高考数学专题复习导数
2025高考数学二轮复习导数应用中的函数构造技巧

函数形式出现的是“-”法形式时,优先考虑构造 y=型函数.
(2)利用f(x)与ex(enx)构造
() ()
常用的构造形式有 e f(x),e f(x), e , e ,这类形式一方面是对 y=uv,y=型函
x
nx
数形式的考查,另外一方面也是对(ex)'=ex,(enx)'=nenx 的考查.所以对于
f'(x)cos x-f(x)sin x>0,所以 F'(x)>0,即函数
由于
f
π
6
f
π
6
π
0<6
<
π
4
π
π
cos6<f 4
<
3
π
3
3
<
π
3
<
π
,所以
2
π
π
cos4<f 3
π
F(x)在区间(0,2)
π
4
<F
π
cos3,因此可得
π
6
,故选 AD.
F
π
6
<F
f
π
x∈(0,2)时,
π
3
<
内单调递增.
,即
锐角三角形,则( D )
A.f(sin A)sin2B>f(sin B)sin2A
B.f(sin A)sin2B<f(sin B)sin2A
C.f(cos A)sin2B>f(sin B)cos2A
D.f(cos A)sin2B<f(sin B)cos2A
解析 因为
() '
2
2023年新高考数学大一轮复习专题14 导数的概念与运算(原卷版)

专题14 导数的概念与运算【考点预测】知识点一:导数的概念和几何性质1.概念 函数()f x 在0x x =处瞬时变化率是0000()()limlimx x f x x f x yx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0x x y ='.知识点诠释:① 增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有 多近,即|0|x ∆-可以小于给定的任意小的正数;② 当0x ∆→时,y ∆在变化中都趋于0,但它们的比值却趋于一个确定的常数,即存在一个常数与00()()f x x f x y x x+∆-∆=∆∆无限接近; ③ 导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时 刻的瞬间变化率,即00000()()()limlimx x f x x f x yf x x x∆→∆→+∆-∆'==∆∆. 2.几何意义 函数()y f x =在0x x =处的导数0()f x '的几何意义即为函数()y f x =在点00()P x y ,处的切线的斜率.3.物理意义 函数)(t s s =在点0t 处的导数)(0t s '是物体在0t 时刻的瞬时速度v ,即)(0t s v '=;)(t v v =在点0t 的导数)(0t v '是物体在0t 时刻的瞬时加速度a ,即)(0t v a '=.知识点二:导数的运算 1.求导的基本公式x(1)函数和差求导法则:[()()]()()f x g x f x g x '''±=±; (2)函数积的求导法则:[()()]()()()()f x g x f x g x f x g x '''=+; (3)函数商的求导法则:()0g x ≠,则2()()()()()[]()()f x f xg x f x g x g x g x ''-=. 3.复合函数求导数复合函数[()]y f g x =的导数和函数()y f u =,()u g x =的导数间关系为 x u x y y u '''=: 【方法技巧与总结】 1.在点的切线方程切线方程000()()()y f x f x x x '-=-的计算:函数()y f x =在点00(())A x f x ,处的切线方程为000()()()y f x f x x x '-=-,抓住关键000()()y f x k f x =⎧⎨'=⎩.2.过点的切线方程设切点为00()P x y ,,则斜率0()k f x '=,过切点的切线方程为:000()()y y f x x x '-=-,又因为切线方程过点()A m n ,,所以000()()n y f x m x '-=-然后解出0x 的值.(0x 有几个值,就有几条切线)注意:在做此类题目时要分清题目提供的点在曲线上还是在曲线外.【题型归纳目录】 题型一:导数的定义 题型二:求函数的导数 题型三:导数的几何意义 1.在点P 处切线 2.过点P 的切线 3.公切线4.已知切线求参数问题5.切线的条数问题6.切线平行、垂直、重合问题7.最值问题 【典例例题】题型一:导数的定义例1.(2022·全国·高三专题练习(文))函数()y f x =的图像如图所示,下列不等关系正确的是( )A .0(2)(3)(3)(2)f f f f ''<<<-B .0(2)(3)(2)(3)f f f f ''<<-<C .0(3)(3)(2)(2)f f f f ''<<-<D .0(3)(2)(2)(3)f f f f ''<-<<例2.(2022·河南·南阳中学高三阶段练习(理))设函数()f x 满足000(2)()lim 2x f x x f x x∆→-∆-=∆,则()0f x '=( )A .1-B .1C .2-D .2例3.(2022·新疆昌吉·二模(理))若存在()()00000,,limx f x x y x y f x ∆→+-∆∆,则称()()00000,,limx f x x y xy f x ∆→+-∆∆为二元函数(),=z f x y 在点()00,x y 处对x 的偏导数,记为()00,x f x y ';若存在()()00000,,limy f x y yy f x y ∆→+-∆∆,则称()()00000,,lim y f x y yy f x y ∆→+-∆∆为二元函数(),=z f x y 在点()00,x y 处对y 的偏导数,记为()00,y f x y ',已知二元函数()()23,20,0f x y x xy y x y =-+>>,则下列选项中错误的是( )A .()1,34x f '=-B .()1,310y f '=C .()(),,x y f m n f m n ''+的最小值为13-D .(),f x y 的最小值为427-例4.(2022·贵州黔东南·一模(文))一个质点作直线运动,其位移s (单位:米)与时间t (单位:秒)满足关系式,()2524s t t =+--,则当1t =时,该质点的瞬时速度为( ) A .2-米/秒B .3米/秒C .4米/秒D .5米/秒例5.(2022·全国·高三专题练习)已知函数()2ln 8f x x x =+,则()()121lim x f x f x∆→+∆-∆的值为( )A .20-B .10-C .10D .20例6.(2022·浙江·高三专题练习)已知函数()()2223ln 9f x f x x x '=-+(()f x '是()f x 的导函数),则()1f =( ) A .209-B .119-C .79D .169例7.(2022·浙江·高三专题练习)已知函数()f x 的导函数为()f x ',且满足()()32121f x x x f x '=++-,则()2f '=( ) A .1B .9-C .6-D .4【方法技巧与总结】对所给函数式经过添项、拆项等恒等变形与导数定义结构相同,然后根据导数定义直接写出. 题型二:求函数的导数例8.(2022·天津·耀华中学高二期中)求下列各函数的导数: (1)ln(32)y x =-; (2)e xxy =; (3)()2cos f x x x =+例9.(2022·新疆·莎车县第一中学高二期中(理))求下列函数的导数: (1)22ln cos y x x x =++; (2)3e x y x = (3)()ln 31y x =-例10.(2022·广东·北京师范大学珠海分校附属外国语学校高二期中)求下列函数的导数: (1)5y x =; (2)22sin y x x =+; (3)ln xy x=; (4)()211ln 22x y e x -=+.【方法技巧与总结】对所给函数求导,其方法是利用和、差、积、商及复合函数求导法则,直接转化为基本函数求导问题. 题型三:导数的几何意义1.在点P 处切线例11.(2022·河北·模拟预测)曲线e sin x y x =在0x =处的切线斜率为( ) A .0B .1C .2D .2-例12.(2022·安徽·巢湖市第一中学模拟预测(文))曲线22x ay x +=+在点()1,b 处的切线方程为60kx y -+=,则k 的值为( ) A .1-B .23-C .12D .1例13.(2022·海南·文昌中学高三阶段练习)曲线e 2x y x =-在0x =处的切线的倾斜角为α,则sin 2πα⎛⎫+=⎪⎝⎭( )A .BC .1D .-1例14.(2022·安徽·巢湖市第一中学高三期中(理))已知()()2cos 0cos 2f x x f x π⎛⎫=-+ '⎪⎝⎭,则曲线()y f x =在点33,44f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线的斜率为( )A B .C .D .-例15.(2022·全国·高三专题练习(文))已知函数()f x 是定义在R 上的奇函数,且32()23(1)f x x ax f x '=-+-,则函数()f x 的图象在点(2,(2))f --处的切线的斜率为( ) A .21-B .27-C .24-D .25-例16.(2022·广西广西·模拟预测(理))曲线31y x =+在点()1,a -处的切线方程为( ) A .33y x =+B .31yxC .31y x =--D .33y x =--例17.(2022·河南省浚县第一中学模拟预测(理))曲线ln(25)y x x =+在2x =-处的切线方程为( ) A .4x -y +8=0 B .4x +y +8=0 C .3x -y +6=0D .3x +y +6=02.过点P 的切线例18.(2022·四川·广安二中二模(文))函数()2e xf x x =过点()0,0的切线方程为( )A .0y =B .e 0x y +=C .0y =或e 0x y +=D .0y =或e 0x y +=例19.(2022·四川省成都市郫都区第一中学高三阶段练习(文))若过点1(,0)2的直线与函数()e x f x x =的图象相切,则所有可能的切点横坐标之和为( ) A .e 1+B .12-C .1D .12例20.(2022·陕西安康·高三期末(文))曲线2ln 3y x x =+过点1,02⎛⎫- ⎪⎝⎭的切线方程是( )A .210x y ++=B .210x y -+=C .2410x y ++=D .2410x y -+=例21.(2022·广东茂名·二模)过坐标原点作曲线ln y x =的切线,则切点的纵坐标为( ) A .eB .1CD .1e例22.(2022·山东潍坊·三模)过点()()1,P m m ∈R 有n 条直线与函数()e xf x x =的图像相切,当n 取最大值时,m 的取值范围为( ) A .25e em -<< B .250e m -<< C .10em -<<D .e m <3.公切线例23.(2022·全国·高三专题练习)若函数()ln f x x =与函数2()(0)g x x x a x =++<有公切线,则实数a 的取值范围是( ) A .1ln ,2e ⎛⎫+∞ ⎪⎝⎭B .()1,-+∞C .()1,+∞D .()2,ln +∞例24.(2022·全国·高三专题练习)已知曲线()1:=e x C f x a +和曲线()()22:ln(),C g x x b a a b =++∈R ,若存在斜率为1的直线与1C ,2C 同时相切,则b 的取值范围是( ) A .9,4⎡⎫-+∞⎪⎢⎣⎭B .[)0,+∞C .(],1-∞D .9,4⎛⎤-∞ ⎥⎝⎦例25.(2022·江苏·南京外国语学校模拟预测)若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值范围为( ) A .(]0,2eB .(]0,eC .[)2,e +∞D .(],2e e例26.(2022·河南·南阳中学高三阶段练习(理))若直线()111y k x =+-与曲线e x y =相切,直线()211y k x =+-与曲线ln y x =相切,则12k k 的值为( ) A .12B .1C .eD .2e例27.(2022·河北省唐县第一中学高三阶段练习)已知函数()ln f x a x =,()e xg x b =,若直线()0y kx k =>与函数()f x ,()g x 的图象都相切,则1a b+的最小值为( )A .2B .2eC .2eD 例28.(2022·重庆市育才中学高三阶段练习)若直线:l y kx b =+(1k >)为曲线()1x f x e -=与曲线()ln g x e x =的公切线,则l 的纵截距b =( )A .0B .1C .eD .e -例29.(2022·全国·高三专题练习)若两曲线ln 1y x =-与2y ax =存在公切线,则正实数a 的取值范围是( ) A .(]0,2eB .31e ,2-⎡⎫+∞⎪⎢⎣⎭C .310,e 2-⎛⎤⎥⎝⎦D .[)2e,+∞例30.(2022·全国·高三专题练习)若仅存在一条直线与函数()ln f x a x =(0a >)和2()g x x =的图象均相切,则实数=a ( )A .eB C .2eD .4.已知切线求参数问题例31.(2022·湖南·模拟预测)已知P 是曲线)2:ln C y x x a x =++上的一动点,曲线C 在P 点处的切线的倾斜角为θ,若32ππθ≤<,则实数a 的取值范围是( )A .)⎡⎣B .)⎡⎣C .(,-∞D .(,-∞例32.(2022·广西·贵港市高级中学三模(理))已知曲线e ln x y ax x =+在点()1,e a 处的切线方程为3y x b =+,则( ) A .e a =,2b =- B .e a =,2b = C .1e a -=,2b =-D .1e a -=,2b =例33.(2022·江苏苏州·模拟预测)已知奇函数()()()()220f x x x ax b a =-+≠在点()(),a f a 处的切线方程为()y f a =,则b =( )A .1-或1B .C .2-或2D .例34.(2022·云南昆明·模拟预测(文))若函数()ln f x x =的图象在4x =处的切线方程为y x b =+,则( )A .3a =,2ln 4b =+B .3a =,2ln 4b =-+C .32a =,1ln 4b =-+ D .32a =,1ln 4b =+ 例35.(2022·河南·方城第一高级中学模拟预测(理))已知直线l 的斜率为2,l 与曲线1C :()1ln y x x =+和圆2C :2260x y x n +-+=均相切,则n =( ) A .-4B .-1C .1D .45.切线的条数问题例36.(2022·全国·高三专题练习)若过点(,)a b 可以作曲线ln y x =的两条切线,则( ) A .ln a b <B .ln b a <C .ln b a <D .ln a b <例37.(2022·河南洛阳·三模(理))若过点()1,P t 可作出曲线3y x =的三条切线,则实数t 的取值范围是( )A .(),1-∞B .()0,∞+C .()0,1D .{}0,1例38.(2022·河南洛阳·三模(文))若过点()1,0P 作曲线3y x =的切线,则这样的切线共有( ) A .0条B .1条C .2条D .3条例39.(2022·河北·高三阶段练习)若过点(1,)P m 可以作三条直线与曲线:e xxC y =相切,则m 的取值范围为( )A .23,e ⎛⎫-∞ ⎪⎝⎭B .10,e ⎛⎫⎪⎝⎭C .(,0)-∞D .213,e e ⎛⎫ ⎪⎝⎭例40.(2022·内蒙古呼和浩特·二模(理))若过点()1,P m -可以作三条直线与曲线C :e x y x =相切,则m 的取值范围是( ) A .23,e ⎛⎫-+∞ ⎪⎝⎭B .1,0e ⎛⎫- ⎪⎝⎭C .211,e e ⎛⎫-- ⎪⎝⎭D .231,ee ⎛⎫-- ⎪⎝⎭例41.(2022·广东深圳·二模)已知0a >,若过点(,)a b 可以作曲线3y x =的三条切线,则( ) A .0b <B .30b a <<C .3b a >D .()30b b a -=6.切线平行、垂直、重合问题例42.(2022·安徽·合肥一中模拟预测(文))对于三次函数()f x ,若曲线()y f x =在点(0,0)处的切线与曲线()y xf x =在点(1,2)处点的切线重合,则(2)f '=( )A .34-B .14-C .4-D .14例43.(2022·山西太原·二模(理))已知函数()sin cos f x a x b x cx =++图象上存在两条互相垂直的切线,且221a b +=,则a b c ++的最大值为( )A .B .C D 例44.(2022·全国·高三专题练习)已知函数f (x )=x 2+2x 的图象在点A (x 1,f (x 1))与点B (x 2,f (x 2))(x 1<x 2<0)处的切线互相垂直,则x 2-x 1的最小值为( ) A .12 B .1 C .32D .2例45.(2022·全国·高三专题练习)若直线x a =与两曲线e ,ln x y y x ==分别交于,A B 两点,且曲线e x y =在点A 处的切线为m ,曲线ln y x =在点B 处的切线为n ,则下列结论: ①()0,a ∞∃∈+,使得//m n ;②当//m n 时,AB 取得最小值; ③AB 的最小值为2;④AB 最小值小于52. 其中正确的个数是( ) A .1B .2C .3D .4例46.(2022·全国·高三专题练习)已知函数22(0)()1(0)x x a x f x x x ⎧++<⎪=⎨->⎪⎩的图象上存在不同的两点,A B ,使得曲线()y f x =在这两点处的切线重合,则实数a 的取值范围是( )A .1(,)8-∞-B .1(1,)8-C .(1,)+∞D .1(,1)(,)8-∞⋃+∞例47.(2022·全国·高三专题练习(文))若曲线x y e x =+的一条切线l 与直线220210x y +-=垂直,则切线l 的方程为( )A .210x y -+=B .210x y +-=C .210x y --=D .210x y ++=7.最值问题例48.(2022·全国·高三专题练习)若点P 是曲线232ln 2y x x =-上任意一点,则点P 到直线3y x =-的距离的最小值为( ) A.4BCD例49.(2022·山东省淄博第一中学高三开学考试)动直线l 分别与直线21y x =-,曲线23ln 2y x x =-相交于,A B 两点,则AB 的最小值为( )ABC .1 D例50.(2022·江苏·高三专题练习)已知a ,b 为正实数,直线y x a =-与曲线ln()y x b =+相切,则22a b-的取值范围是( ) A .(0,)+∞B .(0,1)C .1(0,)2D .[1,)+∞例51.(2022·全国·高三专题练习)曲线2x y e =上的点到直线240x y --=的最短距离是( ) ABCD .1例52.(2022·河北衡水·高三阶段练习)已知函数2ln ()2xf x x x=-在1x =处的切线为l ,第一象限内的点(,)P a b 在切线l 上,则1111a b +++的最小值为( ) ABCD.34+ 例53.(2022·山东聊城·二模)实数1x ,2x ,1y ,2y 满足:2111ln 0x x y --=,2240x y --=,则()()221212x x y y -+-的最小值为( ) A .0B.C.D .8例54.(2022·河南·许昌高中高三开学考试(理))已知函数21e x y +=的图象与函数()ln 112x y ++=的图象关于某一条直线l 对称,若P ,Q 分别为它们图象上的两个动点,则这两点之间距离的最小值为( )A .22B 24C .)4ln 22+D )4ln 2+例55.(2022·河南·灵宝市第一高级中学模拟预测(文))已知直线y kx b =+是曲线1y =的切线,则222k b b +-的最小值为( )A .12-B .0C .54D .3【方法技巧与总结】函数()y f x =在点0x 处的导数,就是曲线()y f x =在点00(,())P x f x 处的切线的斜率.这里要注意曲线在某点处的切线与曲线经过某点的切线的区别.(1)已知()f x 在点00(,())x f x 处的切线方程为000()()y y f x x x '-=-.(2)若求曲线()y f x =过点(,)a b 的切线方程,应先设切点坐标为00(,())x f x ,由000()()y y f x x x '-=-过点(,)a b ,求得0x 的值,从而求得切线方程.另外,要注意切点既在曲线上又在切线上.【过关测试】 一、单选题1.(2022·河南·高三阶段练习(理))若曲线()ln a xf x x=在点(1,f (1))处的切线方程为1y x =-,则a =( ) A .1B .e2C .2D .e2.