有理数综合测试题

合集下载

七年级上册数学第一单元有理数测试题

七年级上册数学第一单元有理数测试题

七年级上册数学第一单元有理数测试题七年级第一单元有理数综合练一、选择题1、大于–3.5,小于2.5的整数共有()个。

A.6.B.5.C.4.D.32、如果一个数的相反数比它本身大,那么这个数为()A、正数B、负数C、整数D、不等于零的有理数3、在有理数中,绝对值等于它本身的数有()A。

1个B。

2个C。

3个D.无穷多个4、已知点A和点B在同一数轴上,点A表示数-2,又已知点B和点A相距5个单位长度,则点B表示的数是(。

)A.3.B.-7.C.3或-7.D.3或75、若两个有理数的和是正数,那么一定有结论()A。

两个加数都是正数;B。

两个加数有一个是正数;C。

一个加数正数,另一个加数为零D。

两个加数不能同为负数6、甲、乙、丙三地的海拔高度分别为20米,-15米和-10米,那么最高的地方比最低的地方高()A.10米B.15米C.35米D.5米7、对于近似数0.1830,下列说法正确的是()A.有两个有效数字,精确到千位B.有三个有效数字,精确到千分位C.有四个有效数字,精确到万分位D.有五个有效数字,精确到万分8、下列说法中正确的是()A.-a一定是负数B.a一定是负数C.-a一定不是负数D.-a2一定是负数9、每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为xxxxxxxx千米,将xxxxxxxx0千米用科学记数法表示为()A.0.15×109千米B.1.5×108千米C.15×107千米D.1.5×107千米10、已知有理数x的近似值是5.4,则x的取值范围是()A。

5.35<x<5.44.B.5.35<x≤5.44.C.5.35≤x<5.45.D.5.35≤x≤5.45二、填空题1、如果数轴上的点A对应的数为-1.5,那么与A点相距3个单位长度的点所对应的有理数为-4.5.2、倒数是它本身的数是1;相反数是它本身的数是0;绝对值是它本身的数是0.3、-m+1的相反数是m-1,m+1的相反数是-(m+1)。

“有理数”综合测试题

“有理数”综合测试题

位 . 有
个有效 数字 . . , 小 最
6若 <4 且 为 负 整 数 . 所 有 满 足 条 件 的 的 值 是 . , 则
的 积 是 .
7 任 数 一 2, 6, 2 中 任 取 3个 相 乘 , 中 最 大 的 积 是 . 3, 0, 一 其
8察 据按 规 在 线 填 适 的 :丢弓~ … , . 数 , 律 横 上 上 当 数1 ,, 观 照 , 一 素,
1 . 能 得 f 5: 你 n小 明 所 在 位 置 卡 对 于 山 脚 的 高 度 吗 试 说 明 坪 t . 日 i t 女 子 排 球 队 共 有 1 名 队 员 , 高 分 别 为 1 3 (I. 7 1 .7 .I 0 身 7 1I 1 4(l 1 O(I. 『 7 1 f
1 6(/, 8 -1 J 5 C3, 7 m , 7 l , 7 t 1 I . 这 l 名 队 员 的 7 3 1 1 0( , 7 1 1 7c 1 9 Cl l 4 cn, 72 CI I H [ 1 l 1 O
1 . 据 测 定 , 度 每 增 加 1 m . 温 大 约 降 低 6C 小 明 在 某 座 【 上 8根 高 k 气 o. l J 发 川信 息称 他现 在 所 处位 置 的气 温 是
1. 9『 利读 下 列 材 料 . 后 解 答 问 题 . 然
一9 . 而 此 时 山 脚 下 的 气 温 为 ℃

计 算 这 组 数 的 平 均 数 , ×( 2 1 5 1 5 0 2 4 _ ) 0 因 为 前 面 得 ~——+++ + + 3 = _ 每 个 数 都 减 去 了 1 5 把 这 里 的 得 数 0 再 加 上 1 5, 就 得 出 这 个 排 球 队 7 . 7

有理数单元测试题及答案

有理数单元测试题及答案

有理数单元测试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是有理数?A. πB. √2C. 1/3D. 0.33333(无限循环)答案:C2. 如果a和b都是有理数,且a > b,那么下列哪个选项是正确的?A. a + b > 0B. a - b > 0C. a × b > 0D. a ÷ b > 0答案:B3. 两个负有理数相加的结果是什么?A. 正数B. 负数C. 零D. 无法确定答案:B4. 下列哪个数是无理数?A. 0.5B. √3C. 1/7D. 3.1415答案:B5. 有理数a和b的绝对值相等,且a < b,那么a和b的和是多少?A. aB. bC. 0D. -2a答案:D二、填空题(每题2分,共10分)6. 如果一个有理数的绝对值是5,那么这个数可以是______或______。

