简谐振动总结
简谐运动知识点总结

简谐运动知识点总结公式:1振动的两个条件:(1)平衡位置。
(2)往复运动。
2弹簧振子模型:(1)不计一切阻力。
(2)轻弹簧。
(3)记忆结论:平衡位置速度最大,加速度为零,最大位移处速度为零,加速度最大。
靠近平衡位置速度增大,加速度减小。
(4)竖直弹簧振子运动过程分析。
3简谐运动的位移和路程:(1)某时刻的位移是指某时刻的位置相对于平衡位置的位移,如第三秒末的位移。
有正负(2)某段时间内的位移是指该段时间内末位置相对于初位置的位移,它是矢量,有正负。
如第三秒内的位移。
(3)某时间的路程是指该段时间内运动轨迹的长度,是标量。
如第三秒内的路程。
(4)理解记忆结论:简谐运动一个周期内的路程为四倍振幅,半个周期内的路程一定是二倍振幅。
四分之一周期内的路程可能大于小于等于一倍振幅。
(5)如何计算t内的路程。
4简谐运动的周期性和对称性结论:(1)一个周期初末位置重合,且速度矢量一定相同。
N 个周期呢?(2)半个周期初末位置一定关于平衡位置对称,且速度矢量等大反向。
半个周期的奇数倍呢?半个周期的偶数倍呢?若初末位置一定关于平衡位置对称,且速度矢量等大反向,则时间是否一定是半个周期?为什么?记忆上述正确结论。
5简谐运动过程结论:(1)a,F同向且与X方向相反。
(2)位移增大,回复力增大,加速度增大,势能增大,动能减小,速度减小。
(记忆)6简谐运动的回复力是效果力单独一个力,多个力的合力,某个力的分力均可提供回复力。
简谐运动物体平衡位置回复力一定为零,但合力不一定为零,例如单摆。
单摆回复力来源为重力沿切向的分力,但不是重力和拉力的合力。
(理解记忆)7利用实验测定重力加速度的注意事项;(1)摆线细轻且不可伸长的1米左右的线。
(2)摆球为质量大一些,体积小一些的实心球。
(3)摆长为摆线长加摆球直径的一半。
(4)测周期时,多次测量求平均值。
且计时一定从平衡位置开始计时。
T=t/n,n为全振动的次数。
(5)变摆长法(利用图象)测重力加速度。
[物理]简谐振动总结
![[物理]简谐振动总结](https://img.taocdn.com/s3/m/1198820dfd4ffe4733687e21af45b307e971f954.png)
[物理]简谐振动总结简谐振动简谐振动就是⽆阻⼒的振动,简谐振动在时间上具有周期性,在空间上具有重复性.简谐振动⽅程对于⼀个质量为m,弹性系数为k的弹簧振⼦,弹簧振⼦和静⽌状态的位置距离是x,速度是v,加速度是a,有以下性质由⽜顿第⼆定律得,F=ma由胡克定律的,F=kx所以a=kxm由速度相关公式得a=d2xdt2所以d2xdt2−kxm=0根据数学结论,⼀个形如d2xdt2+w2x=0的⽅程可以转换为形如x=Acos(ωt+ϕ)的形式所以x=A是振幅,ω是⾓速度,ϕ是初始相位,他们被称为振动三要素.周期T=2πω,振动的位置x=Asin(ωx+ϕ)振动的速度v=Aωcos(ωx+phi)简谐振动能量振动的动能如下E=12mv2=12m⋅A2ω2cos2(ωt+ϕ)=12k⋅A2cos2(ωt+ϕ)振动的弹性势能如下E=12kx2=12k⋅A2sin2(ωt+ϕ)振动的总能量如下E=12mv2+12kx2=12kA2cos2(ωt+ϕ)+12kA2sin2(ωt+ϕ)=12kA2他是恒定不变的振动的合成两个同⽅向同频率简谐振动如下x1=A1cos(ωt+ϕ1)x2=A2cos(ωt+ϕ2)他们合成之后,依然是同⽅向,同频率的简谐振动,合成的振动相关值如下A=A21+A22+2A1A2cos(ϕ2−ϕ1)ϕ=arctan A1sinϕ1+A2sinϕ2 A1cosϕ1+A2cosϕ2√Processing math: 100%。
