北师版数学高一《余弦定理》 同步教学设计 泗县三中

合集下载

高中数学《余弦定理》教案

高中数学《余弦定理》教案

高中数学《余弦定理》教案一、教学目标1. 理解余弦定理的定义和表达式。

2. 学会运用余弦定理解决三角形中的边角问题。

3. 掌握余弦定理在实际问题中的应用。

二、教学内容1. 余弦定理的定义和表达式。

2. 余弦定理的应用举例。

三、教学重点与难点1. 重点:余弦定理的定义和表达式,余弦定理的应用。

2. 难点:余弦定理在实际问题中的应用。

四、教学方法1. 采用讲解法,引导学生理解余弦定理的定义和表达式。

2. 采用案例分析法,通过举例让学生学会运用余弦定理解决实际问题。

3. 采用练习法,巩固学生对余弦定理的理解和应用。

五、教学过程1. 导入:通过复习正弦定理和余弦函数的知识,引出余弦定理的概念。

2. 新课讲解:讲解余弦定理的定义和表达式,举例说明余弦定理的应用。

3. 案例分析:分析实际问题,让学生运用余弦定理解决问题。

4. 练习巩固:布置练习题,让学生巩固余弦定理的知识。

5. 总结:对本节课的内容进行总结,强调余弦定理的重要性和应用。

教案仅供参考,具体实施可根据实际情况进行调整。

六、教学评估1. 课堂问答:通过提问方式检查学生对余弦定理的理解和掌握程度。

2. 练习题:布置课堂练习题,评估学生运用余弦定理解决实际问题的能力。

3. 课后作业:布置课后作业,巩固学生对余弦定理的知识。

七、教学拓展1. 引导学生思考余弦定理在现实生活中的应用,如测量三角形的角度和边长。

2. 介绍余弦定理在其他领域的应用,如物理学、工程学等。

八、教学反思1. 反思本节课的教学效果,检查学生对余弦定理的掌握程度。

2. 分析学生的反馈意见,调整教学方法和策略。

九、教学资源1. 教案、PPT、教材等教学资料。

2. 练习题、测试题等教学资源。

3. 互联网资源,如相关学术文章、教学视频等。

十、教学计划1. 下一节课内容:介绍余弦定理在实际问题中的应用,如几何图形中的角度计算。

2. 教学目标:让学生学会运用余弦定理解决实际问题,提高解决问题的能力。

高中数学§1正弦定理余弦定理教案北师大版

高中数学§1正弦定理余弦定理教案北师大版

高中数学§1正弦定理余弦定理教案北师大版教案主题:高中数学§1正弦定理、余弦定理教案教学目标:1.理解正弦定理和余弦定理的定义和原理;2.掌握正弦定理和余弦定理的计算方法,并能够应用于相关题目。

教学重点:1.正弦定理的推导和应用;2.余弦定理的推导和应用。

教学难点:1.正弦定理和余弦定理的灵活应用。

教学准备:1.教材:北师大版高中数学教材;2.教具:教学投影仪、复印件。

教学过程:一、导入(10分钟)1.教师通过提问或展示一些实际问题引起学生对三角形定理的兴趣,如“当我们观测星星时,我们如何测量两个不可达的距离?”2.学生提出的问题或思考可以引导教师进一步引入正弦定理和余弦定理。