答案:5,-57. 两个有理数相除,如果商是正数,那么这两个数的符号必须______。

答案:相同8. 如果一个有理数的平方是9,那么这个数可以是______或______。

答案:3,-39. 有理数的加法运算满足交换律,即a + b = ______ + a。

答案:b10. 有理数的乘法运算满足结合律,即(a × b) × c = a ×(______ × c)。

答案:b三、计算题(每题5分,共15分)11. 计算下列表达式的值:(-3) × 2 + 4 × (-2) - 6。

答案:原式 = -6 - 8 - 6 = -2012. 计算下列表达式的值:(-4)² - 3 × 2 - 5。

答案:原式 = 16 - 6 - 5 = 513. 计算下列表达式的值:(-2)³ + 3 × (-1/3) - 1。

答案:原式 = -8 - 1 - 1 = -10四、解答题(每题10分,共20分)14. 某商店在一天内卖出了10件商品,每件商品的售价为x元,成本为y元。

《有理数》综合测试题(A)

《有理数》综合测试题(A)

一 . _ . . 一
4 如果 n是正 整数 , . 那么 (1 ‘ 一 ) _— — ~ .
亿 元左 右 , 将 2 0 请 8 0亿元 用科 学记 数法 表示 为
向左移 动三个 单位 长度 , 此时 A 点表 示的 数是
元.

5 为 了加快 3 . G网络建 设 , 电信 运营 企业 将根 据 各 自发展 规划 , 明两 年预 计 完成 3 今 G投 资 2 0 80
C A

A. a>b >c
C. > a> b C



第 2 0题 图
三 、 答题 【 计 6 解 共 O分 )
2 . 4分 ) 边 的一 段堤 岸 高 出海 平 面 l 1( 海 2米 , 附近 的一 建 筑 物高 出 海平 面 5 0米 , 里一 艘 潜水 海
艇 在 海平 面 下 3 0米 处 , 以海边 堤岸 高 度 为基 准 , 现 将其 记 为 0米 , 么 附近 建筑 物及 潜水 艇 那 的高 度各 应 如何 .
B. =0 b
C. a:0或 b:0
D. a:0和 b=0
1 。 列每 组 数 中 , 等 的是 ( 6下 相
A. 一 ) 一 一( 3 和 3 C 一( 3) l 3f . 一 和 一
) .
B. 一 +( 3)币 口一( 3) ~ D. ~ ) 一i 一( 3 和 一3{
) .
1 . 一个 数 的绝对 值 除 以这个 数 所得 的 商是 一 。 7若 1 则这 个数 一定 是 (
A 一 .l B 1或 一 . 1 C 负 数 .
D. 数 正
— — 一 —
1 . 图 , 轴 上 一 动 点 A 向 左 移 动 2个 单 位 长 度 到 达 点 , 向 右 移 8如 数 再

《有理数》综合测试题

《有理数》综合测试题

《有理数》综合测试题
一、选择题
1、有理数“a/b”,含义是()
A、a代表数值,b代表分母
B、a代表分子,b代表数值
C、a代表分子,b代表分母
D、a代表数值,b代表分子
答案:C、a代表分子,b代表分母
2、将相似的有理数的分数表示形式进行统一叫做()
A、最小分子约分
B、同分母化
C、最大公约数化
D、最大分母约分
答案:B、同分母化
3、在实数范围内,在实数范围内,可以整除的两个有理数被称为()
A、相等有理数
B、同类有理数
C、最大公约数
D、相反有理数
答案:A、相等有理数
4、既不是正数也不是负数的是()
A、0
B、-5
C、5
D、-0
答案:A、0
5、给定min(-9/8,3/-6),则min(-9/8,3/-6)=()
A、-0.25
B、-1.25
C、-1.75
D、-2.25
答案: B、-1.25
二、填空题
1、(2/1)和____具有相同的数值。