简谐运动方程知识点总结

简谐运动方程知识点总结1. 简谐运动的基本特征简谐运动是一种最基本的振动运动,它具有以下几个基本特征:(1)周期性:简谐运动是周期性的,即物体在受力作用下做往复振动,每个周期内物体都会经历相同的振动过程。
(2)恢复力的特性:简谐运动的振动是由一个恢复力(例如弹簧力或重力)驱动的,且恢复力的大小与物体的位移成正比。
(3)运动是否受到阻尼和驱动力的影响:简谐运动通常假设没有阻尼和驱动力的影响,即物体受到的唯一作用力是恢复力。
2. 简谐振动方程的一般形式简谐振动可以用一个二阶微分方程来描述,其一般形式如下:$$m\frac{d^2x}{dt^2}+kx=0$$其中,m为物体的质量,k为弹簧的弹性系数,x为物体的位移,t为时间。
上述方程也可以写成更常见的形式:$$\frac{d^2x}{dt^2}+\frac{k}{m}x=0$$这个二阶微分方程描述了简谐振动系统中物体的加速度与位移之间的关系。
该方程是一个线性齐次微分方程,它的解决方法通常是通过代数方法或微积分方法来求解。
3. 简谐振动方程的解法对于上述的简谐振动方程,可以通过代数或微积分方法来求解。
通常有以下几种解法:(1)代数方法:当简谐振动系统的质量m和弹簧的弹性系数k已知时,可以通过代数方法求解简谐振动方程的解析解。
这种方法通常涉及到代数运算和三角函数的应用,例如正弦函数和余弦函数。
(2)微积分方法:对于更一般的简谐振动问题,可以通过微积分方法来求解简谐振动方程。
这种方法通常涉及到微分方程的解法,例如特征方程法、特解法和叠加原理等。
(3)复数方法:简谐振动方程也可以通过复数方法进行求解。
这种方法通常利用复数的性质和欧拉公式来简化求解过程,从而得到方程的解析解。
4. 简谐振动方程的解析解当求解简谐振动方程时,通常可以得到一组解析解,它们可以用来描述简谐振动系统的振动特性。
一般而言,简谐振动方程的解析解可以分为如下几种情况:(1)无阻尼情况下的简谐振动:当简谐振动系统没有受到阻尼力的作用时,其解析解通常为正弦函数或余弦函数。
简谐振动的规律和特点

简谐振动的规律和特点
简谐振动是一种特殊的振动,其规律和特点可以总结如下:
恢复力与位移成正比: 简谐振动的主要特点之一是恢复力与振动物体的位移成正比。
即,物体偏离平衡位置越远,恢复力越大。
速度和加速度的正弦关系:在简谐振动中,物体的速度和加速度是正弦函数关系。
速度达到最大值时,加速度为零,反之亦然。
振动周期恒定: 简谐振动的周期是物体完成一次完整振动所需的时间。
在简谐振动中,周期是恒定的,与振幅无关。
频率和周期的关系:频率是振动的周期的倒数,即频率 = 1 / 周期。
频率和周期之间存在反比关系。
能量转换:在简谐振动中,势能和动能之间存在周期性的转换。
当物体经过平衡位置时,动能最大,而势能为零;反之,当物体达到最大位移时,势能最大,动能为零。
振动方向和恢复力方向相反: 当物体偏离平衡位置时,恢复力的方向总是指向平衡位置。
这导致振动物体沿着恢复力的方向振动。
频率不受振幅影响: 简谐振动的频率不受振幅的影响。
无论振幅的大小如何,频率始终保持不变。
这些规律和特点使得简谐振动成为一个数学上非常可控和可预测的振动模型。
简谐振动在物理学、工程学和其他科学领域中都有广泛的应用。
简谐运动知识点总结笔记

简谐运动知识点总结笔记一、简谐运动的基本概念1. 简谐运动的定义简谐运动是指物体沿着直线或者绕着某个固定轴线作往复振动的运动。