(2022·云南曲靖·二模(文))设()'f x 是函数()f x 的导函数,()f x ''是函数()'f x 的导函数,若对任意R ()0,()0x f x f x '''∈><,恒成立,则下列选项正确的是( )A .0(3)(3)(2)(2)f f f f ''<<-<B .0(3)(2)(2)(3)f f f f ''<-<<C .0(3)(2)(3)(2)f f f f ''<<<-D .0(2)(3)(3)(2)f f f f ''<<<-3.(2022·全国·高三专题练习)设()f x 为可导函数,且()()112lim1x f f x x→--=-△△△,则曲线()y f x =在点()()1,1f 处的切线斜率为( )A .2B .-1C .1D .12-4.(2022·河南·模拟预测(文))已知3()ln(2)3xf x x x =++,则曲线()y f x =在点()()3,3f 处的切线方程为( )A .21010ln510x y -+-=B .21010ln510x y ++-=C .1212ln5150x y -+-=D .1212ln5150x y ++-=5.(2022·贵州黔东南·一模(理))一个质点作直线运动,其位移s (单位:米)与时间t (单位:秒)满足关系式23(43)=-s t t ,则当1t =时,该质点的瞬时速度为( ) A .5米/秒 B .8米/秒 C .14米/秒D .16米/秒6.(2022·全国·高三专题练习)已知函数()ln f x x x =,()()2g x x ax a =+∈R ,若经过点1,0A 存在一条直线l 与()f x 图象和()g x 图象都相切,则=a ( ) A .0B .1-C .3D .1-或37.(2022·湖南·长郡中学高三阶段练习)m 对任意a ∈R ,()0,b ∈+∞恒成立,则实数m 的取值范围是( )A .1,2⎛⎤-∞ ⎥⎝⎦B .2⎛-∞ ⎝⎦C .(-∞D .(],2-∞8.(2022·辽宁沈阳·二模)若直线11y k x b =+与直线()2212y k x b k k =+≠是曲线ln y x =的两条切线,也是曲线e x y =的两条切线,则1212k k b b ++的值为( ) A .e 1- B .0 C .-1D .11e-二、多选题9.(2022·辽宁丹东·模拟预测)若过点()1,a 可以作出曲线()1e xy x =-的切线l ,且l 最多有n 条,*n ∈N ,则( ) A .0a ≤B .当2n =时,a 值唯一C .当1n =时,4ea <-D .na 的值可以取到﹣410.(2022·浙江·高三专题练习)为满足人们对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示,则下列结论中正确的有( )A .在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强B .在2t 时刻,甲企业的污水治理能力比乙企业强C .在3t 时刻,甲、乙两企业的污水排放都已达标D .甲企业在[]10,t ,[]12,t t ,[]23,t t 这三段时间中,在[]10,t 的污水治理能力最强11.(2022·全国·高三专题练习)已知函数()xf x e =,则下列结论正确的是( )A .曲线()y f x =的切线斜率可以是1B .曲线()y f x =的切线斜率可以是1-C .过点()0,1且与曲线()y f x =相切的直线有且只有1条D .过点()0,0且与曲线()y f x =相切的直线有且只有2条12.(2022·全国·高三专题练习)过平面内一点P 作曲线ln y x =两条互相垂直的切线1l 、2l ,切点为1P 、2P (1P 、2P 不重合),设直线1l 、2l 分别与y 轴交于点A 、B ,则下列结论正确的是( ) A .1P 、2P 两点的横坐标之积为定值 B .直线12PP 的斜率为定值;C .线段AB 的长度为定值D .三角形ABP 面积的取值范围为(]0,1三、填空题13.(2022·山东·肥城市教学研究中心模拟预测)已知函数()3ln f x x x x =-,则曲线()y f x =在点()()e,e f 处的切线方程为_______.14.(2022·全国·模拟预测(文))若直线l 与曲线2yx 和2249x y +=都相切,则l 的斜率为______. 15.(2022·湖北武汉·模拟预测)已知函数2()(0)e e x x f x f -'=-,则(0)f =__________.16.(2022·全国·赣州市第三中学模拟预测(理))已知()()()222cos 22cos sin f x xf x x x x x '+=++,且0x >,52f π⎛⎫= ⎪⎝⎭,那么()f π=___________. 四、解答题17.(2022·全国·高三专题练习(文))下列函数的导函数 (1)42356y x x x --=+; (2)2sin cos 22xx x y =+;(3)2log y x x =-; (4)cos x y x=.18.(2022·辽宁·沈阳二中二模)用数学的眼光看世界就能发现很多数学之“美”.现代建筑讲究线条感,曲线之美让人称奇.衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下:若fx 是()f x 的导函数,()f x ''是fx 的导函数,则曲线()y f x =在点()(),x f x 处的曲率()()()3221f x K f x ''='+⎡⎤⎣⎦.(1)若曲线()ln f x xx =+与()g x =()1,1处的曲率分别为1K ,2K ,比较1K ,2K 大小; (2)求正弦曲线()sin h x x =(x ∈R )曲率的平方2K 的最大值.19.(2022·全国·高三专题练习)设函数()()2ln f x ax x a R =--∈. (1)若()f x 在点()()e,e f 处的切线为e 0x y b -+=,求a ,b 的值; (2)求()f x 的单调区间.20.(2022·浙江·高三专题练习)函数()321f x x x x =+-+, 直线l 是()y f x =在()()0,0f 处的切线.(1)确定()f x 的单调性;(2)求直线l 的方程及直线l 与()y f x =的图象的交点.21.(2022·北京东城·三模)已知函数()e x f x =,曲线()y f x =在点(1(1))f --,处的切线方程为y kx b =+.(1)求k ,b 的值;(2)设函数()1ln 1.kx b x g x x x +<⎧=⎨≥⎩,,,,若()g x t =有两个实数根12,x x (12x x <),将21x x -表示为t 的函数,并求21xx -的最小值.22.(2022·贵州贵阳·模拟预测(理))已知a ∈R ,函数()()ln 1f x x a x =+-,()e xg x =.(1)讨论()f x 的单调性;(2)过原点分别作曲线()y f x =和()y g x =的切线1l 和2l ,求证:存在0a >,使得切线1l 和2l 的斜率互为倒数.。
2023年高考数学(文科)一轮复习——导数的概念及运算

第1节导数的概念及运算考试要求 1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数y=c(c为常数),y=x,y=1x,y=x2,y=x3,y=x 的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.1.函数y=f(x)在x=x0处的导数(1)定义:称函数y=f(x)在x=x0处的瞬时变化率为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即(2)几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点(x0,f(x0))处的切线的斜率.相应地,切线方程为y-y0=f′(x0)(x-x0).2.函数y=f(x)的导函数如果函数y=f(x)在开区间(a,b)内的每一点处都有导数,当x=x0时,f′(x0)是一个确定的数,当x变化时,f′(x)便是x的一个函数,称它为f(x)的导函数(简称导数),y=f(x)的导函数有时也记作y′,即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx.3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数) f ′(x )=0 f (x )=x α(α∈Q *) f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos__x f (x )=cos x f ′(x )=-sin__x f (x )=e x f ′(x )=e x f (x )=a x (a >0,a ≠1)f ′(x )=a x ln__a f (x )=ln xf ′(x )=1x f (x )=log a x (a >0,a ≠1)f ′(x )=1x ln a4.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,且(f (x 0))′=0.2.⎣⎢⎡⎦⎥⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0).3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.1.思考辨析(在括号内打“√”或“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( )(2)函数f (x )=sin(-x )的导数f ′(x )=cos x .( ) (3)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( )(4)曲线y =f (x )在某点处的切线与曲线y =f (x )过某点的切线意义是相同的.( ) 答案 (1)× (2)× (3)× (4)×解析 (1)f ′(x 0)表示y =f (x )在x =x 0处的瞬时变化率,(1)错. (2)f (x )=sin(-x )=-sin x ,则f ′(x )=-cos x ,(2)错. (3)求f ′(x 0)时,应先求f ′(x ),再代入求值,(3)错.(4)“在某点”的切线是指以该点为切点的切线,因此此点横坐标处的导数值为切线的斜率;而对于“过某点”的切线,则该点不一定是切点,要利用解方程组的思想求切线的方程,在曲线上某点处的切线只有一条,但过某点的切线可以不止一条,(4)错.2.某跳水运动员离开跳板后,他达到的高度与时间的函数关系式是h (t )=10-4.9t 2+8t (距离单位:米,时间单位:秒),则他在0.5秒时的瞬时速度为( ) A.9.1米/秒 B.6.75米/秒 C.3.1米/秒D.2.75米/秒答案 C解析 h ′(t )=-9.8t +8, ∴h ′(0.5)=-9.8×0.5+8=3.1.3.(2022·银川质检)已知函数f (x )=⎩⎨⎧x 2+2x ,x ≤0,-x 2+ax ,x >0为奇函数,则曲线f (x )在x =2处的切线斜率等于( ) A.6 B.-2C.-6D.-8答案 B解析 f (x )为奇函数,则f (-x )=-f (x ). 取x >0,得x 2-2x =-(-x 2+ax ),则a =2. 当x >0时,f ′(x )=-2x +2.∴f ′(2)=-2.4.(2020·全国Ⅲ卷)设函数f (x )=e x x +a .若f ′(1)=e4,则a =________.答案 1 解析 由f ′(x )=e x (x +a )-e x(x +a )2,可得f ′(1)=e a (1+a )2=e 4,即a (1+a )2=14,解得a =1.5.(2021·全国甲卷)曲线y =2x -1x +2在点(-1,-3)处的切线方程为________.答案 5x -y +2=0解析 y ′=⎝ ⎛⎭⎪⎪⎫2x -1x +2′=(2x -1)′(x +2)-(2x -1)(x +2)′(x +2)2=5(x +2)2, 所以k =y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.6.(易错题)设函数f (x )的导数为f ′(x ),且f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,则f ′⎝ ⎛⎭⎪⎫π4=________.答案 - 2解析 由f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,得f ′(x )=f ′⎝ ⎛⎭⎪⎫π2cos x -sin x ,则f ′⎝ ⎛⎭⎪⎫π2=f ′⎝ ⎛⎭⎪⎫π2·cos π2-sin π2,解得f ′⎝ ⎛⎭⎪⎫π2=-1,所以f ′⎝ ⎛⎭⎪⎫π4=-cos π4-sin π4=- 2.考点一 导数的运算1.下列求导运算不正确的是( ) A.(sin a )′=cos a (a 为常数)B.(sin 2x )′=2cos 2xC.(x )′=12xD.(e x -ln x +2x 2)′=e x -1x +4x 答案 A解析 ∵a 为常数,∴sin a 为常数,∴(sin a )′=0,故A 错误.由导数公式及运算法则知B 、C 、D 正确.2.若f (x )=x 3+2x -x 2ln x -1x 2,则f ′(x )=________.答案 1-1x -2x 2+2x 3解析 由已知f (x )=x -ln x +2x -1x 2.∴f ′(x )=1-1x -2x 2+2x 3.3.设f ′(x )是函数f (x )=cos xe x +x 的导函数,则f ′(0)的值为________. 答案 0 解析 因为f (x )=cos xe x+x , 所以f ′(x )=(cos x )′e x -(e x )′cos x (e x )2+1=-sin x -cos xe x +1, 所以f ′(0)=-1e 0+1=0.4.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f (1)=________. 答案 -234解析 因为f (x )=x 2+3xf ′(2)+ln x , ∴f ′(x )=2x +3f ′(2)+1x .令x =2,得f ′(2)=4+3f ′(2)+12,则f ′(2)=-94. ∴f (1)=1+3×1×⎝ ⎛⎭⎪⎫-94+0=-234.感悟提升 1.求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.2.抽象函数求导,恰当赋值是关键,然后活用方程思想求解. 考点二 导数的几何意义 角度1 求切线的方程例1 (1)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为________.答案 (1)3x -y =0 (2)x -y -1=0 解析 (1)y ′=3(2x +1)e x +3(x 2+x )e x =3e x (x 2+3x +1),所以曲线在点(0,0)处的切线的斜率k =e 0×3=3,所以所求切线方程为3x -y =0.(2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又∵f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x . ∴由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得⎩⎪⎨⎪⎧x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0. 角度2 求曲线的切点坐标例2 (2022·皖豫名校联考)若曲线y =e x +2x 在其上一点(x 0,y 0)处的切线的斜率为4,则x 0=( ) A.2 B.ln 4 C.ln 2D.-ln 2答案 C解析 ∵y ′=e x +2,∴e x 0+2=4,∴e x 0=2,x 0=ln 2. 角度3 导数与函数图象问题例3 已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=________.答案 0解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13. ∵g (x )=xf (x ), ∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题意可知f (3)=1, ∴g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.感悟提升 1.求曲线在点P (x 0,y 0)处的切线,则表明P 点是切点,只需求出函数在P 处的导数,然后利用点斜式写出切线方程,若在该点P 处的导数不存在,则切线垂直于x 轴,切线方程为x =x 0.2.求曲线的切线方程要分清“在点处”与“过点处”的切线方程的不同.切点坐标不知道,要设出切点坐标,根据斜率相等建立方程(组)求解,求出切点坐标是解题的关键.训练1 (1)(2022·沈阳模拟)曲线f (x )=2e x sin x 在点(0,f (0))处的切线方程为( ) A.y =0 B.y =2x C.y =xD.y =-2x(2)(2021·长沙检测)如图所示,y=f(x)是可导函数,直线l:y=kx+3是曲线y=f(x)在x=1处的切线,令h(x)=f(x)x,h′(x)是h(x)的导函数,则h′(1)的值是()A.2B.1C.-1D.-3答案(1)B(2)D解析(1)∵f(x)=2e x sin x,∴f(0)=0,f′(x)=2e x(sin x+cos x),∴f′(0)=2,∴所求切线方程为y=2x.(2)由图象知,直线l经过点(1,2).则k+3=2,k=-1,从而f′(1)=-1,且f(1)=2,由h(x)=f(x)x,得h′(x)=xf′(x)-f(x)x2,所以h′(1)=f′(1)-f(1)=-1-2=-3.考点三导数几何意义的应用例4 (1)已知曲线f(x)=x ln x在点(e,f(e))处的切线与曲线y=x2+a相切,则实数a 的值为________.(2)(2022·河南名校联考)若函数f(x)=ln x+2x2-ax的图象上存在与直线2x-y=0平行的切线,则实数a的取值范围是________.答案(1)1-e(2)[2,+∞)解析(1)因为f′(x)=ln x+1,所以曲线f(x)=x ln x在x=e处的切线斜率为k=2,又f(e)=e,则曲线f (x )=x ln x 在点(e ,f (e))处的切线方程为y =2x -e. 由于切线与曲线y =x 2+a 相切,故可联立⎩⎪⎨⎪⎧y =x 2+a ,y =2x -e ,得x 2-2x +a +e =0,所以由Δ=4-4(a +e)=0,解得a =1-e. (2)∵直线2x -y =0的斜率为k =2,又曲线f (x )上存在与直线2x -y =0平行的切线,∴f ′(x )=1x +4x -a =2在(0,+∞)内有解,则a =4x +1x -2,x >0. 又4x +1x ≥24x ·1x =4,当且仅当x =12时取“=”.∴a ≥4-2=2.∴a 的取值范围是[2,+∞).感悟提升 1.处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程(组)并解出参数:(1)切点处的导数是切线的斜率;(2)切点在切线上;(3)切点在曲线上.2.利用导数的几何意义求参数范围时,注意化归与转化思想的应用.训练2 (1)(2021·洛阳检测)函数f (x )=ln x -ax 在x =2处的切线与直线ax -y -1=0平行,则实数a =( ) A.-1 B.14 C.12D.1(2)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b =________. 答案 (1)B (2)1解析 (1)∵f (x )=ln x -ax ,∴f ′(x )=1x -a .又曲线y =f (x )在x =2处切线的斜率k =f ′(2), 因此12-a =a ,∴a =14.(2)y =x 3+ax +b 的导数为y ′=3x 2+a , 可得在点(1,1)处切线的斜率为k =3+a ,又k +1=3,1+a +b =3,解得k =2,a =-1,b =3,即有2a +b =-2+3=1.公切线问题求两条曲线的公切线,如果同时考虑两条曲线与直线相切,头绪会比较乱,为了使思路更清晰,一般是把两条曲线分开考虑,先分析其中一条曲线与直线相切,再分析另一条曲线与直线相切,其中直线与抛物线相切可用判别式法. 一、共切点的公切线问题例1 设点P 为函数f (x )=12x 2+2ax 与g (x )=3a 2ln x +2b (a >0)的图象的公共点,以P 为切点可作直线l 与两曲线都相切,则实数b 的最大值为( ) A.23e 34 B.32e 34 C.43e 23D.34e 23答案 D解析 设P (x 0,y 0),由于P 为公共点, 则12x 20+2ax 0=3a 2ln x 0+2b .