A、(2/2)
2、有理数a/b和-a/-b是____,-a/b是____。

A、相等的;相反的
3、有理数-7/4,该数的倒数是____。

A、-4/7
4、对于两个有理数a/b、c/d,如果a/b>c/d,则a/b的数值
____c/d的数值。

A、大于
5、有理数a/b的倒数为b/a,其中a、b互质时,设有理数a/b的数值为x,则有____。

A、b/a的数值为1/x
三、计算题
1、计算(3/4)×(5/6)的值,并表示为最简分数。

答案:5/8。

人教初一数学有理数单元检测题10套

人教初一数学有理数单元检测题10套

人教初一数学有理数单元检测题10套单元检测有理数单元检测001有理数及其运算(综合)(测试5)一、境空题(每空2分,共28分)1、13的倒数是____;123的相反数是____.2、比–3小9的数是____;最小的正整数是____.3、计算:3212____;95_____.4、在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是5、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.6、某旅游景点11月5日的最低气温为2,最高气温为8℃,那么该景点这天的温差是____.C7、计算:(1)100(1)101______.8、平方得214的数是____;立方得–64的数是____.9、用计算器计算:95_________.10、观察下面一列数的规律并填空:0,3,8,15,24,_______.二、选择题(每小题3分,共24分)11、–5的绝对值是()A、5B、–5C、15D、1512、在–2,+3.5,0,23,–0.7,11中.负分数有()A、l个B、2个C、3个D、4个13、下列算式中,积为负数的是()A、0(5)B、4(0.5)(10)C、(1.5)(2)D、(2)(1)(253)14、下列各组数中,相等的是()A、–1与(–4)+(–3)B、3与–(–3)C、324与916D、(4)2与–1615、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是()A、90分B、75分C、91分D、81分16、l米长的小棒,第1次截止一半,第2次截去剩下的一半,如此下去,第6次后剩下的小棒长为()A、112B、132C、1164D、12817、不超过(32)3的最大整数是()A、–4B–3C、3D、418、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价()A、高12.8%B、低12.8%C、高40%D、高28%单元检测三、解答题(共48分)19、(4分)把下面的直线补充成一条数轴,然后在数轴上标出下列各数:–3,+l,21,-l.5,6.2要使这杯酒精冻结,需要几分钟?(精确到0.1分钟)25、(4分)某商店营业员每月的基本工资为300元,奖金制度是:每月完成规定指标10000元营业额的,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%,该商店的一名营业员九月份完成营业额13200元,20、(4分)七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分?21、(8分)比较下列各对数的大小.(1)43525与4(2)45与45(3)52与2(4)23与(23)222、(8分)计算.(1)38715(2)12(1146)(3)236(3)2(4)(4)1(11163)623、(12分)计算.(l)43(2)215(2)1.530.750.53343.40.75(3)(10.5)132(4)2(4)(5)3(35)32(22)(114)24、(4分)已知水结成冰的温度是0C,酒精冻结的温度是–117℃。

有理数测试题及答案

有理数测试题及答案

有理数测试题及答案一、选择题(每题2分,共10分)1. 下列数中,属于有理数的是()。

A. πB. √2C. 0.33333...D. 0.12. 有理数的乘法法则是()。

A. 同号得正,异号得负B. 同号得正,异号得负,绝对值相乘C. 同号得负,异号得正D. 绝对值相乘,符号相加3. 两个有理数相除,其结果为()。

A. 正数B. 负数C. 非负数D. 非正数4. 绝对值的定义是()。

A. 一个数的相反数B. 一个数到原点的距离C. 一个数的平方D. 一个数的立方5. 有理数的加法法则是()。

A. 同号相加,取相同的符号,并把绝对值相加B. 同号相加,取相反的符号,并把绝对值相加C. 异号相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值D. 异号相加,取绝对值较小的数的符号,并用较大的绝对值减去较小的绝对值二、填空题(每题2分,共10分)1. 一个有理数的绝对值是它到原点的距离,即 |-3| = ____。

2. 有理数的乘法法则是同号得____,异号得____,绝对值相乘。

3. 有理数的除法法则是同号得____,异号得____,绝对值相除。

4. 有理数的加法法则是同号相加,取相同的符号,并把绝对值____。

5. 有理数的减法法则是减去一个数等于加上这个数的____。

三、解答题(每题10分,共20分)1. 计算下列有理数的和:-3 + 4 + (-5) + 6。

2. 计算下列有理数的积:(-2) × 3 × 4 × (-1)。

四、判断题(每题1分,共10分)1. 有理数包括正整数、负整数、正分数、负分数和零。

()2. 0是正数。

()3. 有理数的绝对值一定是正数。

()4. 有理数的乘法法则是同号得正,异号得负,绝对值相乘。

()5. 有理数的除法法则是同号得正,异号得负,绝对值相除。

()答案:一、选择题1. C2. B3. C4. B5. A二、填空题1. 32. 正,负3. 正,负4. 相加5. 相反数三、解答题1. -3 + 4 + (-5) + 6 = 22. (-2) × 3 × 4 × (-1) = 24四、判断题1. 正确2. 错误3. 错误4. 正确5. 正确。