简谐运动有其特定的数学描述和物理规律,可以用简单的正弦或余弦函数来描述物体的运动规律。
2. 简谐运动的特点简谐运动具有周期性、相位一致、振幅恒定、运动轨迹为直线或圆周等特点。
对于弹簧振子、单摆等物体的振动运动都可以看作是简谐运动。
3. 简谐运动的数学描述简谐运动可以用如下的数学公式来描述:\[x(t) = A \cdot sin(\omega t + \phi)\]其中,\(x(t)\)表示物体在t时刻的位置,A表示振幅,\(\omega\)表示角频率,\(\phi\)表示初相位。
通过这个公式可以很清晰地描述出物体的振动规律。
二、简谐运动的基本物理规律1. 简谐运动的力学规律根据牛顿第二定律,对于简谐运动的物体,其受力与位移成正比。
设物体的位移函数为x(t),则其受力与位移的关系可以表示为\[F = -kx(t)\]其中,k为弹簧或摆的劲度系数,代表着弹簧或摆的刚度。
这个公式也被称为胡克定律,描述了弹簧振子的特点。
2. 简谐运动的能量规律对于简谐运动物体,其动能和势能之和保持不变。
设物体的位移函数为x(t),则其动能和势能可以表示为\[E = \frac{1}{2}m\omega^2A^2\]其中,m为物体的质量,\(\omega\)为角频率,A为振幅。
这个公式说明了简谐运动物体能量的守恒规律。
三、简谐运动的应用弹簧振子是最常见的简谐运动的例子,它的振动规律可以很好地用简谐运动的公式来描述。
由于弹簧振子的周期性和稳定性,因此在各个领域都有广泛的应用,比如钟表的摆动、汽车的避震器等。
2. 单摆单摆也是一个常见的简谐运动的例子,它的振动规律同样可以用简谐运动的公式来描述。
由于单摆的周期与摆长和重力加速度有关,因此可以通过单摆来测量重力加速度等物理量。
单摆也常用作物理实验中的展示装置。
简谐运动总结知识点

简谐运动总结知识点
简谐运动的基本特点包括周期性、规律性和单一频率。
在简谐运动中,物体在一个固定的
时间内完成一个完整的振动周期,而且每个周期内的振幅和相位都是固定的。
简谐运动的
频率只有一个,并且与物体的质量和弹性系数有关。
简谐运动的一些重要的知识点包括振动的频率和周期、振幅、相位、动能和势能等。
振动
的频率和周期与物体的质量和弹性系数有关,可以通过公式f=1/T来计算。
振幅是指振动
的最大偏离位置,相位则是指振动的运动状态相对于一个参考点的位置。
简谐运动的动能
和势能在振动过程中会不断地转化,它们之间的转化关系可以用能量守恒定律来描述。
简谐运动的力学模型可以用弹簧振子和单摆来描述。
弹簧振子是指通过弹簧连接的质点,
在振动过程中会产生简谐运动。
单摆则是指通过一根绳索连接的质点,在重力的作用下会
产生简谐运动。
这些力学模型可以通过分析振动的力学方程和运动方程,来深入理解简谐
运动的物理规律。
简谐运动在日常生活和工程技术中有着广泛的应用。
比如,振动吸收器可以用于减小机械
设备的震动和噪音,提高设备的稳定性和工作效率。
简谐运动也是光学和电磁波的基本运
动形式,通过掌握简谐运动的理论知识,我们可以更好地理解和应用光学和电磁波的原理。
总的来说,简谐运动是物理学中一个重要的概念,它不仅具有理论意义,还有着广泛的实
际应用价值。
通过深入学习简谐运动的知识点,我们可以更好地理解自然界和工程技术中
的各种振动现象,为科学研究和技术创新提供重要的理论基础。
最新高中物理振动和波公式总结

最新高中物理振动和波公式总结振动和波是物理学中一个非常重要的概念,涉及到了许多不同的现象和现象的描述。