二、正弦定理(30分钟)1.教师先介绍正弦定理的定义和原理,并通过示意图进行解释。

2.教师通过具体例题演示正弦定理的应用,引导学生掌握计算步骤。

3.学生进行小组讨论,解决一些相关的练习题,教师逐一点评。

三、余弦定理(30分钟)1.教师先介绍余弦定理的定义和原理,并通过示意图进行解释。

2.教师通过具体例题演示余弦定理的应用,引导学生掌握计算步骤。

3.学生进行小组讨论,解决一些相关的练习题,教师逐一点评。

四、综合应用(30分钟)1.教师设计一些综合性的问题,引导学生运用所学的正弦定理和余弦定理进行综合应用。

2.学生进行小组讨论,解决一些相关的综合应用题,教师逐一点评。

五、归纳总结(10分钟)1.教师引导学生总结正弦定理和余弦定理的计算方法和应用场景。

2.学生进行笔记整理,进行知识点的归纳总结。

六、作业布置(5分钟)1.教师布置相关的练习题,巩固所学的知识点。

2.学生预习下一节内容,做好相关的准备。

教学反思:通过本节课的教学,学生对正弦定理和余弦定理的定义和原理都有了基本的了解。

教师通过具体例题和综合应用题的演示,使学生掌握了计算方法和灵活应用的技巧。

在今后的教学中,需要加强学生的实际应用能力,让学生能够将所学的理论知识应用于实际问题的解决中。

《余弦定理》教学设计

《余弦定理》教学设计

《余弦定理》教学设计1. 能够理解余弦定理的原理和应用;2. 能够正确运用余弦定理解决实际问题;3. 培养学生分析和解决问题的能力。

教学内容:余弦定理的原理和公式。

教学步骤:Step 1: 引入通过介绍一个真实生活中的问题,引发学生对余弦定理的兴趣。

例如,我们可以以一个钓鱼的故事开始,告诉学生一个人站在岸上想要和朋友相距一定的距离去钓鱼。

然后问学生有没有办法求得这个距离,引出余弦定理的概念。

Step 2: 余弦定理的定义向学生介绍余弦定理的定义和公式:在一个三角形ABC中,设边AB=c,边BC=a,边CA=b,设∠C的对边为c,那么余弦定理可以表示为c²= a²+ b²- 2ab cosC。