2024-2025学年七年级数学上册 第一章 有理数 单元测试题(含详解)

2024-2025学年七年级数学上册 第一章  有理数  单元测试题(含详解)

第1章 有理数(单元重点综合测试)考试范围:全章的内容; 考试时间:120分钟; 总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.−3的相反数是( )A .−3B .3C .−13D .132.如果把收入2024元记作+2024,那么支出2024元记作( )A .2024B .12024C .|2024|D .−20243.下列运算结果为负数的是( )A .|−3|B .|−(−3)|C .−(−3)D .−|−3|4.下列说法中,正确的是( )A .0既不是整数也不是分数B .绝对值等于本身的数是0和1C .不是所有有理数都可以在数轴上表示D .整数和分数统称为有理数5.在−π3,3.1415,0,−0.333…,−227,2.010010001…中,非负数的个数( )A .2个B .3个C .4个D .5个6.如图,数轴上被墨水遮盖的数的绝对值可能是( )A .−72B .−52C .72D .527.已知a =−|−3|,b =+(−0.5),c =−1,则a 、b 、c 的大小关系是( )A .b >c >aB .a >c >bC .a >b >cD .c >b >a8.凝固点是晶体物质凝固时的温度,标准大气压下,下列物质中凝固点最低的是( )物质钨水银煤油水凝固点3412℃−38.87℃−30℃0℃A .钨B .水银C .煤油D .水9.实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是( )A.a>−1B.b>1C.−a<b D.−b>a10.数轴上点A表示的数是−2,将点A沿数轴移动3单位长度得到点B,则点B表示的数是()A.−5B.1C.−1或5D.−5或1二、填空题(本大题共6小题,每小题3分,共18分)11.用“>”“<”“=”号填空:−76−6 7.12.化简:|−35|=;−|−1.5|=;|−(−2)|=.13.我国古代数学名著《九章算术》中已经用正负数来表示相反意义的量.如果节约50cm3的水记为+50cm3,那么浪费10cm3的水记为.14.如图,在数轴上有A、B两点,点A表示的数是−2024,点O为原点,若OA=OB,则点B表示的数是.15.若|x−1|+|y−5|=0,那么x=,y=.16.如图,在数轴上,点A表示的数是10,点B表示的数为50,点P是数轴上的动点.点P沿数轴的负方向运动,在运动过程中,当点P到点A的距离与点P到点B的距离比是2:3时,点P表示的数是.三、(本大题共4小题,每小题6分,共24分)17.某饮料公司的一种瓶装饮料外包装上有“500±30(mL)”字样,请问“500±30(mL)”是什么含义?质检局对该产品抽查5瓶,容量分别为503mL,511mL,489mL,473mL,527mL,问抽查产品的容量是否合格?18.下面是一个不完整的数轴,(1)请将数轴补充完整,并将下列各数表示在数轴上;(2)将下列各数按从小到大的顺序用“<”号连接起来:−3;3.5;−(−212);−|−1|.19.有理数a,b在数轴上的对应点的位置如图所示.(1)判断:−a_______1(填“>”,“<”或“=”);(2)用“<”将a,a+1,b,−b连接起来(直按写出结果)20.把下面各数填在相应的大括号里(将各数用逗号分开):−18,3.14,0,2024,−3,5 80%,π,−|−5|,−(−7).2负整数集合{……}整数集合{……}正分数集合{……}非负整数集合{……}有理数{……}四、(本大题共3小题,每小题8分,共24分)21.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,他从A处出发去看望B、C、D处的其他甲虫,规定:向上向右走均为正,向下向左走均为负,如果从A到B记为A→B{1,4},从B到A记为:B→A{−1,−4},其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C{______,______},C→B{______,______}:(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的最短路程;(3)若图中另有两个格点M、N,且M→A{1−a,b−5},M→N{5−a,b−2},则A→N应记为什么?直接写出你的答案.22.数轴上表示有理数a,b,c,d的点的位置如图所示:(1)请将有理数a,b,c,d按从小到大的顺序用“<”连接起来:______;(2)如果|a|=4,表示数b的点到原点的距离为6,|c|=2,c与d距离原点的距离相等,则a= ______,b=______,c=______,d=______.23.有些含绝对值的方程,可以通过讨论去掉绝对值,转化成一元一次方程求解.例如:解方程x+2|x|=3,解:当x≥0时,方程可化为:x+2x=3,解得x=1,符合题意;当x<0时,方程可化为:x−2x=3,解得x=−3,符合题意.所以,原方程的解为x=1或x=−3.请根据上述解法,完成以下问题:解方程:x+2|x−1|=3;五、(本大题共2小题,每小题12分,共24分)24.点A、B、C、D、E在数轴上位置如图所示(1)点A、B、C、D、E所表示的有理数分别是______,用“<”把它们连接起来是______.(2)点F所对应的有理数是−5,请在数轴上标出点F的位置2(3)A、B之间的距离是多少?A、E之间的距离是多少?若数轴上有两点M、N,且它们对应的有理数分别是a和b,则M、N之间的距离是多少?(用含a,b的代数式表示)25.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a−b|.利用数形结合的思想回答下列问题:(1)数轴上表示2和10两点之间的距离是,数轴上表示2和−10的两点之间的距离是;(2)数轴上表示x和−2的两点之间的距离表示为;(3)若x表示一个有理数,|x−1|+|x+3|有最小值吗?若有,请求出最小值,若没有写出理由.(4)若x表示一个有理数,求|x+4|+|x−5|+|x+6|的最小值.参考答案:1.B【分析】本题考查了相反数的概念,掌握只有符号不同的两个数叫做互为相反数是解答此题的关键.根据符号不同,绝对值相同的两个数互为相反数即可求得答案.【详解】解:−3的相反数是3.故选:B2.D【分析】本题考查正数和负数,理解具有相反意义的量是解题的关键.正数和负数是一组具有相反意义的量,据此即可求得答案.