在高中物理学习中,我们学习了很多与振动和波相关的内容,同时也掌握了一些重要的公式和关系。
本文将对最新的高中物理振动和波公式进行总结。
一、振动1.简谐振动:简谐振动是指一个物体围绕平衡位置作往复运动。
简谐振动的重要公式包括:(1)周期:T=2π/ω,其中T表示振动的周期,ω表示角频率。
(2)频率:f=1/T,其中f表示振动的频率。
(3)角频率:ω=2πf,其中ω表示角频率,f表示振动的频率。
(4)角速度:ω=√(k/m),其中k表示弹性系数,m表示振动物体的质量。
2.复合振动:复合振动是指由多个简谐振动相叠加而成的振动。
复合振动的重要公式包括:(1)叠加原理:对于具有相同方向的简谐振动,位移可以简单地进行叠加。
(2)谐波:谐波是指频率相同、振幅相等的简谐振动的叠加。
(3)相位差:相位差是指两个振动之间的位移差或时间差。
3.阻尼振动:阻尼振动是指在受到摩擦力或空气阻力的作用下,振动逐渐减弱并停止的振动。
阻尼振动的重要公式包括:(1)减震系数:c=2√(km),其中c表示减震系数,k表示弹性系数,m表示振动物体的质量。
(2)阻尼时间常数:τ=1/c,其中τ表示阻尼时间常数。
二、波1.机械波:机械波是指通过介质传播的波动,介质中的粒子在垂直于传播方向上有往复运动的波动。
机械波的重要公式包括:(1)波长:λ=v/f,其中λ表示波长,v表示波速,f表示波的频率。
(2)频率:f=1/T,其中f表示波的频率,T表示波的周期。
(3)周期:T=1/f,其中T表示波的周期,f表示波的频率。
(4)波速:v=λf,其中v表示波速,λ表示波长,f表示波的频率。
2.光的波动性:光同时具有粒子性和波动性,光的波动性可以通过一系列公式来描述:(1)光速:c=λf,其中c表示光速,λ表示波长,f表示频率。
(2)相位差:相位差是两个波峰或波谷之间的差距。
简谐振动的规律和特点

简谐振动的规律和特点简谐振动是指物体在恢复力作用下,沿着一条直线或绕一条固定轴线作往复运动的现象。
简谐振动具有以下规律和特点:1. 定义和公式:简谐振动的定义是指物体的振动轨迹可以用正弦或余弦函数表示的振动。
它的数学描述是一个关于时间的周期函数,可以用如下公式表示:x(t) = A * cos(ωt + φ)其中,x(t)表示物体在时间t时刻的位移,A表示振幅,ω表示角频率,φ表示相位差。
2. 周期性:简谐振动具有周期性,即物体在一定时间间隔内,按照相同的轨迹往复振动。
周期是振动完成一个完整往复运动所需要的时间,用T 表示。
简谐振动的周期与角频率的关系是:T = 2π/ω。
3. 恒定的周期和频率:对于给定的简谐振动体系,周期和频率是恒定不变的。
无论振幅的大小如何变化,简谐振动的周期和频率保持不变。
4. 恢复力和弹性势能:简谐振动的存在是由于恢复力的作用。
恢复力是指当物体偏离平衡位置时,恢复物体回到平衡位置的力。
简谐振动的物体通常具有弹性,当物体受力偏离平衡位置时,会产生弹性势能,而恢复力正是由弹性势能转化而来。
5. 振幅和最大速度:振幅是指振动物体从平衡位置最远的距离,用A表示。
最大速度是指振动物体在振动过程中速度达到最大值的时刻,与振幅有关。
6. 相位差和初相位:相位差是指两个相同频率的简谐振动物体之间的时间差。
初相位是指在某一时刻的相位差。
相位差和初相位的变化会导致振动物体之间的相位关系发生变化。
7. 谐振:当外力与振动频率相同时,振动物体会发生共振现象,这种现象称为谐振。
谐振时,振动物体的振幅会显著增大,甚至可能导致破坏。
8. 能量转换:简谐振动过程中,动能和势能之间会不断转换。