通过解释公式中的各个部分,让学生理解其含义。

Step 3: 例题讲解选取一到两个实际问题进行例题讲解,通过实例让学生理解余弦定理的具体应用。

例如,可以以求解一个不规则三角形的边长为例,根据已知边和夹角,使用余弦定理计算第三边的长度。

Step 4: 学生练习让学生在小组内自主解决一些简单的余弦定理问题,例如求解一个直角三角形的斜边长度,或是求解一个具体角度的三角形的边长等。

然后让学生互相讨论解题思路,并展示解答过程给全班。

Step 5: 进一步拓展引导学生运用余弦定理解决一些更复杂的问题,例如求解一个不规则多边形的面积,或是求解一个高楼之间的夹角等。

让学生思考如何灵活运用余弦定理,并激发他们对数学问题的兴趣。

Step 6: 总结和归纳通过学生练习和讨论,总结余弦定理的应用范围和解题方法。

强调理解概念和原理的重要性,同时引导学生思考如何应用余弦定理来解决其他类型的问题。

Step 7: 拓展练习布置一些拓展练习题,要求学生独立解决。

这些问题可以涉及到其他几何概念的综合运用,如正弦定理、勾股定理等。

同时鼓励学生积极思考并尝试解决其他实际问题,培养他们的综合分析和解决问题的能力。

Step 8: 总结在课堂结束前,对学生做一次课堂总结,回顾和概括余弦定理的重点内容。

高中数学《余弦定理》教案

高中数学《余弦定理》教案

高中数学《余弦定理》教案第一章:导入与概念介绍1.1 导入教师通过一个实际问题引入余弦定理的概念,例如在直角三角形中,斜边与两个直角边的关系。

引导学生思考如何用数学表达式来描述这个关系。

1.2 余弦定理的概念教师介绍余弦定理的定义,即在三角形中,任意一边的平方等于其他两边平方和与这两边乘积的余弦的两倍之和。

用数学表达式表示为:a^2 = b^2 + c^2 2bccosA。

第二章:证明与推导2.1 余弦定理的证明教师引导学生思考如何证明余弦定理。

通过画图和几何推理,引导学生理解并证明余弦定理。

可以使用三角形的正弦定理和余弦定理的平方关系来证明。

2.2 余弦定理的推导教师引导学生利用余弦定理推导出其他相关的定理,例如正弦定理。

引导学生理解余弦定理与其他定理之间的关系。

第三章:余弦定理的应用3.1 求解三角形的问题教师通过例题展示如何使用余弦定理求解三角形的问题。

引导学生运用余弦定理计算三角形的边长和角度。

3.2 求解三角形的面积教师引导学生利用余弦定理推导出三角形的面积公式,并引导学生运用该公式计算三角形的面积。

第四章:余弦定理的拓展4.1 余弦定理在几何中的应用教师引导学生思考余弦定理在几何中的应用,例如求解三角形的面积、角度等问题。

4.2 余弦定理在物理中的应用教师引导学生思考余弦定理在物理中的应用,例如振动问题、波动问题等。

第五章:巩固与练习5.1 巩固知识教师通过例题和练习题帮助学生巩固余弦定理的理解和应用。

引导学生运用余弦定理解决不同类型的问题。

5.2 练习题教师布置一些练习题,让学生独立完成,巩固对余弦定理的理解和应用。

第六章:解三角形问题6.1 解三角形的概念教师介绍解三角形的概念,即通过已知的三角形一边和两个角,求解其他两边和角度。

引导学生理解解三角形的重要性。

6.2 利用余弦定理解三角形教师通过例题展示如何利用余弦定理解三角形问题。

引导学生运用余弦定理计算三角形的边长和角度。

第七章:余弦定理与向量7.1 向量与余弦定理的关系教师介绍向量与余弦定理的关系,即向量的点积与余弦定理的关系。

2020-2021学年高一数学北师大版必修五第二章2.1.2 余弦定理教学设计

2020-2021学年高一数学北师大版必修五第二章2.1.2 余弦定理教学设计

《余弦定理》教学设计一、教学内容分析本节内容安排在《普通高中课程标准实验教科书·数学必修5》(北师大版)第二章《解三角形》第一单元第二课《余弦定理》,是在高一学生学习了三角等知识之后,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,因而定理本身的应用又十分广泛。

通过利用向量的数量积方法推导余弦定理,正确理解其结构特征和表现形式,解决“已知三边求三角形的三个角”及“已知两边及其夹角求三角形其他边与角”问题,培养学生数学思维品质,激发学生探究数学,应用数学的潜能。

二、学情分析本节之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。

在此基础上利用向量方法探求余弦定理,学生已有一定的学习基础和学习兴趣。

总体上学生应用数学知识的意识不强,创造力较弱,看待与分析问题不深入,知识的系统性不完善,使得学生在余弦定理推导方法的探求上有一定的难度,在发掘出余弦定理的结构特征、表现形式的数学美时,能够激发学生热爱数学的思想感情;从具体问题中抽象出数学的本质,解决问题是学生学习的一大难点。

三、设计思想本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以问题为导向设计教学情境,以“余弦定理的发现和证明”为基本探究内容,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等讨论的尝试活动,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创新的能力。

四、教学目标1.继续探索任意三角形的边长与角度间的具体量化关系,引导学生通过观察,实验,猜想,验证,证明,由特殊到一般归纳出余弦定理,掌握余弦定理的内容及其证明方法,并学会运用余弦定理解决解斜三角形的两类基本问题。