【详解】解:收入2024元记作+2024,那么支出2024元记作−2024,故选:D3.D【分析】本题考查了有理数的绝对值、相反数等,解题的关键是正确理解有理数的绝对值以及相反数的意义.|−3|=3,结果为正数,故A错误;|−(−3)|=3,结果为正数,故B错误;−(−3)=3,结果为正数,故C错误;−|−3|=−3,结果为负数,故D正确.【详解】解:A、|−3|=3,结果为正数,故A错误;B.|−(−3)|=3,结果为正数,故B错误;C.−(−3)=3,结果为正数,故C错误;D.−|−3|=−3,结果为负数,故D正确.故选:D.4.D【分析】本题考查数轴,有理数,绝对值,关键是掌握有理数、整数的概念,由有理数和整数的概念,即可判断.【详解】解:A、0是整数,故A不符合题意;B、绝对值等于本身的数是0或正数(非负数),故B不符合题意,C、所有理数都可以在数轴上表示,故C不符合题意;D、整数和分数统称为有理数,正确,故D符合题意.故选:D.5.B【分析】本题考查了非负数的定义,解题的管计划司掌握非负数的定义.根据“零和整数统称为非负数”,即可求解.【详解】解:非负数有:3.1415,0,2.010010001…,共3个,故选:B.6.C【分析】本题主要考查了有理数与数轴,求一个数的绝对值.根据数轴确定该数的绝对值在3到4之间即可判断.【详解】解:由题意得,遮住的数在−4到−3之间,∴遮住的数的绝对值在3到4之间,∴四个选项中只有C选项符合题意,故选:C.7.A【分析】此题考查了绝对值,多重符号化简,有理数的大小比较,先化简个数,再根据有历史大小比较的方法比较即可.【详解】解:∵a=−|−3|=−3,b=+(−0.5)=−0.5,c=−1,∴−0.5>−1>3,∴b>c>a,故选:A.8.B【分析】本题考查了正负数,绝对值越大的负数反而越小,据此即可作答.【详解】解:∵|−38.87℃|=38.87℃,|−30℃|=30℃,38.87℃>30℃,∴−38.87℃<−30℃,∴下列物质中凝固点最低的是水银,故选:B.9.D【分析】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.根据数轴上的点的特征即可判断.【详解】解:A:∵点a在−1的左边,∴a<−1,故该选项不符合题意;B:∵点b在1的左边,∴b<1,故该选项不符合题意;C:∵a<−1,∴−a>1,又∵b<1,∴−a>b,故该选项不符合题意;D :∵ b <1,∴ −b >−1,又∵ a <−1,∴ −b >a ,故该选项符合题意;故选:D .10.D【分析】本题考查数轴上点移动后数字表示,解题关键是移动规律左减右加.根据数轴上点的移动规律,左减右加计算即可.【详解】解:根据数轴上点的移动规律,左减右加,可得点A 向左移动时:−2−3=−5,可得点A 向右移动时:−2+3=1,综上可得点B 表示的数是−5或1,故选D .11.<【分析】本题考查了有理数的大小比较,解决本题的关键是掌握两个负数大小的比较,绝对值大的其值反而小.根据两个负数,绝对值大的其值反而小即可比较.【详解】解:∵ |−76|=76,|−67|=67,而76>67,∴ −76<−67.故答案为:<.12. 35 −1.5 2【分析】本题考查了绝对值:若a >0,则|a|=a ;若a =0,则|a|=0;若a <0,则|a|=−a .【详解】解:|−35|=35,−|−1.5|=−1.5,|−(−2)|=2,故答案为:35,−1.5,2.13.−10cm 3【分析】本题考查正数和负数,正数和负数是一组具有相反意义的量,据此即可求得答案,熟练掌握具有相反意义的量是解决此题的关键【详解】解:如果节约50cm 3的水记为+50cm 3,那么浪费10cm 3的水记为−10cm 3,故答案为:−10cm 3.14.2024【分析】本题考查了数轴上两点间的距离,相反数的意义.根据数轴上两点间的距离,即可求解.【详解】解:∵点A 表示的数是−2024,OA =OB ,∴点A 点B 表示的数互为相反数,∴点B 表示的数为:−(−2024)=2024,故答案为:2024.15. 1 5【分析】本题考查了绝对值的非负性和解一元一次方程,熟练掌握任何数的绝对值都是非负数是解题的关键,据此作答即可.【详解】∵|x−1|+|y−5|=0,|x−1|≥0,|y−5|≥0,∴x−1=0,y−5=0,解得x =1,y =5,故答案为:1,5.16.26或−70【分析】本题考查了数轴上的动点问题、数轴上两点间的距离.可分为“当点P 运动到点A 右侧时”和“当点P 运动到点A 左侧时”两种情况讨论,根据“点P 到点A 的距离与点P 到点B 的距离比是2:3”,列式计算即可,根据数轴得到两点间的距离是解题的关键.【详解】解:∵在点P 运动过程中,点P 到点A 的距离与点P 到点B 的距离比是2:3,∴PA:PB =2:3,当点P 运动到点A 右侧时,PA =23+2AB =25×(50−10)=16,∴此时点P 表示的数是10+16=26;当点P 运动到点A 左侧时,PA =23−2AB =2×(50−10)=80,∴此时点P 表示的数是10−80=−70,综上所述,点P 表示的数是26或−70.故答案为:26或−7017.合格,过程见详解【分析】本题考查用正负数表示变化的量,在用正负数表示变化的量时,先规定其中的一个为正(或负),则其相反意义的量就用负(或正)表示.理解500±30(mL )的意义,根据题意进行判断即可.【详解】解:“500±30(mL )”是500 mL 为标准容量,470~530(mL )是合格范围,故503mL,511mL,489mL,473mL,527mL,抽查产品的容量是合格的.18.(1)见解析(2)−3<−|−1|<−(−212)<3.5【分析】本题主要考查了用数轴表示有理数,根据数轴比较有理数的大小,化简绝对值和多重符号:(1)先规定向右为正方向,以及单位长度,再化简绝对值和多重符号,最后表示出各数即可;(2)根据数轴上左边的数小于右边的数用小于号将各数连接起来即可.【详解】(1)解:−(−212)=212,−|−1|=−1(2)解;由数轴可得,−3<−|−1|<−(−212)<3.5.19.(1)<(2)−b<a<a+1<b.【分析】(1)利用数轴和相反数的意义解答即可;(2)利用数轴和相反数的意义解答即可.【详解】(1)解:∵−1<a<0,∴0<−a<1.故答案为:<;(2)解:∵−1<a<0,b>1,∴0<a+1<1,−b<−1,如图,∴−b<a<a+1<b.20.见解析【分析】本题考查了正数,负数,整数,分数,有理数,以及无理数的概念,解题的关键是熟练掌握相关定义,要注意的是本题中的π2是无限不循环小数,为无理数.