当物体通过平衡位置时,动能最大,势能为零;而当物体达到最大位移时,势能最大,动能为零。
这种能量的转换是循环进行的。
9. 简谐振动的应用:简谐振动在物理学和工程领域有着广泛的应用。
例如,在钟摆、弹簧振子、电磁振荡电路等系统中都存在着简谐振动现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
★简谐运动简谐运动(Simple harmonic motion)(SHM)(直译简单和谐运动)是最基本也最简单的机械振动。
当某物体进行简谐运动时,物体所受的力跟位移成正比,并且总是指向平衡位置。
它是一种由自身系统性质决定的周期性运动。
(如单摆运动和弹簧振子运动)实际上简谐振动就是正弦振动。
故此在无线电学中简谐信号实际上就是正弦信号。
如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,这样的振动叫做简谐运动。
定义如果做机械振动的质点,其位移与时间的关系遵从正弦(或余弦)函数规律,这样的振动叫做简谐运动,又名简谐振动。
因此,简谐运动常用作为其运动学定义。
其中振幅A,角频率,周期T,和频率f的关系分别为:、。
科学结论振幅、周期和频率简谐运动的频率(或周期)跟振幅没有关系,而是由本身的性质(在单摆中由初始设定的绳长)决定,所以又叫固有频率。
一般简谐运动周期 , 其中m为振子质量,k为振动系统的回复力系数。
一般,若振子受重力与弹力二力等效k=k,但平衡位置为kx=mg时所在位置。
单摆运动周期其周期(π为圆周率)这个公式仅当偏角很小时才成立。
T与振幅(a<5°)都和摆球质量无关,仅限于绳长<<地球半径。
[2]扩展:由此可推出,据此可利用实验求某地的重力加速度。
周期公式证明为了使示意图更加简洁,全部假设k=1,这样的话以为F回=-kx(并且在此强调此处负号只表示方向,不表示数值,所以在证明中使用数值关系时全部忽略负号),所以回复力F数值上和在图中的线段长度等于位移x,所以在两个示意图中都是用一条线表示的。
一般简谐运动周期公式证明因为简谐运动可以看做圆周运动的投影,所以其周期也可以用圆周运动的公式来推导。
圆周运动的;很明显v无法测量到,所以根据得到。
其中向心力F便可以用三角函数转换回复力得到即(F=-kx中负号只表示方向,所以在这省略)。
所以得到;因为x与r之间的关系是:x=rcosα,所以上式继续化简得到:。
然后再将v带入之前的圆周运动T中,即可得到。
单摆周期公式证明首先必须明确只有在偏角不太大的情况(高中课本认为小于5°均可)下,单摆的运动可以近似地视为简谐运动。
见示意图,在偏角很小时,我们可以近似的看做图中红色箭头即位移x(回复力)垂直于平衡位置。
于是我们便可以得到sinα≈。
同时因为回复力为重力与速度平行方向上的分力即图中重力分力2,重力分力1即L的延长线。
于是我们可以得到△AOB与重力和它的分力所构成的三角形相似(注意相似时的三角形方向)即可得到:单摆周期公式证明注意:此处比例关系中的位移x虽然在k=1的假设下数值上等于回复力F,但是必须清楚在意义上G2才是真正的回复力F,因为回复力F为重力与速度平行方向上的分力即G2[5]。
于是根据相似我们可以得到,于是化简得到,于是得到,然后将这个转换带入一般简谐运动周期公式便得到了单摆的周期公式。
运动方程推导定义:一个做匀速圆周运动的物体在一条直径上的投影所做的运动即为简谐运动:若:将R记为匀速圆周运动的半径,即:简谐运动的振幅;将ω记为匀速圆周运动的角速度,即:简谐运动的圆频率,则:;将φ记为t=0 时匀速圆周运动的物体偏离该直径的角度(逆时针为正方向),即:简谐运动的初相位。