又点P 处的切线相同,则f ′(x 0)=g ′(x 0), 即x 0+2a =3a 2x 0,即(x 0+3a )(x 0-a )=0.又a >0,x 0>0,则x 0=a ,于是2b =52a 2-3a 2ln a .设h (x )=52x 2-3x 2ln x ,x >0, 则h ′(x )=2x (1-3ln x ).可知:当x ∈(0,e 13)时,h (x )单调递增;当x ∈(e 13,+∞)时,h (x )单调递减. 故h (x )max =h (e 13)=32e 23, 于是b 的最大值为34e 23,选D. 二、切点不同的公切线问题例2 曲线y =-1x (x <0)与曲线y =ln x 的公切线的条数为________. 答案 1解析 设(x 1,y 1)是公切线和曲线y =-1x 的切点, 则切线斜率k 1=⎝ ⎛⎭⎪⎫-1x ′|x =x 1=1x 21,切线方程为y +1x 1=1x 21(x -x 1),整理得y =1x 21·x -2x 1.设(x 2,y 2)是公切线和曲线y =ln x 的切点, 则切线斜率k 2=(ln x )′|x =x 2=1x 2,切线方程为y -ln x 2=1x 2(x -x 2),整理得y =1x 2·x +ln x 2-1.令1x 21=1x 2,-2x 1=ln x 2-1,消去x 2得-2x 1=ln x 21-1.设t =-x 1>0,即2ln t -2t -1=0,只需探究此方程解的个数.易知函数f (x )=2ln x -2x -1在(0,+∞)上单调递增,f (1)=-3<0,f (e)=1-2e >0,于是f (x )=0有唯一解,于是两曲线的公切线的条数为1.1.函数f (x )=x 2+ln x +sin x +1的导函数f ′(x )=( ) A.2x +1x +cos x +1 B.2x -1x +cos x C.2x +1x -cos xD.2x +1x +cos x答案 D解析 由f (x )=x 2+ln x +sin x +1得f ′(x )=2x +1x +cos x . 2.曲线y =x +1x -1在点(3,2)处的切线的斜率是( )A.2B.-2C.12D.-12答案 D解析 y ′=(x +1)′(x -1)-(x +1)(x -1)′(x -1)2=-2(x -1)2,故曲线在点(3,2)处的切线的斜率k =y ′|x =3=-2(3-1)2=-12. 3.(2021·安徽皖江名校联考)已知f (x )=x 3+2xf ′(0),则f ′(1)=( ) A.2 B.3C.4D.5答案 B解析 f ′(x )=3x 2+2f ′(0), ∴f ′(0)=2f ′(0),解得f ′(0)=0, ∴f ′(x )=3x 2,∴f ′(1)=3.4.(2022·豫北十校联考)已知f (x )=x 2,则过点P (-1,0),曲线y =f (x )的切线方程为( ) A.y =0 B.4x +y +4=0 C.4x -y +4=0 D.y =0或4x +y +4=0 答案 D解析 易知点P (-1,0)不在f (x )=x 2上,设切点坐标为(x 0,x 20),由f (x )=x 2可得f ′(x )=2x ,∴切线的斜率k =f ′(x 0)=2x 0. ∵切线过点P (-1,0),∴k =x 20x 0+1=2x 0,解得x 0=0或x 0=-2,∴k =0或-4,故所求切线方程为y =0或4x +y +4=0.5.(2022·昆明诊断)若直线y =ax 与曲线y =ln x -1相切,则a =( ) A.e B.1C.1eD.1e 2答案 D解析 由y =ln x -1,得y ′=1x ,设切点为(x 0,ln x 0-1),则⎩⎨⎧ax 0=ln x 0-1,a =1x 0,解得a =1e 2. 6.已知函数f (x )在R 上可导,其部分图象如图所示,设f (4)-f (2)4-2=a ,则下列不等式正确的是( )A.a <f ′(2)<f ′(4)B.f ′(2)<a <f ′(4)C.f ′(4)<f ′(2)<aD.f ′(2)<f ′(4)<a 答案 B解析 由函数f (x )的图象可知,在[0,+∞)上,函数值的增长越来越快,故该函数图象在[0,+∞)上的切线斜率也越来越大. 因为f (4)-f (2)4-2=a ,所以f ′(2)<a <f ′(4).7.函数f (x )=(2x -1)e x 的图象在点(0,f (0))处的切线的倾斜角为________. 答案 π4解析 由f (x )=(2x -1)e x , 得f ′(x )=(2x +1)e x ,∴f ′(0)=1,则切线的斜率k =1, 又切线倾斜角θ∈[0,π), 因此切线的倾斜角θ=π4.8.已知曲线f (x )=13x 3-x 2-ax +1存在两条斜率为3的切线,则实数a 的取值范围是________. 答案 (-4,+∞) 解析 f ′(x )=x 2-2x -a ,依题意知x 2-2x -a =3有两个实数解, 即a =x 2-2x -3=(x -1)2-4有两个实数解, ∴y =a 与y =(x -1)2-4的图象有两个交点, ∴a >-4.9.(2021·济南检测)曲线y =f (x )在点P (-1,f (-1))处的切线l 如图所示,则f ′(-1)+f (-1)=________.答案-2解析∵直线l过点(-2,0)和(0,-2),∴直线l的斜率f′(-1)=0+2-2-0=-1,直线l的方程为y=-x-2.则f(-1)=1-2=-1.故f′(-1)+f(-1)=-1-1=-2.10.已知函数f(x)=x3-4x2+5x-4.(1)求曲线f(x)在点(2,f(2))处的切线方程;(2)求经过点A(2,-2)的曲线f(x)的切线方程.解(1)因为f′(x)=3x2-8x+5,所以f′(2)=1,又f(2)=-2,所以曲线f(x)在点(2,f(2))处的切线方程为y-(-2)=x-2,即x-y -4=0.(2)设切点坐标为(x0,x30-4x20+5x0-4),因为f′(x0)=3x20-8x0+5,所以切线方程为y-(-2)=(3x20-8x0+5)(x-2),又切线过点(x0,x30-4x20+5x0-4),所以x30-4x20+5x0-2=(3x20-8x0+5)·(x0-2),整理得(x0-2)2(x0-1)=0,解得x0=2或x0=1,所以经过点A(2,-2)的曲线f(x)的切线方程为x-y-4=0或y+2=0.11.已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.解(1)根据题意,得f′(x)=3x2+1.所以曲线y=f(x)在点(2,-6)处的切线的斜率k=f′(2)=13,所以所求的切线方程为13x-y-32=0.(2)设切点为(x0,y0),则直线l的斜率为f′(x0)=3x20+1,所以直线l的方程为y=(3x20+1)(x-x0)+x30+x0-16.又直线l过点(0,0),则(3x20+1)(0-x0)+x30+x0-16=0,整理得x30=-8,解得x0=-2,所以y0=(-2)3+(-2)-16=-26,l的斜率k′=13,所以直线l的方程为y=13x,切点坐标为(-2,-26).12.若函数f(x)=a ln x(a∈R)与函数g(x)=x在公共点处有共同的切线,则实数a 的值为()A.4B.12 C.e2 D.e答案 C解析由已知得f′(x)=ax,g′(x)=12x,设切点横坐标为t,∴⎩⎨⎧a ln t=t,at=12t,解得t=e2,a=e2.13.曲线y=x2-ln x上的点到直线x-y-2=0的最短距离是________. 答案 2解析设曲线在点P(x0,y0)(x0>0)处的切线与直线x-y-2=0平行,则y′|x=x0=⎝⎛⎭⎪⎫2x-1x| x=x0=2x0-1x0=1.∴x0=1,y0=1,则P(1,1),则曲线y=x2-ln x上的点到直线x-y-2=0的最短距离d=|1-1-2|12+(-1)2= 2.14.(2021·宜昌质检)已知函数f(x)=1x+1+x+a-1的图象是以点(-1,-1)为对称中心的中心对称图形,g(x)=e x+ax2+bx,若曲线y=f(x)在点(1,f(1))处的切线与曲线y=g(x)在点(0,g(0))处的切线互相垂直,求a+b的值.解由y=x+1x的图象关于点(0,0)对称,且y=f(x)的图象可由y=x+1x的图象平移得到,且函数f(x)=1x+1+x+a-1=1x+1+(x+1)+a-2的图象是以点(-1,-1)为对称中心的中心对称图形,得a-2=-1,即a=1,所以f(x)=1x+1+x.对f(x)求导,得f′(x)=1-1(x+1)2,则曲线y=f(x)在点(1,f(1))处的切线斜率k1=f′(1)=1-14=3 4.对g(x)求导,得g′(x)=e x+2x+b,则曲线y=g(x)在点(0,g(0))处的切线斜率k2=g′(0)=b+1.由两曲线的切线互相垂直,得(b+1)×34=-1,即b=-73,所以a+b=1-73=-43.。
2023届全国高考数学复习:专题(导数的运算)重点讲解与练习(附答案)

2023届全国高考数学复习:专题(导数的运算)重点讲解与练习1.基本初等函数的导数公式2.导数的运算法则若f ′(x ),g ′(x )存在,则有[cf (x )]′=cf ′(x );[f (x )±g (x )]′=f ′(x )±g ′(x );[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x );⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0); 3.复合函数的定义及其导数(1)一般地,对于两个函数y =f (u )和u =g (x ),如果通过中间变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f (u )与u =g (x )的复合函数,记作y =f (g (x )).(2)复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ꞏu ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.【方法总结】导数运算的原则和方法基本原则:先化简、再求导; 具体方法:(1)连乘积形式:先展开化为多项式的形式,再求导;(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; (3)对数形式:先化为和、差的形式,再求导; (4)根式形式:先化为分数指数幂的形式,再求导;(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导; (6)复合函数:由外向内,层层求导. 【例题选讲】[例1] 求下列函数的导数: (1)y =x 2sin x ;(2)y =cos x e x ;(3)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2; (4)y =ln(2x -5).[例2] (1) (2020ꞏ全国Ⅲ)设函数f (x )=e x x +a .若f ′(1)=e4,则a =________.(2)已知函数f (x )的导函数为f ′(x ),f (x )=2x 2-3xf ′(1)+ln x ,则f (1)= .(3)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 022(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x (4)(多选)给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,π2上是凸函数的是( ) A .f (x )=sin x +cos x B .f (x )=ln x -2x C .f (x )=x 3+2x -1 D .f (x )=x e x(5)已知f (x )的导函数为f ′(x ),若满足xf ′(x )-f (x )=x 2+x ,且f (1)≥1,则f (x )的解析式可能是( ) A .x 2-x ln x +x B .x 2-x ln x -x C .x 2+x ln x +x D .x 2+2x ln x +x 【对点训练】1.下列求导运算正确的是( )A .⎝⎛⎭⎫x +1x ′=1+1x 2B .(log 2x )′=1x ln 2C .(5x )′=5x log 5xD .(x 2cos x )′=-2x sin x 2.函数y =x cos x -sin x 的导数为( )A .x sin xB .-x sin xC .x cos xD .-x cos x 3.(多选)下列求导运算正确的是( )A .(sin a )′=cos a (a 为常数)B .(sin 2x )′=2cos 2xC .(x )′=12xD .(e x -ln x +2x 2)′=e x -1x +4x4.已知函数f (x )=sin x cos x +1x 2,则f ′(x )= .5.已知函数f (x )的导函数为f ′(x ),记f 1(x )=f ′(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x )(n ∈N *),若f (x )=x sin x ,则f 2 019(x )+f 2 021(x )=( )A .-2cos xB .-2sin xC .2cos xD .2sin x 6.f (x )=x (2 021+ln x ),若f ′(x 0)=2 022,则x 0等于( )A .e 2B .1C .ln 2D .e7.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a = .8.已知函数f (x )=ln(2x -3)+ax e -x ,若f ′(2)=1,则a = .9.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A .-2B .2C .-94D .94 10.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.11.设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)= . 12.已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)ꞏ2x +x 2,则f ′(2)=( )A .12-8ln 21-2ln 2B .21-2ln 2C .41-2ln 2 D .-213.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1x D .f (x )=e x +x 14.f (x )=3e x+1+x 3,其导函数为f ′(x ),则f (2020)+f (-2020)+f ′(2019)-f ′(-2019)的值为( ) A .1 B .2 C .3 D .4 15.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 020)=6,则f ′(-2 020)=______. 16.分别求下列函数的导数:(1)y =e xln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =ln 1+2x .(5)f (x )=x 3+2x -x 2ln x -1x 2.参考答案【例题选讲】[例1] 求下列函数的导数: (1)y =x 2sin x ; (2)y =cos x e x ;(3)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2; (4)y =ln(2x -5).解析 (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(2)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x -cos x (e x )′(e x )2=-sin x +cos x e x . (3)∵y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2=12x sin(4x +π)=-12sin4x , ∴y ′=-12sin 4x -12x ꞏ4cos 4x =-12sin 4x -2x cos 4x . (4)令u =2x -5,y =ln u .则y ′=(ln u )′u ′=12x -5ꞏ2=22x -5,即y ′=22x -5. [例2] (1) (2020ꞏ全国Ⅲ)设函数f (x )=e xx +a.若f ′(1)=e 4,则a =________. 答案 1 解析 f ′(x )=e x (x +a )-e x (x +a )2=e x (x +a -1)(x +a )2,则f ′(1)=a e (a +1)2=e 4,整理可得a 2-2a +1=0,解得a =1.(2)已知函数f (x )的导函数为f ′(x ),f (x )=2x 2-3xf ′(1)+ln x ,则f (1)= .答案 -74 解析 ∵f (x )=2x 2-3xf ′(1)+ln x ,∴f ′(x )=4x -3f ′(1)+1x x =1代入,得f ′(1)=4-3f ′(1)+1,得f ′(1)=54.∴f (x )=2x 2-154x +ln x ,∴f (1)=2-154=-74.(3)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 022(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x 答案 C 解析 ∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,f 3(x )=f 2′(x )=-sin x -cos x ,f 4(x )=f 3′(x )=-cos x +sin x ,f 5(x )=f 4′(x )=sin x +cos x ,∴f n (x )的解析式以4为周期重复出现,∵2 022=4×505+2,∴f 2 022(x )=f 2(x )=cos x -sin x .故选C .(4)(多选)给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,π2上是凸函数的是( )A .f (x )=sin x +cos xB .f (x )=ln x -2xC .f (x )=x 3+2x -1D .f (x )=x e x答案 AB 解析 对于A :f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x ,∵x ∈⎝⎛⎭⎫0,π2,∴f ″(x )<0,f (x )在⎝⎛⎭⎫0,π2上是凸函数,故A 正确.对于B :f ′(x )=1x -2,f ″(x )=-1x 2<0,故f (x )在⎝⎛⎭⎫0,π2上是凸函数,故B 正确;对于C :f ′(x )=3x 2+2,f ″(x )=6x >0,故f (x )在⎝⎛⎭⎫0,π2上不是凸函数,故C 错误;对于D :f ′(x )=(x +1)e x ,f ″(x )=(x +2)e x >0,故f (x )在⎝⎛⎭⎫0,π2上不是凸函数,故D 错误.故选AB . (5)已知f (x )的导函数为f ′(x ),若满足xf ′(x )-f (x )=x 2+x ,且f (1)≥1,则f (x )的解析式可能是( ) A .x 2-x ln x +x B .x 2-x ln x -x C .x 2+x ln x +x D .x 2+2x ln x +x 答案 C 解析 由选项知f (x )的定义域为(0,+∞),由题意得xf ′(x )-f (x )x 2=1+1x ,即⎣⎡⎦⎤f (x )x ′=1+1x ,故f (x )x =x +ln x +c (c 为待定常数),即f (x )=x 2+(ln x +c )x .又f (1)≥1,则c ≥0,故选C .【对点训练】1.下列求导运算正确的是( )A .⎝⎛⎭⎫x +1x ′=1+1x 2B .(log 2x )′=1x ln 2C .(5x )′=5x log 5xD .(x 2cos x )′=-2x sin x 1.答案 B 解析 (log 2x )′=1x ln 2,故B 正确. 2.函数y =x cos x -sin x 的导数为( )A .x sin xB .-x sin xC .x cos xD .-x cos x 2.答案 B 解析 y ′=x ′cos x +x (cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x . 3.(多选)下列求导运算正确的是( )A .