电动力学第22讲42唯一性定理

合集下载

《电动力学第三版》chapter2_2唯一性定理

《电动力学第三版》chapter2_2唯一性定理

E2t E1t
D
2n
D1n
如果我们假设 E仍保持球对称性,即
E1
A r3
r
E2
A r3
r
(左半部) (右半部)
(A为待定常数),分界面两侧电场与界面相切,并有相同数值,因 而边值关系得到满足.
球对称的E在球面上处处与球面垂直,保证导体球面为等
势面. 为了满足内导体总电荷等于Q,我们计算内导体球面上
对于第一类边界条件,只要把导体存在的空间扣除,将导 体看成是区域边界之一,即可证明电场被唯一确定.
对于第二类边界条件,在导体外,电荷分布给定,大区域表 面上电势或电势的法向导数给定;每个导体上的总电荷给定.
设区域V 内有一些导体,给定导体之外的电荷分布x 给定
各导体上的总电荷Qi以及V的边界S上的或/n值,则V内的电
有球对称性. 试解释之.
子区域 2
子区域 4
子区域 3
i ( S i i )d S i V i i d V(1)
i
V ii( )2dVV i(i 2)dV
i
i 2dV
Vi
i S i(i )d S i S i(i n i)d S 0 (2)(3)
i S i i d S i V i i 2 d V 0
场唯一地确定. 存在唯一的解,它在导体以外满足泊松方程
2/
在第i个导体上满足总电荷条件和等势面条件
Si ndSQ i, |Sii 常量
以及在V的边界S上具有给定的|s 或/n|s值.
证明: 设有 和 同时满足上述条件. 令 '''
2 0
|si 0,
dS 0 Si n
|s 0 或
第二章 静电场

电动力学概念整理

电动力学概念整理

场:描述一定空间中连续分布的物质对象的物理量。

梯度:函数在空间某点的方向导数有无穷多个,其中值为最大的那个定义为梯度。

唯一性定理:在空间某一区域内给定场的散度和旋度以及矢量场在区域边界上的法线分量,则该矢量场在区域内是唯一确定的。

第一章电磁现象的普遍规律静电场:它的方向沿试探电荷受力的方向,大小与试探点电荷无关。

给定Q,它仅是空间点函数,静电场是一个矢量场。

场的叠加原理:电荷系在空间某点产生的电场强度等于组成该电荷系的各点电荷单独存在时在该点产生的场强的矢量和。

电荷守恒定律:封闭系统内的总电荷严格保持不变。

对于开放系统,单位时间流出区域V 的电荷总量等于V内电量的减少率。

电磁感应现象的实质:变化磁场激发电场。

有极分子:无外场时,正负电荷中心不重合,有分子电偶极矩。

但固有取向无规,不表现宏观电矩。

无极分子:无外场时,正负电荷中心重合,无分子电偶极矩,也无宏观电矩。

分子电流:介质分子内部电子运动可以认为构成微观电流。

无外场时,分子电流取向无规,不出现宏观电流分布。

介质的极化:介质中分子和原子的正负电荷在外加电场力的作用下发生小的位移,形成定向排列的电偶极矩。

或原子、分子固有电偶极矩不规则的分布,在外场作用下形成规则排列。

极化使介质内部或表面上出现的电荷称为束缚电荷。

介质的磁化:介质中分子或原子内的电子运动形成分子电流,微观上形成不规则分布的磁偶极矩。

在外磁场力作用下,磁偶极矩定向排列,形成宏观上的磁偶极矩。

传导电流:介质中可自由移动的带电粒子,在外场力作用下,导致带电粒子的定向运动,形成电流。

磁化电流:当介质被磁化后,由于分子电流的不均匀会出现宏观电流,称为磁化电流。

能量:物质运动强度的量度,表示物体做功的物理量。

主要形式:机械能、热能、化学能、电磁能、原子能。

能量守恒与转化:能量在不同形式之间可以相互转化,但总量保持不变。

能流密度矢量(玻印亭矢量):它表示单位时间、垂直通过单位面积的能量,用来描述能量的传播。

电动力学22唯一性定理共18页

电动力学22唯一性定理共18页
电动力学22唯一性定理
41、俯仰终宇宙,不乐复何如。 42、夏日长抱饥,寒夜无被眠。 43、不戚戚于贫贱,不汲汲于富贵。 44、欲言无予和,挥杯劝孤影。 45、盛年不重来,一日难再晨。及时 当勉励 ,岁月 不待人Байду номын сангаас。