2.通过对实际问题的探索,培养学生观察问题、提出问题、分析问题、解决问题的能力,增强学生的协作能力和交流能力,发展学生的创新意识,培养创造性思维的能力。

高中数学《余弦定理》教案

高中数学《余弦定理》教案

高中数学《余弦定理》教案一、教学目标1. 让学生理解余弦定理的定义和意义,掌握余弦定理的表达式。

2. 培养学生运用余弦定理解决三角形问题的能力。

3. 培养学生的逻辑思维能力和数学素养。

二、教学重点与难点1. 教学重点:余弦定理的定义和表达式,运用余弦定理解决三角形问题。

2. 教学难点:余弦定理的推导过程,运用余弦定理解决复杂三角形问题。

三、教学方法1. 采用问题驱动法,引导学生主动探究余弦定理。

2. 利用几何画板或实物模型,直观展示三角形中余弦定理的应用。

3. 开展小组讨论,培养学生的合作能力和解决问题的能力。

四、教学准备1. 教师准备PPT,内容包括余弦定理的定义、表达式和应用实例。

2. 准备几何画板或实物模型,用于展示三角形中余弦定理的应用。

3. 准备相关练习题,用于巩固所学知识。

五、教学过程1. 导入:通过一个实际问题,引发学生对余弦定理的思考,激发学生的学习兴趣。

2. 新课讲解:讲解余弦定理的定义和表达式,引导学生理解余弦定理的意义。

3. 实例演示:利用几何画板或实物模型,展示三角形中余弦定理的应用。

4. 小组讨论:让学生分组讨论如何运用余弦定理解决实际问题,培养学生的合作能力和解决问题的能力。

5. 练习巩固:让学生解答相关练习题,巩固所学知识。

6. 总结:对本节课的内容进行总结,强调余弦定理的重要性。

7. 作业布置:布置适量作业,让学生进一步巩固余弦定理的应用。

六、教学延伸1. 引导学生思考余弦定理在实际生活中的应用,例如测量三角形的角度、计算三角形的面积等。

2. 介绍余弦定理在其他领域的应用,如物理学、工程学等。

七、课堂小结1. 让学生回顾本节课所学内容,总结余弦定理的定义、表达式和应用。

2. 强调余弦定理在解决三角形问题中的重要性。

八、课后作业1. 完成教材上的相关练习题,巩固余弦定理的知识点。

九、教学反馈1. 在下一节课开始时,检查学生的作业完成情况,了解学生对余弦定理的掌握程度。

高中数学 §1 正弦定理、余弦定理教案(3)北师大版

高中数学 §1 正弦定理、余弦定理教案(3)北师大版

§1 正弦定理、余弦定理(3)教学目的:要求学生掌握余弦定理及其证明,并能应用余弦定理解斜三角形 教学重点:余弦定理的证明及其基本应用 教学难点:理解余弦定理的作用及其适用范围 教学过程: 问题提出:在三角形中,已知两角及一边,或已知两边和其中一边的对角,可以用利用正弦定理求其他的边和角,那么,已知两边及其夹角,怎么求出此角的对边呢?已知三边,又怎么求出它的三个角呢? 分析理解:1.余弦定理的向量证明:设△ABC 三边长分别为a, b, c AC =AB +BC•=(+)•(+)=2+2•+ 2=)180cos(||||2||02B -+22cos 2a B ac c +-=即:Bac c a b cos 2222-+=同理可得:A bc c b a cos 2222-+= C ab b a c cos 2222-+=2.语言叙述:三角形任何一边的平方等于其它两边平方的和减去这两边与它们夹角的余弦的积的两倍。