【详解】解:∵ −|−5|=−5,−(−7)=7,3.14=3750,80%=45,∴ 这些数可按如下分类,负整数集合{−18,−|−5|……}整数集合{−18,0,2024,−|−5|,−(−7)……}正分数集合{3.14,80%……}非负整数集合{0,2024,−(−7)……}有理数{−18,3.14,0,2024,−35,80%,−|−5|,−(−7)……}21.(1)3,4;−2,0(2)10(3)(4,3)【分析】本题考查了正负数在网格线中的运动路线问题,数形结合,明确运动规则,是解题的关键.(1)根据向上向右走均为正,向下向左走均为负,分别写出各点的坐标即可;(2)分别根据各点的坐标计算总长即可;(3)将M→A ,M→N 对应的横纵坐标相减即可得出答案.【详解】(1)解:图中A→C {3,4},C→B {−2,0}故答案为:3,4;−2,0.(2)解:由已知可得:A→B 表示为{1,4},B→C 记为{2,0},C→D 记为{1,−2},则该甲虫走过的路程为:1+4+2+1+2=10.(3)解:由M→A {1−a,b−5},M→N {5−a,b−2},可知:5−a−(1−a )=4,b−2−(b−5)=3,∴点A 向右走4个格点,向上走3个格点到点N ,∴A→N 应记为(4,3).22.(1)a <c <d <b(2)−4,6,−2,2【分析】此题主要考查了数轴以及绝对值的性质,正确利用数形结合得出答案是解题关键.(1)利用数轴上a,b,c,d的位置进而得出大小关系;(2)利用绝对值的意义以及结合数轴得出答案【详解】(1)由题意得:a<c<d<b,故答案为:a<c<d<b;(2)∵|a|=4,a<0,∴a=−4,∵数b的点到原点的距离为6,b>0,∴b=6,∵|c|=2,c<0,∴c=−2,∵c与d距离原点的距离相等,d>0,∴d=2.故答案为:−4,6,−2,2.23.x=−1或x=53【分析】本题考查了含绝对值符号的一元一次方程,分类讨论:x<1,x≥1,根据绝对值的意义,可化简绝对值,根据解方程,可得答案是解题关键,以防遗漏.【详解】当x<1时,方程可化为:x+2(1−x)=3,解得x=−1,符合题意;,符合题意;当x≥1时,方程可化为:x+2(x−1)=3,解得x=53.所以,原方程的解为:x=−1或x=5324.(1)−3,2,3.5,0,−1;−3<−1<0<2<3.5(2)见详解(3)5;2;|a−b|【分析】本题主要考查了数轴表示有理数、利用数轴比较大小和数轴上两点之间的距离.(1)根据数轴写出对应点的有理数,然后利用数轴比较有理数的大小即可.(2)根据有理数的大小在数轴上标出即可.(3)根据数轴上两点的距离公式求解即可.【详解】(1)解:如图,点A、B、C、D、E所对应的有理数分别是:−3,2,3.5,0,−1利用数轴从左到右依次增大,可得A<E<D<B<C.即−3<−1<0<2<3.5故答案为:−3,2,3.5,0,−1;−3<−1<0<2<3.5在−2和−3的正中间,标示如下:(2)−52(3)A、B之间的距离是:|2−(−3)|=5;A、E之间的距离是:|(−3)−(−1)|=|−2|=2,M、N之间的距离是|a−b|25.(1)8;12(2)|x+2|(3)|x−1|+|x+3|有最小值,最小值为4(4)11【分析】本题主要考查的是数轴、绝对值,理解绝对值的几何意义是解题的关键.(1)依据在数轴上A、B两点之间的距离AB=|a−b|求解即可;(2)依据在数轴上A、B两点之间的距离AB=|a−b|求解即可;(3)根据题意可得|x−1|+|x+3|表示数轴上x和1的两点之间与x和−3的两点之间距离和,即可;(4)根据题意可得|x+4|+|x−5|+|x+6|表示数轴上x和−4的两点之间,x和5的两点之间与x和−6的两点之间距离和,即可.【详解】(1)解:|10−2|=8;|2−(−10)|=12;故答案为:8;12.(2)数轴上表示x和−2的两点之间的距离表示为|x−(−2)|=|x+2|;故答案为:|x+2|.(3)解:|x−1|+|x+3|有最小值,根据题意得:|x−1|+|x+3|表示数轴上x和1的两点之间与x和−3的两点之间距离和,∵1−(−3)=4,∴|x−1|+|x+3|有最小值,最小值为4;(4)解:根据题意得:|x+4|+|x−5|+|x+6|表示数轴上x和−4的两点之间,x和5的两点之间与x和−6的两点之间距离和,∴当x=−4时,有最小值,最小值为5−(−4)+(−4)−(−6)=11.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a
七年级上学期数学
第一章有理数综合测试题
(满分120分,时间90分钟)
一、认真选一选:(每题2分,共30分) 1.下列说法正确的是( )
A.所有的整数都是正数
B.不是正数的数一定是负数
C.0不是最小的有理数
D.正有理数包括整数和分数 2.
12
的相反数的绝对值是( )
A.-12
B.2
C.-2
D.
12
3.有理数a 、b 在数轴上的位置如图1-1所示,那么下列式子中成立的是( ) A.a>b B. a<b C. ab>0 D.
0a b >
4.在数轴上,原点及原点右边的点表示的数是( )
A.正数
B.负数
C.非正数
D.非负数 5.如果一个有理数的绝对值是正数,那么这个数必定是( ) A.是正数 B.不是0 C.是负数 D.以上都不对
6.下列各组数中,不是互为相反意义的量的是( )
A.收入200元与支出20元
B.上升10米和下降7米
C.超过0.05mm 与不足0.03m
D.增大2岁与减少2升 7.下列说法正确的是( )
A.-a 一定是负数;
B.│a│一定是正数;
C.│a│一定不是负数;
D.-│a│一定是负数
8.如果一个数的平方等于它的倒数,那么这个数一定是( )
A.0
B.1
C.-1
D.±1
9.如果两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数( ) A.互为相反数但不等于零; B.互为倒数; C.有一个等于零; D.都等于零 10.若0<m<1,则m 、m 2、1m
的大小关系是( )
A.m<m 2<
1m
; B.m 2<m<
1m
; C.
1m
<m<m 2; D.
1m
<m 2<m
11三峡大坝坝顶混凝土浇筑量约为2643万m 3,将这一数据用科学计数法表示为( ) A.2.643×103 m 3 B. 0.2643×108 m 3; C.26.43×106 m 3 D.2.643×107 m 3 12.下列各项判断正确的是( )
A.a+b 一定大于a-b;
B.若-ab<0,则a 、b 异号;
C.若a 3=b 3,则a=b;
D.若a 2=b 2,则a=b 13.下列运算正确的是( )
A.-22
÷(-2)2
=1; B. 3
1128327⎛
⎫-=- ⎪⎝⎭
C.135253
5