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
18

第2节唯一性定理

第2节唯一性定理
o R 0
M 在圆心缩为一点,条件不变,解不变。
由此得出
Q 4 0 r
1
r R0
请说明原因,并画出电力线图示。
例:求偶极子在远区的场。 偶极子:1 其线度 l r 2 电荷线度线度 l 定义——偶极矩 P ql
(r ) 1
q q q r r' r' ( ) 4 0 r r' 4 0 rr ' q l cos 1 Pr 2 3 q l q 4 0 r 4 0 r

u
n s
0
使等式左端=0,则右端
2 2 ( u ) 0 u 0 ( u ) dV 0
v
u 0
V内 u =常数 1)若 u 0即1 2,同一个势,对应同一 个场。 2)1 , 2 可相差一个常数,不影响场分布。 电场分布唯一确定。
r
1 Pr 1 1 E 3 ( P ) 4 0 r 4 0 r 1 3( P r )r P ( 3) 5 4 0 r r 1 P cos ( E ) r E er 2 0 r3 1 P sin ( E ) E e 3 4 r 0 (E) E e 0
2 s'
2u 0
s'
uu dS uu dS uu dS
s si

v'
(u ) dV uu dS
2 s'
在 Si 表面上 u 常数
u u dS u u dS u dS 0 su si si n i
E1 E2 n

电动力学uniquenesstheorem唯一性定理完全解读

电动力学uniquenesstheorem唯一性定理完全解读
们都能满足同一种泊松方程和边界条件,下面我们将证明 它们只能是同一种解.
引入标量函数Φ ,令Φ = '- ″
2 , 2 , 2 0
i
i
在区域边界面S 上
S
S
0 S
(给定第一类边界条件)
或 ,
n S n S
0
n S
(给定第二类边界条件)
下面需要证明旳是,满足以上方程和边界条件旳'和
1) 绝缘介质静电问题旳唯一性定理及证明 在有限旳边界区域V 内有几种均匀旳绝缘介质Vi 、εi
(i = 1、2、3 …) ,V 中旳自由电荷分布(ρ或σ) 为已知,那
么,当V 旳边界面S 上旳电势 给 定(或电势旳法向导数边
界条件) ,则V 内旳电场有唯一拟定旳解。
数学表述如下:
2 i
i
(在每个小区Vi)
V′旳全部内、外表面上都有一定旳值或 值,应用有关绝缘介
质旳唯一性定理,则V′内旳电场必有唯一解. n
b)区域V 内有若干导体,假设除导体以外旳区域V′内旳自由电荷分
布ρ已知,V′旳外表面S 上有已知旳值或 值,另外,若每个导
n 体所带旳总电量Qi 为已知,则区域V′内旳电场有唯一解。
数学表达为:
场有唯一解。这么,有导体存在时静电问题旳唯一性定理 也得到证明。
最终需要强调一点,尽管唯一性定理并不给出求解泊松方程旳详细措 施与环节,但它对于处理实际旳边值问题有着主要旳意义. 首先,它明 确了在哪些条件下能够唯一地拟定一种静电场,即给出了求解静电场 旳根据;其次,它使我们能够灵活地选用最简朴、最合适旳解题措施, 甚至能够猜一种解(即提出尝试解) . 只要这个解确实满足了问题中 旳场方程和全部定解条件,那么,根据唯一性定理我们就能够肯 定地说,它就是该问题中旳唯一正确旳解.

唯一性定理与静电屏蔽

唯一性定理与静电屏蔽
像电荷与导体上的感应电荷分布在区域内产生的 电场必然完全相同,处于对称位置的等量异号- q与+q在一起所产生的电场,在所考虑的区域边 界面上U|s=0。
例题: 有一半径a的导体球壳接地,球外 一个电量为q 与球心的距离为d,
求: 球外任意一点p处的电势,空间的电 场分布.
球面上:U|s=0,设置镜像电荷q’, 位置d’<a,
令 u ' u1 u2
如果: u ' 0
则 u1 u2
要证明: u ' 0
即证明有两种解是不可能的 。
第一类问题的证明 设: u1 , u2
都是方程的解
(1)
它们满足Poisson eq.
2u1

e 0
那么:
2u2


e 0
2u '

2u1
2u2


ds
格林第一定理
1 2

v
(gar )dv


v
221

(2
)(1)

Ò 2
s
1
n
ds
Ò v
122 221dv
s
(1
2
n
2
1
n
)ds
格林第二定理
四、证明 唯一性定理
用反证法
假设满足同样条件地有两个解 u1、 u2
40d 2
点电荷对无限大介质平面的镜像
第二章 小结
1、静电场中的导体:
r (1)静电平衡条件,导体内电场处处为零0
E nˆ E导体内=0
(2)导体处于静电平衡时:
r E