则,在t时刻:简谐运动的位移x=Rcos(ωt+φ);简谐运动的速度v=-ωRsin(ωt+φ);简谐运动的加速度a=-ω2Rcos(ωt+φ),上述三式即为简谐运动的方程。
简单推导根据简谐运动的定义,简谐运动与圆周运动示意图在右图的示意图中,我们可以清晰的看出上面各个概念在途中的表示。
O点为圆心,也为简谐运动的平衡位置。
对位移的推导使用三角函数的有关知识(ωt+φ)即角度,运用三角函数便求出了O点与结束位置的距离,即位移。
(此图中位移为负数,即设定左边方向为正方向)所以得出方程x=Rcos(ωt+φ)。
因为速度即为,运用微积分的知识对位移方程进行微分,便可得到导数 =-ωRsin(ωt+φ),即v=-ωRsin(ωt+φ)。
同理,加速度为,也可以写为(二次导数),于是我们再次对速度方程进行微分,得到二次导数=-ω2Rcos(ωt+φ),即a=-ω2Rcos(ωt+φ)。
说明1、这个运动是假设在没有能量损失引至阻力的情况而发生。
2、做简谐运动的物体的加速度跟物体偏离平衡位置的位移大小成正比,方向与位移的方向相反,总指向平衡位置。
严格推导右图是用微分方程法对简谐运动的物理过程的详细推导,其中的表达式都用严格的公式给出:微分方法十个“不一定”简谐运动是最简单、最基本的机械振动,是物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力作用下的振动。
简谐运动也是高中物理部分的重点知识之一。
弄清简谐运动的规律对进一步学习机械波、交流电、电磁波等具有非常重要的意义。
笔者针对怎样理解简谐运动的特点和规律提出以下十个“不一定”。
一、物体运动的路线不一定都是直线例如,单摆摆球做简谐运动时的运动路线是在摆球平衡位置两侧并通过平衡位置的一段圆弧,即摆球的运动路线为曲线。
二、物体运动的速度方向与位移方向不一定相同简谐运动的位移指的是振动物体偏离平衡位置的位移,位移的起点总是在平衡位置,那么当物体远离平衡位置时位移方向与速度方向相同,靠近平衡位置时位移方向与速度方向相反。
三、振动物体所受的回复力方向与物体所受的合力方向不一定相同例如,单摆在平衡位置附近(小角度围)的摆动既做圆周运动,又做简谐运动,摆球所受到的各个力的合力既要提供其做圆周运动的向心力,又要提供其做简谐运动的回复力,即单摆振动过程中摆球受到所有力的合力的一个分力提供向心力,另一个分力提供回复力。
那么回复力方向就与摆球所受到的各力的合力方向不相同。
四、物体在平衡位置不一定处于平衡状态例如,单摆摆球做简谐运动经过平衡位置时,由于摆球的平衡位置在圆弧上,摆球在圆弧上做圆周运动需要向心力,故摆球在平衡位置处悬绳的拉力大于摆球的重力,即摆球在平衡位置并非处于平衡状态。
五、物体在四分之一周期通过的路程不一定等于振幅做简谐运动的物体在一个运动周期的时间通过的路程是振幅的4倍,在半个周期的时间通过的路程是振幅的2倍,但是在四分之一周期时间通过的路程就不一定等于振幅。
虽然当物体从平衡位置向最大位移运动四分之一周期时间或从最大位移向平衡位置运动四分之一周期时间,物体通过的路程都等于振幅,但是当物体从平衡位置和最大位移之间的某一位置开始运动四分之一周期时间通过的路程就不等于振幅了。
因为做简谐运动的物体在平衡位置附近速度比在最大位移附近速度大,故物体从平衡位置和最大位移之间的某一位置向平衡位置方向运动并通过平衡位置的四分之一周期时间通过的路程就大于振幅,而向最大位移方向运动并返回的四分之一周期时间通过的路程就小于振幅。