(sin a )′=cos a (a 为常数)B .(sin 2x )′=2cos 2xC .(x )′=12xD .(e x -ln x +2x 2)′=e x -1x +4x3.答案 BCD 解析 ∵a 为常数,∴sin a 为常数,∴(sin a )′=0,故A 错误.由导数公式及运算法则知B ,C ,D 正确,故选BCD .4.已知函数f (x )=sin x cos x +1x 2,则f ′(x )= .4.答案 1cos 2x -2x 3 解析 f ′(x )=(sin x )′ꞏcos x -sin x ꞏ(cos x )′cos 2x+(x -2)′=cos 2x +sin 2x cos 2x +(-2)x -3=1cos 2x -2x 3. 5.已知函数f (x )的导函数为f ′(x ),记f 1(x )=f ′(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x )(n ∈N *),若f (x )=x sin x ,则f 2 019(x )+f 2 021(x )=( )A .-2cos xB .-2sin xC .2cos xD .2sin x5.答案 D 解析 由题意,f (x )=x sin x ,f 1(x )=f ′(x )=sin x +x cos x ,f 2(x )=f ′1(x )=cos x +cos x -x sin x =2cos x -x sin x ,f 3(x )=f ′2(x )=-3sin x -x cos x ,f 4(x )=f ′3(x )=-4cos x +x sin x ,f 5(x )=f ′4(x )=5sin x +x cos x ,…,据此可知f 2 019(x )=-2 019sin x -x cos x ,f 2 021(x )=2 021sin x +x cos x ,所以f 2019(x )+f 2 021(x )=2sin x ,故选D .6.f (x )=x (2 021+ln x ),若f ′(x 0)=2 022,则x 0等于( )A .e 2B .1C .ln 2D .e6.答案 B 解析 f ′(x )=2 021+ln x +x ×1x =2 022+ln x ,又f ′(x 0)=2 022,得2 022+ln x 0=2 022,则ln x 0 =0,解得x 0=1.7.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a = .7.答案 2 解析 f ′(x )=-(ax -1)′(ax -1)2e x cos x -e x sin x =-a (ax -1)2+e x cos x -e xsin x ,∴f ′(0)=-a +1=-1, 则a =2.8.已知函数f (x )=ln(2x -3)+ax e -x ,若f ′(2)=1,则a = .8.答案 e 2解析 f ′(x )=12x -3ꞏ(2x -3)′+a e -x +ax ꞏ(e -x )′=22x -3+a e -x -ax e -x ,∴f ′(2)=2+a e -2-2a e -2=2-a e -2=1,则a =e 2.9.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A .-2B .2C .-94D .949.答案 C 解析 因为f (x )=x 2+3xf ′(2)+ln x ,所以f ′(x )=2x +3f ′(2)+1x 所以f ′(2)=2×2+3f ′(2)+12,解得f ′(2)=-94.10.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.10.答案 -4 解析 ∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),∴f ′(1)=-2,∴f ′(0)=2f ′(1)=2×(-2)=-4. 11.设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)= .11.答案 1+e 解析 因为f (ln x )=x +ln x ,所以f (x )=x +e x ,所以f ′(x )=1+e x ,所以f ′(1)=1+e 1=1+e .12.已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)ꞏ2x +x 2,则f ′(2)=( )A .12-8ln 21-2ln 2B .21-2ln 2C .41-2ln 2 D .-212.答案 C 解析 因为f ′(x )=f ′(1)ꞏ2x ln 2+2x ,所以f ′(1)=f ′(1)ꞏ2ln 2+2,解得f ′(1)=21-2ln 2,所以f ′(x )=21-2ln 2ꞏ2x ln 2+2x ,所以f ′(2)=21-2ln 2×22ln 2+2×2=41-2ln 2. 13.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1x D .f (x )=e x +x13.答案 BC 解析 对于A ,f (x )=3cos x ,其导数f ′(x )=-3sin x ,其导函数为奇函数,图象不关于y轴对称,不符合题意;对于B ,f (x )=x 3+x ,其导数f ′(x )=3x 2+1,其导函数为偶函数,图象关于y 轴对称,符合题意;对于C ,f (x )=x +1x ,其导数f ′(x )=1-1x 2,其导函数为偶函数,图象关于y 轴对称,符合题意;对于D ,f (x )=e x +x ,其导数f ′(x )=e x +1,其导函数不是偶函数,图象不关于y 轴对称,不符合题意. 14.f (x )=3e x+1+x 3,其导函数为f ′(x ),则f (2020)+f (-2020)+f ′(2019)-f ′(-2019)的值为( ) A .1 B .2 C .3 D .414.答案 C 解析 f ′(x )=-3e x (e x +1)2+3x 2,f ′(-x )=-3e x (e x +1)2+3x 2,所以f ′(x )为偶函数,f ′(2019)-f ′(-2019) =0,因为f (x )+f (-x )=31+e x+x 3+31+e -x -x 3=31+e x +3e x 1+e x =3,所以f (2020)+f (-2020)+f ′(2019)-f ′(-2019)=3.故选C .15.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 020)=6,则f ′(-2 020)=______.15.答案 8 解析 因为f ′(x )=4ax 3-b sin x +7,所以f ′(-x )=4a (-x )3-b sin(-x )+7=-4ax 3+b sin x +7.所以f ′(x )+f ′(-x )=14.又f ′(2 020)=6,所以f ′(-2 020)=14-6=8. 16.分别求下列函数的导数:(1)y =e xln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =ln 1+2x .(5)f (x )=x 3+2x -x 2ln x -1x 2. 16.解析 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x ꞏ1x =⎝⎛⎭⎫ln x +1x e x . (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3. (3)∵y =x -12sin x ,∴y ′=1-12cos x .(4)∵y =ln 1+2x =12ln(1+2x ),∴y ′=12ꞏ11+2x ꞏ(1+2x )′=11+2x.(5)由已知f (x )=x -ln x +2x -1x 2.所以f ′(x )=1-1x -2x 2+2x 3=x 3-x 2-2x +2x 3.。
高考数学-导数-专题复习课件

)
v0t
,求1物gt体2 在时刻
2
时的瞬t0时速度.
解析:
s(t)
v0
1 2
g
2t
v0
gt
∴物体在 t时0 刻瞬时速度为 s(t0 ) v0 gt0. 题型四 导数的几何意义及几何上的应用
【例4】(12分)已知曲线 y 1 x3 4 .
33
(1)求曲线在点P(2,4)处的切线方程; (2)求过点P(2,4)的曲线的切线方程.
x0
x0
x0
典例分析
题型一 利用导数求函数的单调区间
【例1】已知f(x)= e-xax-1,求f(x)的单调增区间.
分析 通过解f′(x)≥0,求单调递增区间.
解 ∵f(x)= -aexx -1,∴f′(x)= -a. ex 令f′(x)≥0,得 ≥ae. x 当a≤0时,有f′(x)>0在R上恒成立; 当a>0时,有x≥ln a. 综上,当a≤0时,f(x)的单调增区间为(-∞,+∞); 当a>0时,f(x)的单调增区间为[ln a,+∞).
分析 (1)在点P处的切线以点P为切点.关键是求出切线斜率k=f′(2). (2)过点P的切线,点P不一定是切点,需要设出切点坐标.
解(1)∵y′= ,…x2……………………………2′ ∴在点P(2,4)处的切线的斜率 k y |x..23′ 4. ∴曲线在点P(2,4)处的切线方程为y-4=4(x-2), 即4x-y-4=0……………………………………….4′ (2)设曲线 y 1 x过3 点4 .P(2,4)的切线相切于点
33
则切线的斜率 k y |xx0……x02…. …………..6′
∴切线方程为
y
(1 3
2024届高考数学复习:专项(利用导数解决双变量问题)练习(附答案)

2024届高考数学复习:专项(利用导数解决双变量问题)练习一、单选题 1.设函数()311433f x x x =-+,函数()221g x x bx =-+,若对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,则实数b 的取值范围是( )A .7,2⎡⎫+∞⎪⎢⎣⎭B .5,8⎡⎫+∞⎪⎢⎣⎭C .7,2⎛⎤-∞ ⎥⎝⎦D .5,8⎛⎤-∞ ⎥⎝⎦2.已知函数1()ln f x x a x x=-+,且()f x 有两个极值点12,x x ,其中(]11,2x ∈,则()()12f x f x -的最小值为( ) A .35ln 2-B .34ln 2-C .53ln 2-D .55ln 2-3.已知函数()e ,()ln xf x xg x x x ==,若()()12f x g x t ==,其中0t >,则12ln tx x 的最大值为( )A .1eB .2eC .21e D .24e 4.设函数()12ln 133f x x x x=-+-,函数()25212g x x bx =--,若对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,则实数b 的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .5,8⎡⎫+∞⎪⎢⎣⎭C .1,2⎛⎤-∞ ⎥⎝⎦D .5,8⎛⎤-∞ ⎥⎝⎦5.已知函数()224x x f x x ++=-,()111323x xxx g x -⋅-=,实数a ,b 满足0a b <<.若[]1,x a b ∀∈,[]21,1x ∃∈-,使得()()12f x g x =成立,则b a -的最大值为( )A .3B .4C .5D.二、解答题 6.已知函数()2x f x x e =-.(Ⅰ)求函数()f x 的图象在点()()0,0f 处的切线方程;(Ⅱ)若存在两个不相等的数1x ,2x ,满足()()12f x f x =,求证:122ln 2x x +<. 7.已知函数()()3ln f x x k x k R =+∈,()f x '为()f x 的导函数.(1)当6k =时,(i )求曲线()y f x =在点()()1,1f 处的切线方程; (ii )求函数()()()9g x f x f x x'=-+的单调区间和极值; (2)当3k ≥-时,求证:对任意的[)12,1,x x ∈+∞且12x x >,有()()()()1212122f x f x f x f x x x ''+->-. 8.已知函数21()ln 2f x x a x =-.其中a 为常数. (1)若函数()f x 在定义域内有且只有一个极值点,求实数a 的取值范围;(2)已知1x ,2x 是函数()f x 的两个不同的零点,求证:12x x +>. 9.已知函数ln ()xf x x=,()g x ax b =+,设()()()F x f x g x =-. (1)若1a =,求()F x 的最大值;(2)若()F x 有两个不同的零点1x ,2x ,求证:()()12122x x g x x ++>.10.已知函数1()ln f x a x x x=-+,其中0a >. (1)若()f x 在(2,)+∞上存在极值点,求a 的取值范围;(2)设()10,1x ∈,2(1,)x ∈+∞,若()()21f x f x -存在最大值,记为()M a ,则当1a e e≤+时,()M a 是否存在最大值?若存在,求出其最大值;若不存在,请说明理由11.已知函数()ln(1)ax f x e x =+,2()ln g x x a x=+-,其中a R ∈. (1)若函数()y f x =的图象与直线y x =在第一象限有交点,求a 的取值范围. (2)当2a <时,若()y g x =有两个零点1x ,2x ,求证:12432x x e <+<-.12.已知函数()2211ln 24f x x ax x x ax ⎛⎫=--+ ⎪⎝⎭.(1)若()f x 在()0,+?单调递增,求a 的值;(2)当1344a e <<时,设函数()()f x g x x=的最小值为()h a ,求函数()h a 的值域.13.已知函数2()22ln ()f x x ax x a R =-+∈.(1)讨论函数()f x 的单调性;(2)若()f x 存在两个极值点()1221,x x x x >,求证:()()()2121(2)f x f x a x x -<--.14.已知函数2()(2)()x f x xe a x x a R =-+∈. (1)当1a =时,求函数()f x 的单调区间; (2)当1a e>时,函数()f x 有三个不同的零点1x ,2x ,3x ,求证:1232x x x lna ++<. 15.已知函数()223x xe f x e -+=,其中e 为自然对数的底数.(1)证明:()f x 在(),0-∞上单调递减,()0,∞+上单调递增; (2)设0a >,函数()212cos cos 3g x x a x a =+--,如果总存在[]1,x a a ∈-,对任意2x R ∈,()()12f x g x …都成立,求实数a 的取值范围.16.已知函数()()21ln 212h x x b x =+-,()21ln 2f x x a x =-.其中a ,b 为常数. (1)若函数()h x 在定义域内有且只有一个极值点,求实数b 的取值范围; (2)已知1x ,2x 是函数()f x的两个不同的零点,求证:12x x +>. 17.已知函数()()()1xxf x ae ea x a R -=--+∈,()f x 既存在极大值,又存在极小值.(1)求实数a 的取值范围;(2)当01a <<时,1x ,2x 分别为()f x 的极大值点和极小值点.且()()120f x kf x +>,求实数k 的取值范围.18.已知函数()()22ln xg x x t t R e=-+∈有两个零点1x ,2x . (1)求实数t 的取值范围; (2)求证:212114x x e+>. 19.已知函数()1ln f x x x=-,()g x ax b =+. (1)若函数()()()h x f x g x =-在()0,+?上单调递增,求实数a 的取值范围;(2)当0b =时,若()f x 与()g x 的图象有两个交点()11,A x y ,()22,B x y ,试比较12x x 与22e 的大小.(取e 为2.8,取ln 2为0.7为1.4)20.已知函数2()(2)ln ()f x a x ax x a R =++-∈. (Ⅰ)当0a =时,求证:2()22x f x x >-. (Ⅱ)设232()3g x x x =-,若1(0,1]x ∀∈,2[0,1]x ∃∈,使得()()12f x g x …成立,求实数a 的取值范围. 21.设函数22()ln ()f x a x x ax a R =-+-∈. (1)当1a =时,试讨论函数()f x 的单调性;(2)设2()2()ln x x a a x ϕ=+-,记()()()h x f x x ϕ=+,当0a >时,若函数()y h x =与函数y m =有两个不同交点1(C x ,)m ,2(D x ,)m ,设线段的中点为(,)E s m ,试问s 是否为()0h s '=的根?说明理由.22.已知函数()()2ln 1f x x a x =++.(1)若函数()y f x =在区间[)1,+∞内是单调递增函数,求实数a 的取值范围; (2)若函数()y f x =有两个极值点1x ,2x ,且12x x <,求证:()210ln f x x <<(注:e 为自然对数的底数)23.已知函数()ln x f x e x λλ=-(1)当1λ=-时,求函数()f x 的单调区间;(2)若0e λ<<,函数()f x 的最小值为()h λ,求()h λ的值域.24.已知函数21()ln ()2f x x ax x a =-+∈R . (1)若()f x 在定义域单调递增,求a 的取值范围;(2)设1e ea <+,m ,n 分别是()f x 的极大值和极小值,且S m n =-,求S 的取值范围. 25.已知函数21()(1)ln 2f x x a x a x =-++.(1)求函数()f x 的单调递增区间;(2)任取[3,5]a ∈,函数()f x 对任意1212,[1,3]()x x x x ∈≠,恒有1212|()()|||f x f x x x λ-<-成立,求实数λ的取值范围.参考答案一、单选题 1.设函数()311433f x x x =-+,函数()221g x x bx =-+,若对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,则实数b 的取值范围是( )A .7,2⎡⎫+∞⎪⎢⎣⎭B .5,8⎡⎫+∞⎪⎢⎣⎭C .7,2⎛⎤-∞ ⎥⎝⎦D .5,8⎛⎤-∞ ⎥⎝⎦【答案】A 【要点分析】由题意只需()()min min f x g x ≥,对函数()f x 求导,判断单调性求出最小值,对函数()g x 讨论对称轴和区间[]0,1的关系,得到函数最小值,利用()()min min f x g x ≥即可得到实数b 的取值范围. 【答案详解】若对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,只需()()min min f x g x ≥, 因为()311433f x x x =-+,所以()24f x x '=-,当[]1,2x ∈时,()0f x '≤,所以()f x 在[]1,2上是减函数,所以函数()f x 取得最小值()25f =-. 因为()()222211g x x bx x b b =-+=-+-,当0b ≤时,()g x 在[]0,1上单调递增,函数取得最小值()01g =,需51-≥,不成立; 当1b ≥时,()g x 在[]0,1上单调递减,函数取得最小值()122g b =-,需522b -≥-,解得72b ≥,此时72b ≥; 当01b <<时,()g x 在[]0,b 上单调递减,在(],1b 上单调递增,函数取得最小值()21g b b =-,需251b -≥-,解得b ≤或b ≥综上,实数b 的取值范围是7,2⎡⎫+∞⎪⎢⎣⎭, 故选:A . 【名师点睛】本题考查利用导数研究函数的最值,考查二次函数在区间的最值的求法,考查分类讨论思想和转化思想,属于中档题.2.已知函数1()ln f x x a x x=-+,且()f x 有两个极值点12,x x ,其中(]11,2x ∈,则()()12f x f x -的最小值为( ) A .35ln 2- B .34ln 2-C .53ln 2-D .55ln 2-【答案】A 【要点分析】()f x 的两个极值点12,x x 是()0f x '=的两个根,根据韦达定理,确定12,x x 的关系,用1x 表示出2x ,()()12f x f x -用1x 表示出,求该函数的最小值即可.