0

电动力学 chp2-2唯一性定理

电动力学  chp2-2唯一性定理

2 0 分析:壳外电势满足 s Q 0 i
+
不论壳内电荷位置怎样变化,上述边界条件不变,故壳外 电场与电荷在壳内位置无关.
例2.如图两同心导体球壳之间充以两种介质,左半部 分电容率为 右半部分电容率为 2 ,设内球壳带总 1 电荷Q,外球壳接地,求电场和球壳上的电荷分布. 解:设两种介质内电势、电场、位移分别为
对内导体面: D dS 1E1 dS 2 E2 dS Q
S
2 1 2 A Q
S1
S2
Q A 2 1 2
E1 E2
左半部:
Qr 2 1 2 r 3
1 , E1 , D1和2 , E2 , D2
由电势的边界条件,假设介质1、2中 E 仍保持球 对称,即设 1 A A Q E1 3 r , E2 3 r , r r Q 此尝试解在介质1,2分界面上满足 E1t E2t
2
且D1n D2 n 0,(界面上 0 )
2 0 Q 2 p p2 r 2 1 2 a 2
但可验证 1 1p 2 2 p
0Q 2 1 2 a 2
可见内球面上总电荷(自由,极化电荷)是均匀分布的,故 总场仍为球对称.
[例3] 有一半径为a的导体球,它的中心恰位于两种均 匀无限大介质的分界面上,介质的介电常数分别是
1Q 1 D1n D1r 1E1r 2 1 2 a 2
2Q 右半部: 2 D2n D2r 2 E2r 2 1 2 a 2 1p p1r 1 0 E1r 1 0 Q 2 2 1 2 a

电动力学Chapter22(唯一性定理)

电动力学Chapter22(唯一性定理)

在未来研究中的应用和价值
唯一性定理在理论物理、应用物理、工程物理等领域具有 广泛的应用价值。随着科学技术的发展,新的问题和现象 不断涌现,唯一性定理的应用范围也将不断扩大。
在未来研究中,唯一性定理的价值不仅在于其解决具体问 题的实用性,更在于其对物理学理论发展的推动作用。通 过对唯一性定理的研究和应用,可以加深对物理学基本规 律和原理的理解,促进物理学理论的创新和发展。
通过应用唯一性定理,可以确定电磁波的传播方向、幅度和相位,以及在不同介质 中的反射和折射特性。
唯一性定理在雷达、通信和光学等领域有着广泛的应用,对于电磁波的传播特性和 应用具有重要意义。
在量子力学中的应用
在量子力学中,唯一性定理用于 描述微观粒子的行为和相互作用,
特别是在处理薛定谔方程时。
通过应用唯一性定理,可以确定 微观粒子的波函数和能量状态, 以及它们之间的相互作用和演化。
唯一性定理在量子计算、量子通 信和量子信息等领域有着广泛的 应用,对于理解微观世界的本质
和规律具有重要意义。
04 唯一性定理的推广和展望
推广到多维空间
在多维空间中,唯一性定理的应用更为广泛,可以解决更为 复杂的物理问题。例如,在电磁场理论中,可以将唯一性定 理应用于高维空间中的电荷分布和电流密度,以确定电磁场 的性质和行为。
在多维空间中,唯一性定理的证明过程需要更复杂的数学工 具和技巧,但其实质仍然是基于电荷守恒和麦克斯韦方程组 的性质。
与其他物理定理的联系
唯一性定理与能量守恒定理、动量守恒定理等基本物理定理密切相关。这些定理 在描述物理现象时具有普适性和基础性,而唯一性定理则是解决具体问题的有力 工具。
在某些情况下,唯一性定理的证明和应用需要借助其他物理定理,如能量动量张 量定理、哈密顿原理等。这些定理在理论物理中具有重要地位,相互联系、相互 支持,共同构建了物理学理论的完整体系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第22讲 唯一性定理 第4章 介质中的电动力学(2)§4.2 唯一性定理在上节中我们说明静电学的基本问题是求出所有边界上满足边值关系或给定边界条件的泊松方程的解。

本节我们把这问题确切地表述出来,即需要给出哪一些条件,静电场的解才能唯一地被确定。

静电场的唯一性定理对于解决实际问题有着重要的意义。

因为它首先告诉我们,哪些因素可以完全确定静电场,这样在解决实际问题时就有所依据。

其次,对于许多实际问题,往往需要根据给定的条件作一定的分析,提出尝试解。

如果所提出的尝试解满足唯一性定理所要求的条件,它就是该问题的唯一正确的解。

下面我们先提出并证明一般形式的唯一定理,然后再证明有导体存在时的唯一性定理。

1. 静电问题的唯一性定理 下面我们研究可以均匀分区的区域V ,即V 可以分为若干个均匀区域 V i ,每一个区域的电容率为 ε i 。

设V 内有给定的电荷分布 ρ(x )。

电势 φ 在均匀区域 V i 内满足泊松方程2i ρϕε∇=-(4.2---1)在两区域 V i 和 V j 的分界上满足边值关系()()i j i i j j nn ϕϕϕϕεε=⎧⎪∂∂⎨=⎪∂∂⎩ (4.2---2)泊松方程(4.2---1)式和边值关系(4.2---2)式是电势所必须满足的方程,它们属于电场的基本规律。