3.强调几个问题:1︒ 熟悉定理的结构,注意“平方”“夹角”“余弦”等2︒ 知三求一3︒ 当夹角为90︒时,即三角形为直角三角形时即为勾股定理(特例)4︒ 变形:bc a c b A 2cos 222-+= ac b c a B 2cos 222-+= acc b a C 2cos 222-+=余弦定理的应用能解决的问题:1.已知三边求角 2.已知三边和它们的夹角求第三边例1、如图,有两条直线AB 和CD 相交成080,交点是O ,甲、乙两人同时从点O 分别沿OC OA ,方向出发,速度分别是h km h km /5.4,/4,3小时后两人相距多远(结果精确到km 1.0) 分析:经过3时后,甲到达点P ,km OP 1234=⨯=,乙到达点Q ,km OQ 5.1335.4=⨯=问题转化为在OPQ ∆中,已知km OP 12=,km OQ 5.13=,080=∠POQ ,求PQ 的长解:经过3时后,甲到达点P ,km OP 1234=⨯=,乙到达点Q ,km OQ 5.1335.4=⨯=A依余弦定理有POQ OQ OP OQ OP PQ ∠⋅-+=cos 22202280cos 5.131225.1312⨯⨯⨯-+= )(4.16km ≈ 答:3时后两人相距约为km 4.16例2:如图是公元前约400年古希腊数学家泰特托期用来构造无理数2,3,5,……的图形,试计算图中线段BD 的长度及DAB ∠的大小(长度精确到1.0,角度精确到01) 解:在BCD ∆中,0135,1,1=∠==BCD CD BC 因为 BCD CD BC CD BC BD ∠⨯-+=cos 222222135cos 11211022+=⨯⨯⨯-+= 所以 8.1≈BD在ABD ∆中,3,22,1=+==AD BD AB因为 1691.0312)22()3(12cos 22222≈⨯⨯+-+=⨯-+=∠AD AB BD AD AB DAB所以 080≈∠DAB 思考交流:你还能用其他方法求线段BD 的长度及DAB ∠的大小吗?(用解直角三角形的方法及三角函数知识加以解决)课堂小结:余弦定理及其应用 课堂作业:1、若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =,则△ABC(A )一定是锐角三角形. (B )一定是直角三角形.(C )一定是钝角三角形. (D)可能是锐角三角形,也可能是钝角三角形. 解析:由sin :sin :sin 5:11:13A B C =及正弦定理得a:b:c=5:11:13由余弦定理得0115213115cos 222<⨯⨯-+=c ,所以角C 为钝角 2、(2010江西理数)E ,F 是等腰直角△ABC 斜边AB 上的三等分点,则tan ECF ∠=( D )A.2716 B.32 C.33 D.43 【解析】考查三角函数的计算、解析化应用意识。

正弦定理、余弦定理教案北师大版(优秀教案)

正弦定理、余弦定理教案北师大版(优秀教案)