【答案详解】解:()f x 的定义域()0,∞+,22211()1a x ax f x x x x'++=++=,令()0f x '=,则210x ax ++=必有两根12,x x , 2121240010a x x a x x ⎧->⎪+=->⎨⎪=>⎩,所以2111112,,a x a x x x ⎛⎫<-==-+ ⎪⎝⎭, ()()()11211111111111ln ln f x f x f x f x a x x a x x x x ⎛⎫⎛⎫∴-=-=-+--+ ⎪ ⎪⎝⎭⎝⎭,1111111111122ln 22ln x a x x x x x x x ⎛⎫⎛⎫⎛⎫=-+=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(]11()22ln ,1,2h x x x x x x x ⎛⎫⎛⎫=--+∈ ⎪ ⎪⎝⎭⎝⎭,22211112(1)(1)ln ()2121ln x x x h x x x x x x x x ⎡⎤+-⎛⎫⎛⎫⎛⎫'∴=+--++⋅= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 当(]1,2x ∈时,()0h x '<,()h x 递减, 所以()()min 235ln 2h x h ==-()()12f x f x -的最小值为35ln 2-故选:A. 【名师点睛】求二元函数的最小值通过二元之间的关系,转化为求一元函数的最小值,同时考查运算求解能力和转化化归的思想方法,中档题.3.已知函数()e ,()ln x f x x g x x x ==,若()()12f x g x t ==,其中0t >,则12ln tx x 的最大值为( ) A .1eB .2eC .21eD .24e 【答案】A 【要点分析】 由题意转化条件2ln 2ln x ex t ⋅=,通过导数判断函数()f x 的单调性,以及画出函数的图象,数形结合可知12ln x x =,进而可得12ln ln t t x x t =,最后通过设函数()()ln 0th t t t=>,利用导数求函数的最大值. 【答案详解】由题意,11e x x t ⋅=, 22ln x x t ⋅=,则2ln 2e ln xx t ⋅=,()()1x x x f x e xe x e '=+=+,当(),1x ∈-∞-时,()0f x '<,()f x 单调递减, 当()1,x ∈-+∞时,()0f x '>,()f x 单调递增,又(),0x ∈-∞时,()0f x <,()0,x ∈+∞时,()0f x >, 作函数()e xf x x =⋅的图象如下:由图可知,当0t >时,()f x t =有唯一解,故12ln x x =,且1>0x ,∴1222ln ln ln ln t t tx x x x t==⋅⋅, 设ln ()t h t t =,0t >,则21ln ()th t t-'=,令()0h t '=,解得e t =, 易得当()0,e t ∈时,()0h t '>,函数()h t 单调递增, 当()e,t ∈+∞时,()0h t '<,函数()h t 单调递减, 故()()1e eh t h ≤=,即12ln t x x ⋅的最大值为1e .故选:A . 【名师点睛】本题考查利用导数求函数的最值,重点考查转化与化归的思想,变形计算能力,数形结合思想,属于中档题,本题可得关键是判断12ln x x =. 4.设函数()12ln 133f x x x x=-+-,函数()25212g x x bx =--,若对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,则实数b 的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .5,8⎡⎫+∞⎪⎢⎣⎭C .1,2⎛⎤-∞ ⎥⎝⎦D .5,8⎛⎤-∞ ⎥⎝⎦【答案】A 【要点分析】根据对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,用导数法求得()f x 的最小值,用二次函数的性质求得()g x 的最小值,再解不等式即可. 【答案详解】因为()12ln 133f x x x x =-+-, 所以()211233'=--f x x x,211233=--x x, 22323-+=-x x x,()()2123--=-x x x , 当12x <<时,()0f x '>,所以()f x 在[]1,2上是增函数, 所以函数()f x 取得最小值()213f =-. 因为()()2225521212=--=---g x x bx x b b , 当0b ≤时,()g x 取得最小值()0251=-g ,因为对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立, 所以()()10≥f g ,不成立; 当1b ≥时,()g x 取得最小值()71212=-g b , 因为对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立, 所以722123-≤-b ,解得58≥b ,此时1b ≥; 当01b <<时,()g x 取得最小值()2512=--g b b , 因为对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立, 所以221352--≤-b ,解得12b ≥,此时112b ≤<; 综上:实数b 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 故选:A 【名师点睛】本题主要考查双变量问题以及导数与函数的最值,二次函数的性质,还考查了分类讨论的思想和运算求解的能力,属于中档题.5.已知函数()224x x f x x ++=-,()111323x xxx g x -⋅-=,实数a ,b 满足0a b <<.若[]1,x a b ∀∈,[]21,1x ∃∈-,使得()()12f x g x =成立,则b a -的最大值为( )A .3B .4C .5D .【答案】A 【要点分析】首先化简函数()42,0f x x x x ⎛⎫=--+< ⎪⎝⎭,和()11233xx g x ⎛⎫=- ⎪⎝⎭,[]1,1x ∈-,并判断函数的单调性,由条件转化为子集关系,从而确定,a b 值. 【答案详解】()42f x x x ⎛⎫=--+ ⎪⎝⎭,0x <()241f x x '=-+,0x <, 当()0f x '>时,解得:20x -<<,当()0f x '<时,解得:2x <-,所以()f x 在(),0-∞的单调递增区间是()2,0-,单调递减区间是(),2-∞-,当2x =-时取得最小值,()22f -=()11233xx g x ⎛⎫=- ⎪⎝⎭,函数在[]1,1-单调递增,()3116g -=-,()13g =,所以,()3136g x -≤≤, 令()3f x =,解得:1x =-或4x =-,由条件可知()[],,,0f x x a b a b ∈<<的值域是()[],1,1g x x ∈-值域的子集, 所以b 的最大值是1-,a 的最小值是4-, 故b a -的最大值是3. 故选:A 【名师点睛】本题考查函数的性质的综合应用,以及双变量问题转化为子集问题求参数的取值范围,重点考查转化与化归的思想,计算能力,属于中档题型. 二、解答题 6.已知函数()2x f x x e =-.(Ⅰ)求函数()f x 的图象在点()()0,0f 处的切线方程;(Ⅱ)若存在两个不相等的数1x ,2x ,满足()()12f x f x =,求证:122ln 2x x +<. 【答案】(Ⅰ)1y x =-;(Ⅱ)证明见解析. 【要点分析】(Ⅰ)首先求函数的导数,利用导数的几何意义,求函数的图象在点()()0,0f 处的切线方程;(Ⅱ)首先确定函数零点的区间,构造函数()()()ln 2ln 2F x f x f x =+--,利用导数判断函数()F x 的单调性,并得到()()ln 2ln 2f x f x +<-在()0,∞+上恒成立,并利用单调性,变形得到122ln 2x x +<. 【答案详解】(Ⅰ)()2e xf x '=-,所以()f x 的图象在点()()0,0f 处的切线方程为1y x =-.(Ⅱ)令()2e 0xf x '=-=,解得ln 2x =,当ln 2x =时()0f x '>,()f x 在(),ln 2-∞.上单调递增;当ln 2x >时,()0f x '< , ()f x 在()ln 2,+∞上单调递减.所以ln 2x =为()f x 的极大值点,不妨设12x x <,由题可知12ln 2x x <<. 令()()()ln 2ln 242e 2e xxF x f x f x x -=+--=-+,()42e 2e x x F x -'=--,因为e e 2x x -+…,所以()0F x '…,所以()F x 单调递减.又()00F =,所以()0F x <在()0,∞+上恒成立, 即()()ln 2ln 2f x f x +<-在()0,∞+上恒成立.所以()()()()()()()12222ln 2ln 2ln 2ln 22ln 2f x f x f x f x f x ==+-<--=-, 因为1ln 2x <,22ln 2ln 2x -<,又()f x 在(),ln 2-∞上单调递增,所以122ln 2x x <-, 所以122ln 2x x +<. 【名师点睛】思路名师点睛:本题是典型的极值点偏移问题,需先要点分析出原函数的极值点,找到两个根的大致取值范围,再将其中一个根进行对称的转化变形,使得x 与ln 2x -在同一个单调区间内,进而利用函数的单调性要点分析.7.已知函数()()3ln f x x k x k R =+∈,()f x '为()f x 的导函数.(1)当6k =时,(i )求曲线()y f x =在点()()1,1f 处的切线方程; (ii )求函数()()()9g x f x f x x'=-+的单调区间和极值; (2)当3k ≥-时,求证:对任意的[)12,1,x x ∈+∞且12x x >,有()()()()1212122f x f x f x f x x x ''+->-. 【答案】(1)(i )98y x =-;(ii )递减区间为()0,1,递增区间为()1,+∞;极小值为()11g =,无极大值;(2)证明见解析. 【要点分析】(1)(i )确定函数()f x ,求出()f x ',然后利用导数的几何意义求出切线方程即可; (ii )确定函数()g x ,求出()g x ',利用导数研究函数()g x 的单调性与极值即可;(2)求出()f x ',对要证得不等式进行等价转换后,构造新函数,利用导数研究新函数的单调性,结合等价转换后的结果即可证明结论成立. 【答案详解】(1)(i )当6k =时,()36ln f x x x =+,故()263f x x x'=+. 可得()11f =,()19f '=,所以曲线()y f x =在点()()1,1f 处的切线方程为()191y x -=-,即98y x =-. (ii )依题意,323()36ln g x x x x x =-++,()0,x ∈+∞,从而求导可得2263()36g x x x x x'=-+-,整理可得323(1)(1)()x x g x x'-+=. 令()0g x '=,解得1x =.当x 变化时,()g x ',()g x 的变化情况如下表:x ()0,11()1,+∞()g x ' -+()g x极小值所以,函数()g x 的单调递减区间为()0,1,单调递增区间为()1,+∞;()g x 的极小值为()11g =,无极大值.(2)证明:由()3ln f x x k x =+,得()23k f x x x'=+. 对任意的[)12,1,x x ∈+∞,且12x x >,令12(1)x t t x =>,则 ()()()()()()()1212122x x f x f x f x f x ''-+--()22331121212122332ln x k k x x x x x x k x x x ⎛⎫⎛⎫=-+++--+ ⎪ ⎪⎝⎭⎝⎭3322121121212212332ln x x x x x x x x x k k x x x ⎛⎫=--++-- ⎪⎝⎭()332213312ln x t t t k t t t ⎛⎫=-+-+-- ⎪⎝⎭. ①令1()2ln h x x x x=--,[)1,x ∈+∞. 当1x >时,22121()110h x x x x '⎛⎫=+-=-> ⎪⎝⎭,由此可得()h x 在[)1,+∞单调递增,所以当1t >时,()()1h t h >,即12ln 0t t t-->, 因为21x ≥,323331(1)0t t t t -+-=->,3k ≥-,所以()()332322113312ln 33132ln x t t t k t t t t t t t tt⎛⎫⎛⎫-+-+-->-+---- ⎪ ⎪⎝⎭⎝⎭32336ln 1t t t t=-++-. ②由(1)(ii )可知,当1t >时,()()1g t g >,即32336ln 1t t t t-++>, 故32336ln 10t t t t-++->. ③由①②③可得()()()()()()()12121220x x fx f x f x f x ''-+-->.所以,当3k ≥-时,对任意的[)12,1,x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-. 【名师点睛】结论名师点睛:本题考查不等式的恒成立问题,可按如下规则转化: 一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集. 8.已知函数21()ln 2f x x a x =-.其中a 为常数. (1)若函数()f x 在定义域内有且只有一个极值点,求实数a 的取值范围;(2)已知1x ,2x 是函数()f x 的两个不同的零点,求证:12x x +>. 【答案】(1)0a >;(2)证明见解析. 【要点分析】(1)求出导函数()'f x ,分类讨论确定()'f x 的正负,得()f x 的单调性,从而得极值点个数,由此可得结论;(2)结合(1)求得函数有两个零点时a 的范围,设12x x <,则(1x ∈,)2x ∈+∞,引入函数()))(0g x fx fx x =-≤≤,由导数确定它是减函数,得))f x f x <-,然后利用()()))()21111f x f x f x f x f x ⎤⎤==->=-⎦⎦,再结合()f x 的单调性得出证明. 【答案详解】(1)()2(0)a x ax x x xf x --'==>,当0a ≤时,()0f x '>,()f x 在()0,∞+上单调递增,不符合题意,当0a >时,令()0f x '=,得x =,当(x ∈时,()0f x '<,()f x 单调递减,当)x ∈+∞时,()0f x '>,()f x 单调递增,所以此时()f x 只有一个极值点.0a ∴>(2)由(1)知当0a ≤时,()0f x '>,()f x 在(0,)+∞上单调递增,函数()f x 至多有一个零点,不符合题意,当0a >时,令()0f x '=,得x =当x ∈时,()0f x '<,()f x 单调递减,当)x ∈+∞时,()0f x '>,()f x 单调递增,故当x =()f x 取得最小值()1ln 2a fa =-,当0a e <<时,1ln 0a ->,0f>,函数()f x 无零点,不合题意,当a e =时,1ln 0a -=,0f =,函数()f x 仅有一个零点,不合题意,当a e >时,1ln 0a -<,0f <,又()1102f =>,所以()f x 在(x ∈上只有一个零点, 令()ln 1p x x x =-+,则()11p x x'=-,故当01x <<时,()0p x '>,()p x 单调递增,当1x >时,()0p x '<,()p x 单调递减,所以()()10p x p ≤=,即ln 1≤-x x ,所以ln 221a a ≤-, 所以22(2)2ln 22(21)0f a a a a a a a a =-≥--=>,又2a >,所以()f x 在)x ∈+∞上只有一个零点.所以a e >满足题意.不妨设12x x <,则(1x ∈,)2x ∈+∞,令()))(0g x f x fx x =--≤≤,则()))ln ln g x a x a x =-+-,()22x ag x ='+=-,当0x <<时,()0g x '<,所以()g x在(上单调递减,所以当(x ∈时,()()00g x g <=,即))f x fx +<-,因为(1x ∈(1x ∈,所以()()))()21111f x f x f x f x f x ⎤⎤==-->+-=-⎦⎦,又)2x ∈+∞,)1x ∈+∞,且()f x在)+∞上单调递增,所以21x x >-,故12x x +>>. 【名师点睛】关键点名师点睛:本题考查用导数研究函数的极值点、零点,证明不等式.难点是不等式的证明,首先由零点个数得出参数范围,在不妨设12x x <,则(1x ∈,)2x ∈+∞后关键是引入函数()))(0g x fx f x x =-≤≤,同样用导数得出它的单调性,目的是证得))f x f x +<-,然后利用这个不等关系变形()f x 的单调性得结论.9.已知函数ln ()xf x x=,()g x ax b =+,设()()()F x f x g x =-. (1)若1a =,求()F x 的最大值;(2)若()F x 有两个不同的零点1x ,2x ,求证:()()12122x x g x x ++>. 【答案】(1)最大值为1b --;(2)证明见解析. 【要点分析】(1)首先求出函数的导函数,再判断()F x '的符号,即可得到函数的单调区间,从而求出函数的最大值; (2)由题知,121212ln ln x x ax b ax b x x =+=+,,即2111ln x ax bx =+,2222ln x ax bx =+,要证()()12122x x g x x ++>,即可212112ln ln 2x x x x x x ->-+,令21x t x =,则只需证2(1)ln (1)1t t t t ->>+.构造函数2(1)()ln (1)1t t t t t ϕ-=->+,利用导数说明其单调性即可得证; 【答案详解】解:ln ()()()xF x f x g x ax b x =-=-- (1)解:当1a =时,ln ()xF x x b x=-- 所以21ln ()1xF x x -'=-. 注意(1)0F '=,且当01x <<时,()0F x '>,()F x 单调递增; 当1x >时,()0F x '<,()F x 单调递增减. 所以()F x 的最大值为(1)1F b =--. (2)证明:由题知,121212ln ln x xax b ax b x x =+=+,, 即2111ln x ax bx =+,2222ln x ax bx =+, 可得212121ln ln ()[()]x x x x a x x b -=-++. 121212122()()2()x x g x x a x x b x x ++>⇔++>+212112ln ln 2x x x x x x -⇔>-+. 不妨120x x <<,则上式进一步等价于2211212()ln x x x x x x ->+. 令21x t x =,则只需证2(1)ln (1)1t t t t ->>+. 设2(1)()ln (1)1t t t t t ϕ-=->+,22(1)()0(1)t t t t ϕ-'=>+, 所以()t ϕ在(1+)∞,上单调递增, 从而()(1)0t ϕϕ>=,即2(1)ln (1)1t t t t ->>+, 故原不等式得证. 【名师点睛】本题考查导数在最大值、最小值问题中的应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,属于难题.10.已知函数1()ln f x a x x x=-+,其中0a >.(1)若()f x 在(2,)+∞上存在极值点,求a 的取值范围;(2)设()10,1x ∈,2(1,)x ∈+∞,若()()21f x f x -存在最大值,记为()M a ,则当1a e e≤+时,()M a 是否存在最大值?若存在,求出其最大值;若不存在,请说明理由 【答案】(1)5(2a ∈,)+∞;(2)M (a )存在最大值,且最大值为4e. 【要点分析】(1)求出函数()f x 的导数,将题意转换为1a x x=+在(2,)x ∈+∞上有解,由1y x x =+在(2,)x ∈+∞上递增,得15(2x x +∈,)+∞,求出a 的范围即可; (2)求出函数()f x 的导数,得到21[()()]()()max f x f x f n f m -=-,求出M (a )11()()()()n f n f m alnm n m n m=-=+-+-,根据函数的单调性求出M (a )的最大值即可. 