六、简谐运动的振动快时物体的运动不一定快简谐运动的振动快慢由振动周期或频率反映,周期小振动快,周期大振动慢;而做简谐运动的物体运动快慢则由物体运动的瞬时速度反映,在某时刻瞬时速度大则运动快,反之则运动慢。
同时简谐运动的振动快慢是由振动系统的本身决定的,而做简谐运动物体的运动快慢则由振动物体的位置和储存在振动系统中的能量决定。
所以简谐运动振动快,物体在某时刻的运动不一定快。
七、单摆的摆长短,周期不一定小单摆振动的周期不但与摆长有关,而且还与单摆所在处重力加速度一定时摆球悬点的加速度有关,当摆球悬点的加速度为零时,摆长越短,周期就越小。
那么当把摆长较短的单摆放在加速下降的升降机中时,由于单摆处于失重状态,故单摆振动的周期也可以比放在地面上悬点加速度为零的摆长较长的单摆振动周期大,当单摆处于完全失重状态时,单摆振动周期为无穷大,单摆处于停振状态。
八、单摆摆球处在平衡位置时摆线不一定在竖直方向单摆摆球的平衡位置处在悬点正下方的条件是摆球悬点的加速度为零或有加速度但加速度在竖直方向,否则摆球的平衡位置就不在摆球悬点的正下方。
例如,单摆悬挂在水平方向加速运动的小车中,摆球处在平衡位置时,悬线就不在竖直方向,且小车的加速度越大,摆球在平衡位置时悬线与竖直方向的夹角也越大。
九、物体每次通过同一位置时,同一物理量不一定相同由于简谐运动具有周期性,故描述物体运动状态的物理量以及所受的回复力都在随时间做周期性变化,这样物体每次通过运动路线上的同一位置时,同一物理量也就不一定相同。
其过同一位置时相同的物理量是位移、动能、回复力、以及回复力产生的加速度,而速度、动量这两个物理量在物体连续通过同一位置时就不相同,这是因为速度、动量是矢量,其方向与运动方向相同,而物体连续通过同一位直时运动方向是相反的,所以物体每次通过同一位置时,同一物理量不一定相同。
十、运动物体在半个周期回复力做功一定为零,但回复力的冲量不一定为零做简谐运动的物体在任意半个周期的前后瞬间,其速度大小一定相同,速度方向可能是相同的,也可能是相反的。
故由动能定理和动量定理知,物体在半个周期回复力做功一定为零,回复力的冲量不一定为零。
回复力定义:振子受迫使它回复平衡位置的力,是合外力平行于速度方向上的分力。
如果用F表示物体受到的回复力,用x表示小球对于平衡位置的位移,根据胡克定律,F和x成正比,它们之间的关系可用下式来表示:F = -kx式中的k是比例系数(只是在弹簧振子系统中k恰好为劲度系数),负号的意思是:回复力的方向总跟物体位移的方向相反。
负号只代表方向,不代表数值正负。
阻尼振动阻尼振动:在阻力作用下的振动,当阻力大小可以忽略时,可以说是简谐运动。
性质:受到的阻力越大,振幅越小;反之,受到的阻力越小,振幅越大。
振动方程:x=Ae-nt sin(wt+θ).效果:振动过程中受到阻力的作用,振幅逐渐减小,能量逐渐损失,直至振动停止。
但整个过程中振动的频率不变。
受迫振动和共振受迫振动受迫振动:振动系统在周期性驱动力作用下的振动。
稳定时,系统的振动频率等于驱动力的频率,跟系统的固有频率无关。
驱动力频率越接近固有频率,振幅越大。
注:在原有震动系统已经处于振动的情况再施加周期性驱动力的话,振动系统的振动频率在足够长的时间后才会逼近驱动力的频率,而且永远也不会相等。
在中学阶段,只需要认为稳定时,系统的振动频率等于驱动力的频率,跟系统的固有频率无关即可。
共振共振:当驱动力的频率等于系统的固有频率时的振动称为共振。
物体的振幅增大,能量增加。
若能量的增量等于所受阻力而消耗的能量时达到最大振幅,而不会一直增大。