇔{k n f }⊂{f n },使得k n f ..a c E−−→ f (k →∞)命题11∀{k n f }⊂{f n },∃ {1f k n }⊂{k n f },使得 1f k n ...n u c E−−−→f (i →∞) ⇔ {kn f }⊂{f n },∃ {1f k n }⊂{kn f },使得 1f k n ..a c E−−→ f (i →∞). 由命题1和命题2可立得命题9、命题10和命题11的结论.经上所述可测函数各种收敛性的关系的关系图如下:从上图清楚你地看出,一致连续这个条件最强,所得到的结果也最多.参考文献[1] 程其襄等. 实变函数与泛函分析基础[M]. 北京:高等教育出版社,2003. [2] 周明强. 实便函数论[M]. 北京:北京大学出版社,2007. [3] 薛昌兴. 实变函数与泛函分析(上册)[M]. 北京:高等教育出版社,1993. [4] 华东师范大学数学系. 数学分析(上册)[M]. 北京:高等教育出版社,2001. [5] 赵焕光. 实变函数[M]. 成都:四川大学出版社,2004.。
可测函数列的几种收敛性关系

可测函数列的几种收敛性关系段胜忠;杨国翠【摘要】对可测函数列的几种收敛性的定义和性质进行归纳和总结,讨论他们之间的关系,并给出相应的证明,从而使各种收敛之间的关系更加明了.【期刊名称】《保山学院学报》【年(卷),期】2014(033)005【总页数】3页(P12-14)【关键词】可测函数列;一致收敛;几乎处处收敛;依测度收敛;强收敛;弱收敛【作者】段胜忠;杨国翠【作者单位】保山学院数学学院,云南保山678000;保山学院数学学院,云南保山678000【正文语种】中文【中图分类】O13可测函数列的一致收敛、几乎处处收敛、依测度收敛、强收敛、弱收敛是经典实变函数和泛函分析理论中几种重要的收敛关系。
本文的目的在于对可测函数列的几种收敛性的相互关系给出总结和证明,从而为偏微分方程研究中所使用的弱收敛方法提供理论依据。
定义1.1设fn(x)(n=1,2,3…),f(x)均为定义在可测集Ω上的几乎处处有限的可测函数,若满足,则称{fn(x)}在Ω上一致收敛于f(x),记为定义1.2设{fn(x)}是定义在可测集Ω上的一列可测函数,若存在Ω中的点集E,满足m(E),∀x∈Ω\E,则称{fn(x)}在Ω上几乎处处收敛于f(x),记为fn(x)→f(x),a.e.于Ω。
定义1.3设{fn(x)}是定义在可测集Ω上的一列可测函数,若∀σ>0有0,则称函数列{fn(x)}在Ω上依测度收敛于f(x),记为fn(x)⇒f(x)。
定义1.4设fn(n=1,2,3…),f∈Lp(Ω),若当n→∞时,有||fn-f||→0,则称fn强收敛于f,记为定义1.5设fn(n=1,2,3…),f∈Lp(Ω),若对每一个g∈Lq(Ω)(q为p的共轭数),当n→∞时,有则称fn弱收敛于f,记为fn(x)(1)一致收敛与几乎处处收敛的关系若函数列fn(x)一致收敛于f(x),则几乎处处收敛于f(x)。
逆命题一般不成立。
例如函数列fn(x)=xn(n=1,2,3…)在Ω=[0,1]上几乎处处收敛于零,但并不一致收敛于零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可测函数列的几种收敛性之间的关系
作者:尹敏
作者单位:吉安市粮校,江西,吉安,343000
刊名:
井冈山师范学院学报
英文刊名:JOURNAL OF JINGGANGSHAN NORMAL COLLEGE
年,卷(期):2001,22(6)
被引用次数:2次
1.张一鸣;杨有铝实变函数与泛涵分析 1988
1.汪远征.杨巍纳关于可测函数列收敛性的注记[期刊论文]-河南大学学报(自然科学版)2003,33(2)
2.赵华新.张萍.ZHAO Hua-xin.ZHANG Ping可积函数空间上两种收敛性的关系[期刊论文]-西南民族大学学报(自然科学版)2006,32(1)
3.薛昌兴关于可测函数列的收敛性问题的教学研究[期刊论文]-甘肃教育学院学报(自然科学版)2001,15(3)
4.赵显贵.ZHAO Xian-gui可测函数集的代数结构[期刊论文]-韶关学院学报2006,27(9)
5.侯新华席瓦尔兹引理和最大模原理的应用[期刊论文]-邵阳学院学报(自然科学版)2005,2(2)
6.李桂玲.李军.LI Gui-ling.LI Jun单调集函数的连续性与可测函数序列的收敛[期刊论文]-模糊系统与数学2005,19(3)
7.王海英.Wang Haiying解析函数中的罗必达法则[期刊论文]-安顺学院学报2009,11(3)
8.汤获.李书海.TANG Huo.LI Shu-hai k解析函数的Fourier级数[期刊论文]-纯粹数学与应用数学2009,25(1)
9.辛洪学实分析中某些不同定理的统一技巧[期刊论文]-哈尔滨师范大学自然科学学报2000,16(2)
10.李秋生.LI Qiu-sheng解析函数Taylor展式和Laurent展式的逆向思维证明法[期刊论文]-宜春学院学报2007,29(6)
1.续小磊.续晓欣几乎处处收敛、近一致收敛和依测度收敛之间的等价条件研究[期刊论文]-长江大学学报(自然版) 2011(10)
2.袁守成可测函数序列的完全收敛性[期刊论文]-株洲师范高等专科学校学报 2007(5)
本文链接:/Periodical_jgssfxyxb200106014.aspx。