【答案详解】解:(1)2221(1)()1a x ax f x x x x --+'=--=,(0,)x ∈+∞, 由题意得,210x ax -+=在(2,)x ∈+∞上有根(不为重根),即1a x x =+在(2,)x ∈+∞上有解, 由1y x x=+在(2,)x ∈+∞上递增,得15(2x x +∈,)+∞,检验,52a >时,()f x 在(2,)x ∈+∞上存在极值点,5(2a ∴∈,)+∞;(2)210x ax -+=中2=a 4∆-,若02a <…,即2=a 40∆-≤22(1)()x ax f x x --+∴'=在(0,)+∞上满足()0f x '…,()f x ∴在(0,)+∞上递减,12x x < ()()12f x f x ∴> 21()()0f x f x ∴-<,21()()f x f x ∴-不存在最大值,则2a >;∴方程210x ax -+=有2个不相等的正实数根,令其为m ,n ,且不妨设01m n <<<,则01m n a mn +=>⎧⎨=⎩,()f x 在(0,)m 递减,在(,)m n 递增,在(,)n +∞递减,对任意1(0,1)x ∈,有1()()f x f m …, 对任意2(1,)x ∈+∞,有2()()f x f n …, 21[()()]()()max f x f x f n f m ∴-=-,M ∴(a )11()()()()n f n f m aln m n m n m=-=+-+-, 将1a m n n n =+=+,1m n=代入上式,消去a ,m 得: M (a )112[()()]n lnn n n n =++-,12a e e <+…,∴11n e n e++…,1n >, 由1y x x=+在(1,)x ∈+∞递增,得(1n ∈,]e , 设11()2()2()h x x lnx x x x =++-,(1x ∈,]e ,21()2(1h x lnx x'=-,(1x ∈,]e , ()0h x ∴'>,即()h x 在(1,]e 递增,[()]max h x h ∴=(e )4e =, M ∴(a )存在最大值为4e.【名师点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道综合题.11.已知函数()ln(1)ax f x e x =+,2()ln g x x a x=+-,其中a R ∈. (1)若函数()y f x =的图象与直线y x =在第一象限有交点,求a 的取值范围. (2)当2a <时,若()y g x =有两个零点1x ,2x ,求证:12432x x e <+<-. 【答案】(1)1(0,)2;(2)证明见解析. 【要点分析】(1)根据题意设()()(1)ln ax g x f x x e x x =-=+-,问题转化为方程()0g x =,在(0,)+∞有解,求导,分类讨论①若0a …,②若102a <<,③若12a …时,要点分析单调性,进而得出结论. (2)运用要点分析法和构造函数法,结合函数的单调性,不等式的性质,即可得证. 【答案详解】解:(1)设()()(1)ln ax g x f x x e x x =-=+-, 则由题设知,方程()0g x =,在(0,)+∞有解,而1()()1[ln(1)1()11axax g x f x e a x e F x x '='-=++-=-+. 设()()1ax h x e F x =-,则22221()[()()][(1)](n 1)l ax ax ax a h x e aF x F x e a x x +-'=+'=+++.①若0a …,由0x >可知01ax e <…,且11()ln(1)111F x a x x x =++<++…, 从而()()10ax g x e F x '=-<,即()g x 在(0,)+∞上单调递减,从而()(0)0g x g <=恒成立, 因而方程()0g x =在(0,)+∞上无解.②若102a <<,则221(0)0(1)a h x -'=<+,又x →+∞时,()h x '→+∞, 因此()0h x '=,在(0,)+∞上必存在实根,设最小的正实根为0x , 由函数的连续性可知,0(0,)x x ∈上恒有()0h x '<, 即()h x 在0(0,)x 上单调递减,也即()0g x '<,在0(0,)x 上单调递减,从而在0(0,)x 上恒有()(0)0g x g '<'=, 因而()g x 在0(0,)x 上单调递减,故在0(0,)x 上恒有()(0)0g x g <=,即0()0g x <, 注意到ax e ax >,因此()(1)ln(1)ln [ln(1)1]ax g x e x x ax x x x a x =+->+-=+-, 令1ax e=时,则有()0>g x ,由零点的存在性定理可知函数()y g x =在0(x ,1)a e 上有零点,符合题意.③若12a …时,则由0x >可知,()0h x '>恒成立,从而()h x 在(0,)+∞上单调递增,也即()g x '在(0,)+∞上单调递增,从而()(0)0g x g >=恒成立,故方程()0g x =在(0,)+∞上无解. 综上可知,a 的取值范围是1(0,2.(2)因为()f x 有两个零点,所以f (2)0<, 即21012ln a a ln +-<⇒>+,设1202x x <<<,则要证121244x x x x +>⇔-<, 因为1244x <-<,22x >, 又因为()f x 在(2,)+∞上单调递增,所以只要证明121(4)()()0f x f x f x -<==, 设()()(4)g x f x f x =--(02)x <<,则222222428(2)()()(4)0(4)(4)x x x g x f x f x x x x x ----'='-'-=+=-<--, 所以()g x 在(0,2)上单调递减,()g x g >(2)0=,所以124x x +>, 因为()f x 有两个零点,1x ,2x ,所以12()()0f x f x ==, 方程()0f x =即2ln 0ax x x --=构造函数()2ln h x ax x x =--, 则12()()0h x h x ==,()1ln h x a x '=--,1()0a h x x e -'=⇒=, 记12(1ln 2)a p e a -=>>+,则()h x 在(0,)p 上单调递增,在(,)p +∞上单调递减, 所以()0h p >,且12x p x <<, 设2()()ln ln x p R x x p x p-=--+,22214()()0()()p x p R x x x p x x p -'=-=>++, 所以()R x 递增,当x p >时,()()0R x R p >=, 当0x p <<时,()()0R x R p <=, 所以11111112(2ln )x x p ax x lnx x p x p--=<++,即22111111(2)()22l l n n ax x p x px x p x p p -+<-++,211(2ln )(22ln )20p a x ap p p p x p +-+--++>,1(a p e -=,1)lnp a =-,所以21111(23)20a a x e x e --+-+>, 同理21122(23)20a a x ex e --+-+<,所以2112111111(23)2(23)2a a a a x e x e x e x e ----+-+<+-+, 所以12121()[(23)]0a x x x x e --++-<, 所以12123a x x e -+<-+,由2a <得:1122332a x x e e -+<-+<-,综上:12432x x e <+<-. 【名师点睛】本题考查导数的综合应用,不等式的证明,关键是运用分类讨论,构造函数的思想去解决问题,属于难题.12.已知函数()2211ln 24f x x ax x x ax ⎛⎫=--+ ⎪⎝⎭.(1)若()f x 在()0,+?单调递增,求a 的值;(2)当1344a e <<时,设函数()()f x g x x=的最小值为()h a ,求函数()h a 的值域.【答案】(1)1;(2)0,4e ⎛⎫ ⎪⎝⎭. 【要点分析】 (1)由()f x 在()0,+?单调递增,利用导数知()0f x ¢³在()0,+?上恒成立即可求参数a 的值;(2)由()()f x g x x =有()11ln 24g x x a x x a ⎛⎫=--+ ⎪⎝⎭,利用二阶导数可知()g x '在()0,+?上单调递增,进而可知()01,x e ∃∈,使得()00g x '=,则有()g x 的单调性得最小值()()000011ln 24g x x a x x a h a ⎛⎫=--+= ⎪⎝⎭,结合1344a e <<并构造函数可求0x 取值范围,进而利用导数研究()000031ln ln 42h a x x x x ⎛⎫=-⎪⎝⎭的单调性即可求范围;【答案详解】(1)()()ln f x x a x '=-,又()f x 在()0,+?单调递增,∴()0f x ¢³,即()ln 0x a x -≥在()0,+?上恒成立,(i )当1x >时,ln 0x >,则需0x a -≥,故min a x ≤,即1a ≤; (ii )当1x =时,ln 0x =,则a R ∈;(iii )当01x <<时,ln 0x <,则需0x a -≤,故max a x ≥,即1a ≥; 综上所述:1a =; (2)()()11ln 24f x g x x a x x a x ⎛⎫==--+ ⎪⎝⎭,()11ln 24a g x x x '=-+,()212a g x x x ''=+,∵1344a e <<,有()0g x ''>, ∴()g x '在()0,+?上单调递增,又()1104g a '=-+<,()304a g e e '=-+>, ∴()01,x e ∃∈,使得()00g x '=,当()00,x x ∈时,()0g x ¢<,函数()g x 单调递减,当()0,x x ∈+∞时,()0g x ¢>,函数()g x 单调递增,故()g x 的最小值为()()000011ln 24g x x a x x a h a ⎛⎫=--+=⎪⎝⎭,由()00g x '=得00011ln 24a x x x =+,因此()000031ln ln 42h a x x x x ⎛⎫=- ⎪⎝⎭,令()11ln 24t x x x x =+,()1,x e ∈,则()13ln 024t x x '=+>, ∴()t x 在()1,e 上单调递增,又1344a e <<,()114t =,()34t e e =,∴0x 取值范围为()1,e ,令()31ln ln 42x x x x x ϕ⎛⎫=-⎪⎝⎭(1x e <<),则()()()21131ln ln 2ln 3ln 102444x x x x x ϕ'=--+=-+->,∴函数()ϕx 在()1,e 上单调递增,又()10ϕ=,()4ee ϕ=, ∴()04e x ϕ<<,即函数()h a 的值域为0,4e ⎛⎫⎪⎝⎭.【名师点睛】本题考查了利用导数研究函数的单调性求参数,由原函数得到最值,构造中间函数并根据其导数讨论单调性,求最值的取值范围;中间函数需要根据步骤中的研究对象及目的确定;13.已知函数2()22ln ()f x x ax x a R =-+∈. (1)讨论函数()f x 的单调性;(2)若()f x 存在两个极值点()1221,x x x x >,求证:()()()2121(2)f x f x a x x -<--. 【答案】(1)答案不唯一,具体见解析;(2)证明见解析. 【要点分析】(1)求出导函数,根据二次函数的∆与0的关系来分类讨论函数的单调性,并注意一元二次方程根的正负与定义域的关系;(2)由()1212,x x x x <是两个极值点得到对应的韦达定理形式,然后利用条件将()()21f x f x -转变为关于12x x ,函数,再运用12x x ,的关系将不等式转化为证22212ln 0x x x -->,构造函数1()2ln (1)g x x x x x=-->,要点分析函数()g x 的单调性,得出最值,不等式可得证. 【答案详解】(1)解:函数()f x 的定义域为(0,)+∞,()2'212()22x ax f x x a x x-+=-+=,则24a ∆=-.①当0a ≤时,对(0,),()0x f x '∀∈+∞>,所以函数()f x 在(0,)+∞上单调递增;②当02a <≤时,0∆≤,所以对(0,),()0x f x '∀∈+∞≥,所以函数()f x 在(0,)+∞上单调递增;③当2a >时,令()0f x '>,得02a x -<<或2a x >,所以函数()f x在⎛ ⎝⎭,2a ⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增; 令'()0f x <,得22a a x <<,所以()f x在22a a ⎛⎫+ ⎪ ⎪⎝⎭上单调递减. (2)证明:由(1)知2a >且1212,1,x x a x x +=⎧⎨=⎩,所以1201x x <<<.又由()()()()222122211122ln 22ln f x f x x ax x x ax x -=-+--+()()()()()()22222222221212121212111122ln22ln 2ln x x x x x a x x x x x x x x x x x x x =---+=--+-+=--+. 又因为()()()()()()()()222121212121212121(2)222a x x x x a x x x x x x x x x x x x --=---=--+-=---.所以要证()()()2121(2)f x f x a x x -<--,只需证()22112ln2x x x x <-. 因为121=x x ,所以只需证22221ln x x x <-,即证22212ln 0x x x -->. 令1()2ln (1)g x x x x x =-->,则2'2121()110g x x x x ⎛⎫=+-=-> ⎪⎝⎭,所以函数()g x 在(1,)+∞上单调递增,所以对1,()(1)0x g x g ∀>>=.所以22212ln 0x x x -->. 所以若()f x 存在两个极值点()1221,x x x x >,则()()()2121(2)f x f x a x x -<--. 【名师点睛】本题考查函数与导数的综合应用,属于较难题.导数中通过双极值点求解最值或证明不等式时,可通过双极值点对应的等式将待求的式子或待证明的式子转变为关于同一变量(注意变量的范围)的式子,然后通过构造新函数,要点分析新函数的单调性后从而达到求解最值或证明不等式的目的. 14.已知函数2()(2)()x f x xe a x x a R =-+∈.(1)当1a =时,求函数()f x 的单调区间; (2)当1a e >时,函数()f x 有三个不同的零点1x ,2x ,3x ,求证:1232x x x lna ++<. 【答案】(1)增区间为(,1)-∞-,(2,)ln +∞;减区间为(1,2)ln -;(2)证明见解析. 【要点分析】(1)求出原函数的导函数,得到函数零点,由导函数零点对定义域分段,再由导函数在不同区间段内的符号得到原函数的单调区间;(2)由(0)0f =,可得0x =是函数的一个零点,不妨设30x =,把问题转化为证122x x lna +<,即证122x x a e+>.由()0f x =,得(2)0x e a x -+=,结合1x ,2x 是方程(2)0x e a x -+=的两个实根,得到1212x x e e a x x -=-,代入122x x a e +>,只需证1212212x x x x e e e x x +->-,不妨设12x x >.转化为证1212212()10x x x x ex x e----->.设122x x t -=,则等价于2210(0)t t e te t -->>.设2()21(0)t t g t e te t =-->,利用导数证明()0g t >即可. 【答案详解】(1)解:()(22)(1)(2)x x x f x e xe x x e '=+-+=+-, 令()0f x '=,得11x =-,22x ln =.当1x <-或n 2>x l 时,()0f x '>;当12x ln -<<时,()0f x '<.()f x ∴增区间为(,1)-∞-,(2,)ln +∞;减区间为(1,2)ln -;(2)证明:(0)0f = ,0x ∴=是函数的一个零点,不妨设30x =, 则要证122x x lna +<,只需证122x x a e +>. 由()0f x =,得(2)0x e a x -+=,1x ,2x 是方程(2)0x e a x -+=的两个实根, ∴11(2)x e a x =+,①22(2)x e a x =+,②,①-②得:1212x x e e a x x -=-,代入122x x a e+>,只需证1212212x xx x e e e x x +->-,不妨设12x x >.120x x -> ,∴只需证1212212()x x x x e e x x e+->-.20x e >,∴只需证1212212()10x x x x e x x e ----->.设122x x t -=,则等价于2210(0)t t e te t -->>. 设2()21(0)t t g t e te t =-->,只需证()0g t >, 又()2(1)t t g t e e t =--',设()1(0)t t e t t ϕ=-->,则()10t t e ϕ'=->,()t ϕ∴在(0,)+∞上单调递增,则()(0)0t ϕϕ>=.()0g t ∴'>,从而()g t 在(0,)+∞上是增函数, ()(0)0g t g ∴>=.综上所述,1232x x x lna ++<.【名师点睛】本题考查利用导数研究函数的单调性,考查利用导数求函数的极值,考查数学转化思想方法,属难题.15.已知函数()223x xe f x e -+=,其中e 为自然对数的底数.(1)证明:()f x 在(),0-∞上单调递减,()0,∞+上单调递增; (2)设0a >,函数()212cos cos 3g x x a x a =+--,如果总存在[]1,x a a ∈-,对任意2x R ∈,()()12f x g x …都成立,求实数a 的取值范围.【答案】(1)证明见解析;(2)ln 2a ≥. 【要点分析】(1)直接对函数求导,判断导函数在对应区间上的符号即可证明;(2)总存在1[x a ∈-,](0)a a >,对任意2x R ∈都有12()()f x g x …,即函数()y f x =在[a -,]a 上的最大值不小于()y g x =,x ∈R 的最大值;借助单调性换元法,结合二次函数的性质分别求最值列不等式求解即可【答案详解】 (1)证明:()()23x xe ef x -='- 令()0f x '>,解得0x >,∴()f x 在()0,∞+上单调递增 令()0f x '<,解得0x <,∴()f x 在(),0-∞上单调递减 (2)总存在1[x a ∈-,](0)a a >,对任意2x R ∈都有12()()f x g x …, 即函数()y f x =在[a -,]a 上的最大值不小于()y g x =,x ∈R 的最大值()()()()max 23a af x f a f a e e -=-==+ 令[]()cos 1,1t x t =∈-,∴()2123g t t at a =+--,对称轴02a t =-< ∴()()max 513g t g ==∴()2533a a e e -+≥,52a a e e -+≥,令(),0ae m m =>,∴152m m +≥,∴2m ≥ ∴2a e ≥,∴ln 2a ≥【名师点睛】本题考查利用导数研究函数的单调性,考查三角函数的有界性,二次函数的最值以及恒成立问题的转化,考查转化思想以及计算能力,属于中档题.16.已知函数()()21ln 212h x x b x =+-,()21ln 2f x x a x =-.其中a ,b 为常数. (1)若函数()h x 在定义域内有且只有一个极值点,求实数b 的取值范围;(2)已知1x ,2x 是函数()f x 的两个不同的零点,求证:12x x +>. 【答案】(1)(),0-∞;(2)证明见解析. 【要点分析】(1)首先求函数的导数,根据题意转化为222y x x b =-+在1,2⎛⎫+∞⎪⎝⎭内有且仅有一个变号零点,根据二次函数的单调性,列式求解b 的取值范围;(2)求出当函数()f x 有两个零点时,求出a e >,再构造函数()))(0g x fx f x x =-≤≤,利用导数判断函数的单调性,得到))f x f x +<-,再通过构造得到()()21f x f x >-,利用函数的单调性证明结论.【答案详解】(1)()2222121212'b x x b x x x x h x -+⎛⎫=+=> ⎪--⎝⎭,因为函数()h x 在定义域有且仅有一个极值点, 所以222y x x b =-+在1,2⎛⎫+∞⎪⎝⎭内有且仅有一个变号零点, 由二次函数的图象和性质知21122022b ⎛⎫⨯-+< ⎪⎝⎭,解得0b <,即实数b 的取值范围为(),0-∞.(2)()2'(0)a x ax x x xf x -=-=>,当0a ≤时,()'0f x >,()f x 在()0,∞+上单调递增,函数()f x 至多有一个零点,不符合题意,。
高考数学一轮总复习第三章一元函数的导数及其应用专题突破7导数的综合应用课件

2
0恒成立.