《正弦定理、余弦定理》教课设计教课目标:进一步熟习正、余弦定理内容;可以应用正、余弦定理进行边角关系的互相转变; 可以利用正、余弦定理判断三角形的形状;可以利用正、余弦定理证明三角形中的三角恒等式教课要点: 利用正、余弦定理进行边角交换时的转变方向 教课难点 :三角函数公式变形与正、余弦定理的联系 讲课种类: 新讲课 课时安排: 课时 教具:多媒体、实物投影仪教课方法 :启迪指引式启迪学生在证明三角形问题或许三角恒等式时,要注意正弦定理、余弦定理的合用题型与所证结论的联系,并注意特别正、余弦关系的应用,比方互补角的正弦值相等,互补角的余弦值互为相反数等;指引学生总结三角恒等式的证明或许三角形形状的判断,重在发挥正、余弦定理的边角交换作用 教课过程 : 一、复习引入:ab c R正弦定理:sin Asin B2sin C余弦定理: a 2b 2c 22bc cos A,cos Ab 2c 2 a 22bcb 2c 2a 22ca cos B,cos Bc 2a 2b 22cac 2a 2b22ab cosC ,cosCa 2b 2c 22ab二、解说典范:例在任一△中求证:a(sin B sin C ) b(sin C sin A) c(sin A sin B) 0证:左侧 2Rsin A(sin B sinC) 2RsinB(sinC sinA) 2RsinC(sin A sin B)2R[sin AsinB sin AsinC sin BsinC sinBsin A sinC sin A sinC sin B] 右侧例在△中,已知 a3 , b 2 , 求、及解一:由正弦定理得:sin A asin B 3 sin 453 b22∵<即<∴或当时b sin C 2 sin 7562 csin B sin 452当时b sin C 2 sin 1562 csin B sin 452解二:设由余弦定理 b 2a2c22ac cos B 将已知条件代入,整理:x26x10解之: x 622当 c 62时2b 2c2 a 22(62 2 )2313cos A2bc622(31)2222进而,当 c 62时同理可求得:,2例在△中, , , ,是方程 x 223x20 的两个根,且()求()角的度数()的长度()△的面积解:() [()]() 1 ∴2()由题设:a b 2 3a b2∴ ?? a 2b22ab cos120a 2b 2ab(a b) 2ab(2 3)2210即 10() △ 1ab sin C1ab sin 1201 23 322222比如图,在四边形中,已知, , ,,求的长解:在△中,设则 BA 2BD 2 AD 22BD AD cos BDA即142x 2 10 22 10 x cos 60整理得: x 2 10x 96解之: x 116 x 26 (舍去)由余弦定理:BCBD ∴ BC16 sin 308 2sinCDBsinsin135BCD例 △中,若已知三边为连续正整数,最大角为钝角, 求最大角 ;求以此最大角为内角,夹此角两边之和为的平行四边形的最大面积解: 设三边 ak 1, b k, c k 1 kN 且 k 1∵为钝角∴ cosCa 2b 2c 2k4 0 解得 1 k42ac2(k1)∵ k N ∴ k 2 或但 k2 时不可以组成三角形应舍去当 k3 时 a2,b 3,c4,cosC1, C1094设夹角的两边为x, y xy 4xy sin Cx( 4 x)15 15 ( x 2 4x)44当 x2 时最大15例 在△中,=,=,为中点,且=,求边长剖析:本题所给题设条件只有边长,应试虑在假定为x后,成立对于 x的方程 而正弦定理波及到两个角,故不行用 此时应注意余弦定理在成立方程时所发挥的作用因为为中点,所以、可表示为x,然用利用互补角的余弦互为相反数这一性质成立方程2解:设边为 x ,则由为中点,可得==x,22x2 2在△中,=AD 2 BD 2 AB 24( 2)52ADBD,2 4 x2x2 22在△中,=AD 2 DC 2 AC 24 (2)32ADDC.2 4 x2又∠+∠=°∴=(°-∠)=-4 2 ( x) 25242 ( x) 232∴ 2 x 2 x 2 42 422 解得, x=, 所以,边长为评论:本题要启迪学生注意余弦定理成立方程的功能,领会互补角的余弦值互为相反数这一性质的应用,并注意总结这一性质的合用题型此外,对于本节的例,也可考虑上述性质的应用来求解,思路以下: 由三角形内角均分线性质可得AB BD 5,设= k,= k ,则由互补角∠、∠的余ACDC3弦值互为相反数成立方程,求出后,再联合余弦定理求出,再由同角平方关系求出三、讲堂练习 :半径为的圆内接三角形的面积为.,求此三角形三边长的乘积解:设△三边为,,则S = 1 acsin B△2SABCac sin B sin B∴2abc2babcb 又2R ,此中为三角形外接圆半径sin B∴SABC1 , ∴= △ =××.