=- D. 133
( 3.25)6
3.2532.54
4
⨯--⨯=-
14.若a=-2×32,b=(-2×3)2,c=-(2×3)2,则下列大小关系中正确的是( )
A.a>b>0
B.b>c>a;
C.b>a>c
D.c>a>b 15.若│x│=2,│y│=3,则│x+y│的值为( )
A.5
B.-5
C.5或1
D.以上都不对 二、认真填一填:(每空2分,共30分)
16.某地气温不稳定,开始是6℃,一会儿升高4℃,再过一会儿又下降11℃, 这时气温是__. 17.一个数的相反数的倒数是1
13-,这个数是________.
18.数轴上到原点的距离是3个单位长度的点表示的数是______. 19.-2的4次幂是______,144是____________的平方数. 20.若│-a│=5,则a=________. 21.绝对值小于5的所有的整数的和_______.
22.
=__________,. (2)若ab>0,bc<0,则ac________0.
23.若│x -1│+(y+2)2=0,则x-y=___________; 24. (-5)×145⎛⎫
- ⎪⎝

=_________.
3
1277⎛
⎫÷- ⎪⎝⎭
=___________; 25.1
56435
8
-÷⨯
=___________. 22
128(2)2⎛⎫-⨯-
+÷- ⎪⎝