考点二 利用导数研究恒(能)成立问题
例2 已知函数 = ln , = − 2 − − 4 ∈ .
(1)求函数 的极值;
1
3
(2)若对任意 ∈ 0, +∞ ,不等式 > 恒成立,求的取值范围.
解:(1) 的定义域为 0, +∞ ,′ = ln + 1.
(2)证明:由(1)得,
要证 > 2ln
即证2
= −ln = (e−ln + ) + ln = 1 + 2 + ln .
3
+ ,
2
即证1 + + ln > 2ln
2
min
3
+ ,
2
1
2
− − ln > 0恒成立.
1
设 = − − ln > 0 ,
第二问
在综合性和应用性的层次上考查了逻辑推
理、数学抽象及数学运算等学科素养,转化
与化归、函数与方程、数形结合等数学思想
方法,运算求解、推理论证等关键能力,以
及导数在研究函数性质中的应用及等差数列
等必备知识.
解:(1) 的定义域为,′ = e − .
若 ≤ 0,则′ > 0,此时 无最小值,故 > 0.
当 < −ln 时,′ < 0,则 在 −∞, −ln 上单调递减;当 > −ln 时,
′ > 0,则 在 −ln , +∞ 上单调递增.
综上,当 ≤ 0时, 在上单调递减;当 > 0时, 在 −∞, −ln 上单调递减,在
2025年高考数学二轮复习导数专题19:双变量问题【含答案】

专题19:双变量问题1.已知函数2()1(0)f x lnx ax x a =--++>.(Ⅰ)若()f x 是定义域上的单调函数,求实数a 的取值范围;(Ⅱ)若()f x 在定义域上有两个极值点1x ,2x ,证明:12()()522f x f x ln +>-.【解析】(Ⅰ)2()1f x lnx ax x =--++,∴221()ax x f x x-+'=-令2()21(0)g x ax x x =-+>则△18a=-0a >,∴对称轴104x a=>①当18a 时,△0 ,()0g x ,()0f x '∴ ,故()f x 在(0,)+∞单调递减.②当108a <<时,△0>,方程2210ax x -+=有两个不相等的正根1x ,2x 不妨设12x x <,则当(0x ∈,12)()x x +∞时,()0f x '<,当1(x x ∈,2))x 时,()0f x '>,这时()f x 不是单调函数.综上,a 的取值范围是18a .(Ⅱ)由(Ⅰ)知,当1(0,)8a ∈,()f x 有极小值点1x 和极大值2x ,且1212x x a+=,1212x x a=,2212111222()()2f x f x lnx ax x lnx ax x +=--+--++12121211()(1)(1)()222lnx lnx x x x x =-+----+++121211()()3(2)324ln x x x x ln a a=-+++=++,令11()(2)3,(0,]48g a ln a a a =++∈,则当1(0,)8a ∈时,221141()044a g x aa a -'=-=<,g ∴(a )在1(0,8单调递减,所以1()(5228g a g ln >=-,故12()()522f x f x ln +>-.2.已知函数21()(0)2f x x x alnx a =-+>(1)若1a =,求()f x 的图象在(1,f (1))处的切线方程;(2)若()f x 在定义域上是单调函数,求a 的取值范围;(3)若()f x 存在两个极值点1x ,2x ,求证:12322()()4ln f x f x ++>-.【解析】(1)11,(1)2a f ==-,函数21()(0)2f x x x alnx a =-+>,可得1()1f x x x'=-+,f '∴(1)1=,∴切线方程为2230x y --=;(2)()1a f x x x'=-+依题意有()0f x ' 或()0f x ' 在(0,)+∞上恒成立,即2a x x -+或2a x x -+ 在(0,)+∞上恒成立,显然2a x x -+不可能恒成立,2a x x ∴-+ ,解得14a ;(3)由()1a f x x x'=-+,()0f x '=得20x x a -+=,即1x ,2x 是()0f x '=的两根,121x x ∴+=-,12x x a =,222121112221212121211111()()()()122222f x f x x x alnx x x alnx x x x x x x alnx x a alna a alna +=-++-+=+-+-+=--+=--+,由已知14a <,∴112244a lna ln ln ->->=-,∴2222ln alna aln >->-,∴12322()()4ln f x f x ++>-.3.设函数241()(0)f x lnx ax a a x=-+>.(1)若()f x 在定义域上为单调函数,求a 的取值范围;(2)设1x ,2x 为函数()f x 的两个极值点,求12()()f x f x +的最小值.【解析】(1)221()(0,0)x ax f x x a x-+'=->>设2()21g x x ax =-+.①△280a =-,即0a < 时,()0g x 恒成立,()0f x ∴' ,()f x ∴在(0,)+∞上为减函数;②△0>,即a >时,()0g x =在(0,)+∞上有两相异实根,()f x ∴在(0,)+∞上不是单调函数,不合题意,综上,0a < ;(2)由(1)知,1x ,2x 为2210x ax -+=的两根,122a x x +=,1212x x =222121122441211()()2814a f x f x ln x ax ln x ax ln lna a x a x ∴+=-++-+=-++.设h (a )22814a ln lna =-++,则h '(a )(4)(4)2a a a+-=,h ∴(a)在4)上单调递减,在(4,)+∞上单调递增,h ∴(a )min h =(4)5152ln =-,12()()f x f x ∴+的最小值为5152ln -.4.已知函数21()2(2f x lnx x ax a =+-为常数).(1)若()f x 是定义域上的单调函数,求a 的取值范围;(2)若()f x 存在两个极值点1x ,2x ,且12||1x x - ,求12|()()|f x f x -的取值范围.【解析】(1)21()2(0)2f x lnx x ax x =+->,222()x ax f x x a x x-+∴'=+-=,设2()2g x x ax =-+,(0,)x ∈+∞,()f x 是定义域上的单调函数,函数()g x 的图象为开口向上的抛物线,()0f x ∴' 在定义域上恒成立,即()0g x 在(0,)+∞上恒成立.又二次函数图象的对称轴为2a x =,且图象过定点(0,2),∴02a 或20280aa ⎧>⎪⎨⎪-⎩,解得:a ∴实数a 的取值范围为(-∞,;(2)由(1)知()f x 的两个极值点1x ,2x 满足220x ax -+=,所以122x x =,12x x a +=,不妨设120x x <<<,则()f x 在1(x ,2)x 上是减函数,12()()f x f x ∴>,12|()()|f x f x ∴-12()()f x f x =-22111222112(2)22lnx x ax lnx x ax =+--+-22112121221()()()22x x x x x x x ln x =--+-+2212121()22x x x ln x =-+222222122222x lnx ln x =--+,令22t x =,则2t >,又12222||1x x x x -=- ,即22220x x --22x < ,2224t x ∴<= .设12()222(24)2h t t lnt ln t t=--+< ,则22(2)()02t h t t-'=>,()h t ∴在(2,4]上单调递增,h (2)0=,h (4)3222ln =-,()(0h t ∴∈,322]2ln -,即12|()()|(0f x f x -∈,322]2ln -,所以12|()()|f x f x -的取值范围为)(0,322]2ln -.5.已知函数2()1(1)f x x aln x =-+-,a R ∈.(Ⅰ)若函数()f x 为定义域上的单调函数,求实数a 的取值范围;(Ⅱ)若函数()f x 存在两个极值点1x ,2x ,且12x x <.证明:1221()()f x f x x x >.【解析】(Ⅰ)函数()f x 的定义域为(,1)-∞,求导:222()211a x x af x x x x-+-'=-=--,1x <,令2()22g x x x a =-+-,则△44(2)()48a a =---=-,当480a - 时,即12a ,则2220x x a -+- 恒成立,则()f x 在(,1)-∞上单调减函数,当480a ->时,即12a <,则2220x x a -+-=的两个根为112x =,2x =,当1(,)x x ∈-∞时,()0f x '<,函数()f x 单调递减,当1(x x ∈,1),()0f x '>,函数()f x 单调递增,不符合题意,综上可知:函数()f x 为定义域上的单调函数,则实数a 的取值范围1[2,)+∞;(Ⅱ)证明:由函数有两个极值点,则()0f x '=,在1x <上有两个不等的实根,即2220x x a -+-=,在1x <有两个不等式的实根,1x ,2x ,由102a <<,则121212x x a x x +=⎧⎪⎨=⎪⎩,且11(0,2x ∈,21(2x ∈,1),则211112*********()1(1)(1)(1)2(1)(1)2(1)f x x aln x x x x x ln x x x ln x x x x -+--++-===-++-,同理可得:22221()(1)2(1)f x x x ln x x =-++-,则1221112221()()()2(1)2(1)f x f x x x x ln x x ln x x x -=-+---,22222212(1)2(1)x x lnx x ln x =-+---,令()212(1)2(1)g x x x lnx xln x =-+---,1(2x ∈,1),求导,22()2[(1)]1xg x ln x x x x '=--++-,1(2x ∈,1),由1(2x ∈,1),则2201xx x+>-,则()0g x '>,则()g x 在1(2x ∈,1),上单调递增,则1()()02g x g >=,则1221()()0f x f x x x ->,∴1221()()f x f x x x >成立.6.已知函数()f x lnx =.(1)若曲线()()1ag x f x x=+-在点(2,g (2))处的切线与直线210x y +-=平行,求实数a 的值.(2)若(1)()()1b x h x f x x -=-+在定义域上是增函数,求实数b 的取值范围.(3)设m 、*n R ∈,且m n ≠,求证:||2m n lnm lnn m n --<+.【解析】(1)()1a g x lnx x=+-,21()a g x xx '=-(2分)g()x 在点(2,g (2))处的切线与直线210x y +-=平行,∴11(2)4242a g a '=-=-⇒=(4分)(2)证:由(1)()1b x h x lnx x -=-+得:2221(1)(1)2(1)1()(1)(1)b x b x x b x h x x x x x +--+-+'=-=++()h x 在定义域上是增函数,()0h x ∴'>在(0,)+∞上恒成立22(1)10x b x ∴+-+>,即2212x x b x++<恒成立(6分)2211112222x x x x x ++=+++= 当且仅当11,222x x x ==时,等号成立2b ∴ ,即b 的取值范围是(-∞,2](8分)(3)证:不妨设0m n >>,则1m n>要证||2m n lnm lnn m n--<+,即证2m n lnm lnn m n--<+,即2(1)1mm n lnm n n-<+(10分)设2(1)()(1)1x h x lnx x x -=->+由(2)知h()x 在(1,)+∞上递增,h∴()x h>(1)0=故2(1)01m m n ln m n n-->+,∴||2m n lnm lnn m n --<+成立(12分)7.已知函数()x lnx ϕ=.(1)若曲线()()1a g x x xϕ=+-在点(2,g (2))处的切线与直线310x y +-=平行,求a 的值;(2)求证函数2(1)()()1x f x x x ϕ-=-+在(0,)+∞上为单调增函数;(3)设m ,n R +∈,且m n ≠,求证:||2m n lnm lnn m n--<+.【解析】(1)()()11(0)a a g x x lnx x xxφ=+-=+->,21()(0)ag x x x x '=->,曲线()()1a g x x xφ=+-在点(2,g (2))处的切线与直线310x y +-=平行,∴1(2)324ag '=-=-,解得14a =;(2)证明:2(1)2(1)()()(0)11x x f x x lnx x x x φ--=-==->++,∴22212(1)2(1)(1)()0(1)(1)x x x f x x x x x +---'=-=++ ,∴函数2(1)()()1x f x x x φ-=-+在(0,)+∞上为单调增函数;(3)不妨设0m n >>,则1m n>,要证||2m n lnm lnn m n--<+,即证2m n lnm lnn m n--<+,只需证121m m ln n n m n-<+,即证2(1)1m m n ln m n n->+,只需证2(1)01m m n ln m n n-->+,设2(1)()(1)1x h x lnx x x -=->+,由(2)得,()h x 在(1,)+∞上是单调增函数,1x >,()h x h ∴>(1)0=,即2(1)01m m n ln m n n-->+,即2m n lnm lnn m n--<+.∴不等式||2m n lnm lnnm n --<+成立.8.已知函数2()1ax bf x x +=+在点(1-,(1))f -处的切线方程为30x y ++=.(Ⅰ)求函数()f x 的解析式;(Ⅱ)设()g x lnx =,求证:()()g x f x 在[1x ∈,)+∞上恒成立;(Ⅲ)已知0a b <<,求证:222lnb lna a b a a b ->-+.【解析】(Ⅰ)将1x =-代入切线方程得2y =-∴(1)211b af --==-+,化简得4b a -=-222(1)()2()(1)a x ax b xf x x +-+'=+22()2(1)1442a b a b bf +-'-====-解得:2a =,2b =-.∴222()1x f x x -=+.(Ⅱ)由已知得2221x lnx x -+ 在[1,)+∞上恒成立化简2(1)22x lnx x +- 即2220x lnx lnx x +-+ 在[1,)+∞上恒成立设2()22h x x lnx lnx x =+-+,1()22h x xlnx x x'=++-1x ∴120,2xlnx x x+ ,即()0h x ' ()h x ∴在[1,)+∞上单调递增,()h x h (1)0=()()g x f x ∴ 在[1x ∈,)+∞上恒成立(Ⅲ)0a b<<∴1ba>,由(Ⅱ)知有222()1b b a ln ba a->+整理得222lnb lna a b aa b ->-+∴当0a b <<时,222lnb lna ab a a b ->-+.9.已知函数()(f x lnx mx m =+为常数).(1)讨论函数()f x 的单调区间;(2)当322m -时,设21()()2g x f x x =+的两个极值点1x ,212()x x x <恰为2()2h x lnx ax x =--的零点,求1212()()2x x y x x h +'=-的最小值.【解析】(1)11()mx f x m xx+'=+=,0x >,当0m <时,由10mx +>,解得1x m<-,即当10x m<<-时,()0f x '>,()f x 单调递增;由10mx +<解得1x m>-,即当1x m>-时,()0f x '<,()f x 单调递减;当0m =时,1()0f x x'=>,即()f x 在(0,)+∞上单调递增;当0m >时,10mx +>,故()0f x '>,即()f x 在(0,)+∞上单调递增.所以当0m <时,()f x 的单调递增区间为1(0,)m-,单调递减区间为1(,)m-+∞;当0m 时,()f x 的单调递增区间为(0,)+∞.(2)由21()2g x lnx mx x =++得211()x mx g x m x x x ++'=++=,由已知210x mx ++=有两个互异实根1x ,2x ,由根与系数的关系得12x x m +=-,121x x =,因为1x ,212()x x x <是()h x 的两个零点,故21111()20h x lnx x ax =--=①22222()20h x lnx x ax =--=②由②-①得:222212112()()0x ln x x a x x x ----=,解得2121212()x lnx a x x x x =-+-,因为2()2h x x a x '=--,得1212124()222x x x x h a x x ++'=--+,将2121212()x ln x a x x x x =-+-代入得:21212121122124()2[()]22x lnx x x x x h x x x x x x ++'=---++-22122121221122111221112(1)2()422[][2]1x x lnx x x x x x ln ln x x x x x x x x x x x x x x --=-+=--=---+-+-+,所以21221122111()(2[2]21x x x x x y x x h ln x x x -+'=-=-+,设211x t x =>,因为22221212129()22x x x x x x m +=++= ,所以221252x x + ,所以221212122152x x x x x x x x +=+ ,所以152t t + ,所以2t .构造1()21t F t lnt t -=-+,得22214(1)()0(1)(1)t F t t t t t -'=-=>++,则1()21t F t lnt t -=-+在[2,)+∞上是增函数,所以2()(2)23min F x F ln ==-,即1212()(2x x y x x h +'=-的最小值为4223ln -.10.已知函数()()f x lnx mx m R =-∈.(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)当m 时,设2()2()g x f x x =+的两个极值点1x ,212()x x x <恰为2()h x lnx cx bx =--的零点,求1212()()2x x y x x h +=-'的最小值.【解析】()I 函数()f x lnx mx =-,∴11()mx f x m x x -'=-=,0x >;当0m >时,由10mx ->解得1x m <,即当10x m <<时,()0f x '>,()f x 单调递增;由10mx -<解得1x m >,即当1x m >时,()0f x '<,()f x 单调递减;当0m =时,1()0f x x'=>,即()f x 在(0,)+∞上单调递增;当0m <时,10mx ->,故()0f x '>,即()f x 在(0,)+∞上单调递增;∴当0m >时,()f x 的单调递增区间为1(0,m ,单调递减区间为1(m,)+∞;当0m 时,()f x 的单调递增区间为(0,)+∞;⋯(5分)22()()2()22II g x f x x lnx mx x =+=-+,则22(1)()x mx g x x-+'=,()g x '∴的两根1x ,2x 即为方程210x mx -+=的两根;又m ,∴△240m =->,12x x m +=,121x x =;⋯(7分)又1x ,2x 为2()h x lnx cx bx =--的零点,21110lnx cx bx ∴--=,22220lnx cx bx --=,两式相减得11212122()()()0x ln c x x x x b x x x --+--=,得121212()x lnx b c x x x x =-+-,而1()2h x cx b x'=--,1212122()[()]y x x c x x b x x ∴=--+-+1212121212122()[()()]x ln x x x c x x c x x x x x x =--+-+++-11212111222212()21x x x x x x ln ln x x x x x x --=-=-++,⋯(10分)令12(01)x t t x =<<,由2212()x x m +=得22212122x x x x m ++=,因为121x x =,两边同时除以12x x ,得212t m t++=,m ,故152t t + ,解得12t 或2t ,102t ∴< ;⋯(12分)设1()21t G t lnt t -=-+,2(1)()0(1)t G t t t --'∴=<+,则()y G t =在(0,1]2上是减函数,12()(223min G t G ln ∴==-+,即1212()(2x x y x x h +'=-的最小值为223ln -+.⋯(14分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年高考数学专题复习——导数目录一、有关切线的相关问题二、导数单调性、极值、最值的直接应用三、交点及根的分布1、判断零点个数2、已知零点个数求解参数范围四、不等式证明1、作差证明不等式2、变形构造函数证明不等式3、替换构造不等式证明不等式五、不等式恒成立求参数范围1、恒成立之最值的直接应用2、恒成立之分离常数3、恒成立之讨论参数范围六、函数及导数性质的综合运用导数运用中常见结论一、有关切线的相关问题例题、【2015高考新课标1,理21】已知函数f (x )=31,()ln 4x ax g x x ++=-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线; 【答案】(Ⅰ)34a = 跟踪练习:1、【2011高考新课标1,理21】已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。