=abc4R所以三角形三边长的乘积为评论:因为题设条件有三角形外接圆半径,故联想正弦定理:a b c S△sin Asin B2R ,此中为三角形外接圆半径,与含有正弦的三角形面积公式sin C= 1acsin B 发生联系,对进行整体求解2在△中,已知角=°,是边上一点,=,=,=,求解:在△中,= AC2DC 2 AD 2 72 32 52 11 , 2 AC DC2 73 14又<<°,∴= 5 314在△中,ACABsin B sin C∴=sin CAC 5 32 7 5 6 .sin B 142评论:本题在求解过程中,先用余弦定理求角,再用正弦定理求边,要修业生注意正、余弦定理的综合运用 在△中,已知=3,=5,求的值513解:∵=3<2 =°,<< π52∴°<<° , ∴=45∵=5<1=°,<< π132∴°<<°或°<<°若>°,则+>°与题意不符∴°<<°=12133 1245 16 ∴(+)=·-·=5 13 5 13 65又=°-(+)16 ∴=[°-(+)]=-(+)=-65评论:本题要修业生在利用同角的正、余弦平方关系时,应依据已知的三角函数值详细确立角的范围,以便对正负进行弃取,在确立角的范围时,往常是与已知角靠近的特别角的三角函数值进行比较四、小结 经过本节学习,我们进一步熟习了三角函数公式及三角形的有关性质,综合运用了正、余弦定理求解三角形的有关问题,要求大家注意常看法题方法与解题技巧的总结,不停提高三角形问题的求解能力五、课后作业 :六、板书设计 (略)七、课后记及备用资料:正、余弦定理的综合运用余弦定理是解斜三角形顶用到的主要定理,若将正弦定理代入得: =+-这是只含有三角形三个角的一种关系式,利用这必定理解题,简捷明快,下边举例说明之[例]在△中,已知--=3 ,求的度数解:由定理得=+-,∴-=3∵≠ ∴Β=-3∴=°2[例]求°+°+°°的值 解:原式=°+°+°° 在=+-中,令=°,=°, 则=°°=°+°-°°°=°+°+°°=(3)= 324[例]在△中,已知=,试判断△的形状 解:在原等式两边同乘以得:=, 由定理得+- Β=, ∴= ∴=故△是等腰三角形 一题多证[例]在△中已知=,求证:△为等腰三角形证法一:欲证△为等腰三角形可证明此中有两角相等,因此在已知条件中化去边元素,使只剩含角的三角函数 由正弦定理得=∴=b sin A,即·==(+)=+sin Bb sin Asin B∴-=即(-)=,∴-= nπ ( n∈ Z)∵、是三角形的内角,∴=,即三角形为等腰三角形证法二:依据射影定理,有=+, 又∵=∴=+∴=,即bcosB .ccosC又∵bsin B . ∴ sin B cos B , 即= csin C sin C cosC∵、在△中,∴= ∴△为等腰三角形证法三:∵= a2b 2c 2及 cosCa , ∴ a 2b 2c 2 a ,2ba2b2ab2b化简后得= ∴=∴△是等腰三角形学习是一件增加知识的工作,在茫茫的学海中,也许我们困苦过,在困难的竞争中,也许我们疲惫过,在失败的暗影中,也许我们绝望过。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练、在 ABC中,若 ,求角A
三巩固练习
1.已知a= ,c=2,B=150°,则边b的长为().
A. B. C. D.
2.已知三角形的三边长分别为3、5、7,则最大角为().
A. B. C. D.
3.已知锐角三角形的边长分别为2、3、x,则x的取值范围是().
A. B. <x<5
C.2<x< D. <x<5
泗县三中教案、学案用纸
年级高一
பைடு நூலகம்学科数学
课题
余弦定理
授课时间
撰写人
2012年1月5
学习重点
余弦定理
学习难点
余弦定理的发现和证明过程及其基本应用、证明余弦定理的向量方法;
学习目标
1.掌握余弦定理的两种表示形式;
2.证明余弦定理的向量方法;
3.运用余弦定理解决两类基本的解三角形问
教学过程
一自主学习
1、在△ABC中,已知 ,A=45,C=30,解此三角形.
问题:在 中, 、 、 的长分别为 、 、 .
∵ ,∴
余弦定理:三角形中任何一边的等于其他两边的的和减去这两边与它们的夹角的的积的两倍.
(1)△ABC中, , , ,求 .
(2)△ABC中, , , ,求 .
二师生互动
例1.在△ABC中,已知 , , ,求 和 .
例2.在△ABC中,已知三边长 , , ,求三角形的最大内角.
4.在△ABC中,| |=3,| |=2, 与 的夹角为60°,则| - |=________.
5.在△ABC中,已知三边a、b、c满足 ,则∠C等于.
四课后反思
五课后巩固练习
1.在△ABC中,已知a=7,b=8,cosC= ,求最大角的余弦值.
2.在△ABC中,AB=5,BC=7,AC=8,求 的值.
相关文档
最新文档