=_______. 三、解答题:(共60分)
26.列式计算(每题5分,共10分)
(1)-4、-5、+7三个数的和比这三个数绝对值的和小多少? (2)从-1中减去573,,1284
-
--的和,所得的差是多少?
30.计算题(每题5分,共30分)
(1)(-12)÷4×(-6)÷2; (2) 23
5(4)0.25(5)(4)8⎛⎫
-⨯--⨯-⨯- ⎪⎝

;
(3) 111311123124244⎛⎫⎛⎫⎛⎫⎛⎫--+----- ⎪ ⎪ ⎪ ⎪⎝
⎭⎝⎭⎝⎭⎝⎭; (4) 2
22
121(3)242433⎛⎫⎛⎫-÷⨯-+-⨯- ⎪ ⎪⎝⎭⎝⎭;
(5) 2
2
42(12)6(3)24(3)(5)53
+⨯-÷--++-⨯-; (6)1+3+5+…+99-(2+4+6+…+98).
31.若│a│=2,b=-3,c 是最大的负整数,求a+b-c 的值.(10分)
32.检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A 地出发, 到收工时,行走记录为(单位:千米):
+8、-9、+4、+7、-2、-10、+18、-3、+7、+5 回答下列问题:(每题5分,共10分)
(1)收工时在A 地的哪边?距A 地多少千米?
(2)若每千米耗油0.3升,问从A 地出发到收工时,共耗油多少升?。

相关文档
最新文档