(Ⅰ)求a 、b 的值;解:(Ⅰ)221(ln )'()(1)x x b x f x x xα+-=-+由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩ 解得1a =,1b =。
2、(2013课标全国Ⅰ,理21)设函数f (x )=x 2+ax +b ,g (x )=e x (cx +d ).若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2. (1)求a ,b ,c ,d 的值;解:(1)由已知得f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4. 而f ′(x )=2x +a ,g ′(x )=e x (cx +d +c ), 故b =2,d =2,a =4,d +c =4. 从而a =4,b =2,c =2,d =2.3、 (2014课标全国Ⅰ,理21)设函数1(0ln x xbe f x ae x x-=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ;【解析】:(Ⅰ) 函数()f x 的定义域为()0,+∞,112()ln x x x x a b b f x ae x e e e x x x--'=+-+由题意可得(1)2,(1)f f e '==,故1,2a b == (6)分二、导数单调性、极值、最值的直接应用 (一)单调性1、根据导数极值点的相对大小进行讨论 例题:【2015高考江苏,19】已知函数),()(23R b a b ax x x f ∈++=. (1)试讨论)(x f 的单调性;【答案】(1)当0a =时, ()f x 在(),-∞+∞上单调递增;当0a >时, ()f x 在2,3a ⎛⎫-∞- ⎪⎝⎭,()0,+∞上单调递增,在2,03a ⎛⎫- ⎪⎝⎭上单调递减;当0a <时, ()f x 在(),0-∞,2,3a ⎛⎫-+∞ ⎪⎝⎭上单调递增,在20,3a ⎛⎫- ⎪⎝⎭上单调递减.当0a <时,()2,0,3ax ⎛⎫∈-∞-+∞ ⎪⎝⎭时,()0f x '>,20,3a x ⎛⎫∈-⎪⎝⎭时,()0f x '<,所以函数()f x 在(),0-∞,2,3a ⎛⎫-+∞ ⎪⎝⎭上单调递增,在20,3a ⎛⎫- ⎪⎝⎭上单调递减.练习:1、已知函数1()ln 1af x x ax x-=-+-()a ∈R . ⑴当12a ≤时,讨论()f x 的单调性;答案:⑴1()ln 1(0)a f x x ax x x -=-+->,222l 11()(0)a ax x a f x a x x x x--++-'=-+=> 令2()1(0)h x ax x a x =-+->①当0a =时,()1(0)h x x x =-+>,当(0,1),()0,()0x h x f x '∈><,函数()f x 单调递减;当(1,),()0,()0x h x f x '∈+∞<>,函数()f x 单调递增. ②当0a ≠时,由()0f x '=,即210ax x a -+-=,解得1211,1x x a==-.当12a =时12x x =,()0h x ≥恒成立,此时()0f x '≤,函数()f x 单调递减;当102a <<时,1110a->>,(0,1)x ∈时()0,()0h x f x '><,函数()f x 单调递减;1(1,1)x a∈-时,()0,()0h x f x '<>,函数()f x 单调递增;1(1,)x a∈-+∞时,()0,()0h x f x '><,函数()f x 单调递减.当0a <时110a-<,当(0,1),()0,()0x h x f x '∈><,函数()f x 单调递减;当(1,),()0,()0x h x f x '∈+∞<>,函数()f x 单调递增.综上所述:当0a ≤时,函数()f x 在(0,1)单调递减,(1,)+∞单调递增; 当12a =时12x x =,()0h x ≥恒成立,此时()0f x '≤,函数()f x 在(0,)+∞单调递减; 当102a <<时,函数()f x 在(0,1)递减,1(1,1)a -递增,1(1,)a-+∞递减.2、已知a 为实数,函数()(1)e xf x ax =+,函数1()1g x ax=-,令函数()()()F x f x g x =⋅.当0a <时,求函数()F x 的单调区间.解:函数1()e 1x ax F x ax +=-,定义域为1x x a ⎧⎫≠⎨⎬⎩⎭.当0a <时,222222221()21()e e (1)(1)xx a a x a x a a F x ax ax +---++'==--. 令()0F x '=,得2221a x a+=. ……………………………………9分①当210a +<,即12a <-时,()0F x '<.∴当12a <-时,函数()F x 的单调减区间为1(,)a-∞,1(,)a+∞.………………11分②当102a -<<时,解2221a x a+=得12x x ==∵1a <, ∴令()0F x '<,得1(,)x a∈-∞,11(,)x x a∈,2(,)x x ∈+∞;令()0F x '>,得12(,)x x x ∈. (13)分∴当102a -<<时,函数()F x 的单调减区间为1(,)a-∞,1(a,()+∞;函数()F x单调增区间为. …………15分③当210a +=,即12a =-时,由(2)知,函数()F x 的单调减区间为(,2)-∞-及(2,)-+∞2、根据判别式进行讨论例题:【2015高考四川,理21】已知函数22()2()ln 22f x x a x x ax a a =-++--+,其中0a >.(1)设()g x 是()f x 的导函数,评论()g x 的单调性; 【答案】(1)当104a <<时,()g x在区间)+∞上单调递增,在区间上单调递减;当14a ≥时,()g x 在区间(0,)+∞上单调递增.【解析】(1)由已知,函数()f x 的定义域为(0,)+∞,()()222ln 2(1)ag x f x x a x x '==---+,所以222112()2()2224()2x a a g x x x x-+-'=-+=. 当104a <<时,()g x在区间)+∞上单调递增,在区间上单调递减; 当14a ≥时,()g x 在区间(0,)+∞上单调递增.练习: 已知函数()ln af x x x x=--,a ∈R . (1)求函数()f x 的单调区间; 解:函数()f x 的定义域为(0,)+∞.2221()1a x x af x x x x -++'=-+=. 令()0f x '=,得20x x a -++=,记14a ∆=+. (ⅰ)当14a -≤时,()0f x '≤,所以()f x 单调减区间为(0,)+∞; …………5分(ⅱ)当14a >-时,由()0f x '=得12x x =,①若104a -<<,则120x x >>,由()0f x '<,得20x x <<,1x x >;由()0f x '>,得21x x x <<.所以,()f x 的单调减区间为,)+∞,单调增区间为; …………………………………………………………7分②若0a =,由(1)知()f x 单调增区间为(0,1),单调减区间为(1,)+∞;③若0a >,则120x x >>,由()0f x '<,得1x x >;由()0f x '>,得10x x <<.()f x 的单调减区间为)+∞,单调增区间为. ……9分 综上所述:当14a -≤时,()f x 的单调减区间为(0,)+∞;当104a -<<时,()f x 的单调减区间为,)+∞,单调增区间为;当0a ≥时,()f x 单调减区间为114(,)a+++∞,单调增区间为114(0,)a++. ………………………………………………………10分2. 已知函数1()()2ln ()f x a x x a x=--∈R .求函数()f x 的单调区间;解:函数的定义域为()0,+∞,222122()(1)ax x af x a x x x -+'=+-=. ……………1分(1)当0a ≤时,2()20h x ax x a =-+<在(0,)+∞上恒成立, 则()0f x '<在(0,)+∞上恒成立,此时()f x 在(0,)+∞上单调递减. ……………4分(2)当0a >时,244a ∆=-, (ⅰ)若01a <<,由()0f x '>,即()0h x >,得211a x --<或211a x +->; ………………5分 由()0f x '<,即()0h x <,得221111a a x --+-<<.………………………6分 所以函数()f x 的单调递增区间为211)a --和211()a +-+∞, 单调递减区间为. ……………………………………7分(ⅱ)若1a ≥,()0h x ≥在(0,)+∞上恒成立,则()0f x '≥在(0,)+∞上恒成立,此时()f x 在(0,)+∞上单调递增. ……………………………………………………………3、含绝对值的函数单调性讨论例题:已知函数()ln f x x x a x =--.(1)若a =1,求函数()f x 在区间[1,]e 的最大值; (2)求函数()f x 的单调区间; (3)若()0f x >恒成立,求a 的取值范围 解:(1)若a =1, 则()1ln f x x x x =--.当[1,]x e ∈时, 2()ln f x x x x =--,2'121()210x x f x x x x--=--=>, 所以()f x 在[1,]e 上单调增,2max ()()1f x f e e e ∴==--. ……………2分(2)由于()ln f x x x a x =--,(0,)x ∈+∞.(ⅰ)当0a ≤时,则2()ln f x x ax x =--,2'121()2x ax f x x a x x--=--=,令'()0f x =,得004a x +=>(负根舍去), 且当0(0,)x x ∈时,'()0f x <;当0(,)x x ∈+∞时,'()0f x >,所以()f x 在(0,4a 上单调减,在()4a +∞上单调增.……4分(ⅱ)当0a >时,①当x a ≥时, 2'121()2x ax f x x a x x--=--=,令'()0f x =,得14a x =4a x a =<舍),若a ≤,即1a ≥, 则'()0f x ≥,所以()f x 在(,)a +∞上单调增;若a >,即01a <<, 则当1(0,)x x ∈时,'()0f x <;当1(,)x x ∈+∞时,'()0f x >,所以()f x 在区间上是单调减,在()4a ++∞上单调增. ……………………………………………6分②当0x a <<时, 2'121()2x ax f x x a x x-+-=-+-=,令'()0f x =,得2210x ax -+-=,记28a ∆=-,若280a ∆=-≤,即0a <≤则'()0f x ≤,故()f x 在(0,)a 上单调减;若280a ∆=->,即a >则由'()0f x =得34a x =,44a x =且340x x a <<<,当3(0,)x x ∈时,'()0f x <;当34(,)x x x ∈时,'()0f x >;当4(,)x x ∈+∞时,'()0f x >,所以()f x 在区间(0,4a 上是单调减,在上单调增;在(,)4a +∞上单调减. …………………………………………8分综上所述,当1a <时,()f x 单调递减区间是(0,4a ,()f x 单调递增区间是()4a +∞;当1a ≤≤, ()f x 单调递减区间是(0,)a ,()f x 单调的递增区间是(,)a +∞;当a >时, ()f x 单调递减区间是(0, )和(,)4a a +,()f x 单调的递增区间是和(,)a +∞. ………………10分(3)函数()f x 的定义域为(0,)x ∈+∞. 由()0f x >,得ln x x a x->. *(ⅰ)当(0,1)x ∈时,0x a -≥,ln 0x x<,不等式*恒成立,所以R a ∈;(ⅱ)当1x =时,10a -≥,ln 0xx=,所以1a ≠; ………………12分(ⅲ)当1x >时,不等式*恒成立等价于ln x a x x<-恒成立或ln xa x x>+恒成立.令ln ()xh x x x=-,则221ln ()x x h x x -+'=.因为1x >,所以()0h x '>,从而()1h x >.因为ln x a x x<-恒成立等价于min (())a h x <,所以1a ≤.令ln ()xg x x x=+,则221ln ()x x g x x +-'=.再令2()1ln e x x x =+-,则1()20e x x x'=->在(1,)x ∈+∞上恒成立,()e x 在(1,)x ∈+∞上无最大值.综上所述,满足条件的a的取值范围是(,1)-∞. (16)分2.设a 为实数,函数2()||f x x x a =- (2)求函数()f x 的单调区间4、分奇数还是偶数进行讨论例题:【2015高考天津,理20已知函数()n,n=-∈,其中f x x x x R*∈≥.n,n2N(I)讨论()f x的单调性;【答案】(I) 当n为奇数时,()-+∞上单调递减,在(1,1)f x在(,1)-∞-,(1,)内单调递增;当n为偶数时,()+∞f x在(,1)f x在(1,)-∞-上单调递增,()上单调递减. (II)见解析; (III)见解析.(2)当n 为偶数时,当()0f x '>,即1x <时,函数()f x 单调递增; 当()0f x '<,即1x >时,函数()f x 单调递减.所以,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减. 5、已知单调区间求参数范围例题:(14年全国大纲卷文)函数f(x )=a x 3+3x 2+3x (a ≠0).(1)讨论函数f(x )的单调性;(2)若函数f(x )在区间(1,2)是增函数,求a 的取值范围. 解:(1)2()363f x ax x '=++,2()3630f x ax x '=++=的判别式△=36(1-a ). (i )若a ≥1,则()0f x '≥,且()0f x '=当且仅当a=1,x =-1,故此时f (x )在R 上是增函数.(ii )由于a ≠0,故当a<1时,()0f x '=有两个根:12x x ==若0<a<1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时,()0f x '>,故f (x )在(-∞,x 2),(x 1,+∞)上是增函数;当x ∈(x 2,x 1)时,()0f x '<,故f (x )在(x 2,x 1)上是减函数;(2)当a>0,x >0时, ()0f x '>,所以当a>0时,f (x )在区间(1,2)是增函数.若a<0时,f (x )在区间(1,2)是增函数当且仅当(1)0f '≥且(2)0f '≥,解得504a -≤<. 综上,a 的取值范围是5[,0)(0,)4-+∞.二、极值(一)判断有无极值以及极值点个数问题例题:【2015高考山东,理21】设函数()()()2ln 1f x x a x x =++-,其中a R ∈.(Ⅰ)讨论函数()f x 极值点的个数,并说明理由;(2)当0a > 时, ()()28198a a a a a ∆=--=- ①当809a <≤时,0∆≤ ,()0g x ≥所以,()0f x '≥,函数()f x 在()1,-+∞上单调递增无极值; ②当89a > 时,0∆>设方程2210ax ax a ++-=的两根为1212,(),x x x x < 因为1212x x +=- 所以,1211,44x x <->-由()110g -=>可得:111,4x -<<-所以,当()11,x x ∈-时,()()0,0g x f x '>> ,函数()f x 单调递增; 当()12,x x x ∈时,()()0,0g x f x '<< ,函数()f x 单调递减; 当()2,x x ∈+∞时,()()0,0g x f x '>> ,函数()f x 单调递增; 因此函数()f x 有两个极值点. (3)当0a < 时,0∆> 由()110g -=>可得:11,x <-当()21,x x ∈-时,()()0,0g x f x '>> ,函数()f x 单调递增; 当()2,x x ∈+∞时,()()0,0g x f x '<< ,函数()f x 单调递减;因此函数()f x 有一个极值点. 综上:当0a < 时,函数()f x 在()1,-+∞上有唯一极值点; 当809a ≤≤时,函数()f x 在()1,-+∞上无极值点;当89a >时,函数()f x 在()1,-+∞上有两个极值点; 例题:【2015高考安徽,理21】设函数2()f x x ax b =-+.(Ⅰ)讨论函数(sin )f x 在(,)22ππ-内的单调性并判断有无极值,有极值时求出极值; 【解析】(Ⅰ)2(sin )sin sin sin (sin )f x x a x b x x a b =-+=-+,22x ππ-<<.[(sin )]'(2sin )cos f x x a x =-,22x ππ-<<.因为22x ππ-<<,所以cos 0,22sin 2x x >-<<.①当2,a b R ≤-∈时,函数(sin )f x 单调递增,无极值. ②当2,a b R ≥∈时,函数(sin )f x 单调递减,无极值.③当22a -<<,在(,)22ππ-内存在唯一的0x ,使得02sin x a =.02x x π-<≤时,函数(sin )f x 单调递减;02x x π<<时,函数(sin )f x 单调递增.因此,22a -<<,b R ∈时,函数(sin )f x 在0x 处有极小值20(sin )()24a a f x fb ==-.(二)已知极值点个数求参数范围例题:【14年山东卷(理)】 设函数())ln 2(2x xk x e x f x +-=(k 为常数,2.71828e =是自然对数的底数)(I )当0k ≤时,求函数()f x 的单调区间;(II )若函数()f x 在()0,2内存在两个极值点,求k 的取值范围。