除此之外,要完全确定V 内的电场,还必须给出V 的边界S 上的一些条件。

下面提出的唯一性定理具体指出所需给定的边界条件。

唯一性定理: 设区域V 内给定自由电荷分布,在V 的边界上S 上给定 (1)电势φ| s 或(2)电势的法向导数 ∂φ/∂n | s ,则V 内的电场唯一确定。

也就是说,在V 内存在唯一的解,它在每个均匀区域内满足泊松方程(4.2---1),在两均匀区域分界面上满足边值关系,并在V 的边界S 上满足该给定的φ或∂φ/∂n 值。

证明 设有两组不同的解 φ' 和 φ'' 满足唯一性条件定理的条件。

令,ϕϕϕ'''=-(4.2---3) 则由 ▽2φ' = −ρ/εi ,▽2φ'' = −ρ/εi ,得20ϕ∇= (在每个均匀区V i 内) (4.2---4) 在两均匀区界面上有i j ϕϕ= ()()i i j j n nϕϕεε∂∂=∂∂ (4.2---5) 在整个区域V 的边界S 上有 0SS S ϕϕϕ'''=-= (4.2---6a )或SSSnnnϕϕϕ'''∂∂∂=-∂∂∂=0 (4.2---6b )考虑第i 个均匀区 V i 的界面 S i 上的积分ii S d εϕϕ∇⋅⎰S由附录(Ⅰ.7)式,这积分可以变换为体积分()ii i i S V d dV εϕϕεϕϕ∇⋅=∇⋅∇⎰⎰S22()iii i V V dV dV εϕϕεϕ=∇+∇⎰⎰ 由(4.2---4)式,右边最后一项为零,因此2()iii i S V d dV εϕϕεϕ∇⋅=∇⎰⎰S对所有分区 V i 求和得2()iii i S V iid dV εϕϕεϕ∇⋅=∇∑∑⎰⎰S (4.2---7)在两均匀区 V i 和 V j 的界面上,由(4.2---5)式,φ 和ε▽φ的法向分量分别相等,但 d S i = −d S j 。

因此,在(4.2---7)式左边的和式中,内部分界面的积分互相抵消,因而只剩下整个V 的边界S 上的积分。

但在S 上,由(4.2---6)式,或者 φ| s ,或者 ∂φ/∂n | s ,两情形下面积分都等于零。

因此由(4.2---7)式有2()0ii V idV εϕ∇=∑⎰由于被积分函数 ε(▽φ)2 ≥0,上式成立的条件是在V 内各点上都有 0ϕ∇= 即在V 内ϕ=常量由(4.2---3)式, φ' 和 φ'' 至多只能相差一个常量。

但电势的附加常量对电场没有影响,这就证明了唯一性定理。

2. 有导体存在时的唯一性定理 当有导体存在时,由实践经验我们知道,为了确定电场,所需条件有两种类型:一类是给定每个导体上的电势 φi ,另一个是给定每个导体上的总电荷 Qi 。

为简单起见,我们只讨论区域内含一种均匀介质的情形。

如图2-3,设在某区域V 内有一些导体,我们把除去导体内部以后的区域称为V ' ,因而V ' 的边界包括界面S 以及每个导体的表面 S i 。

设V ' 内有给定电荷分布 ρ ,S 上给定 φ| s 或 ∂φ/∂n | s 值。

对上述第一种类型的问题,每个导体上的电势 φi 亦给定,即给出了V ' 所有边界上的φ或 ∂φ/∂n 值,因而由上一小节证明了的唯一性定理可知,V ' 内的电场唯一地被确定。

对于第二种类型的问题,唯一性定理表述如下:设区域V 内由一些导体,给定导体之外的电荷分布ρ,给定各导体上的总电荷 Q i 以及V 的边界S 上的φ或 ∂φ/∂n 值,则V 内的电场唯一确定。

也就是说,存在唯一的解,它在导体以外满足泊松方程2/ϕρε∇=- (4.2---8) 在第i 个导体上满足总电荷条件(4.2---9) i i S Q dS n ϕε∂-=∂⎰(4.2---9)(n 为导体面的外法线)和等势面条件 iS i ϕϕ==常量, (4.2---10)以及在V 的边界 S 上具有给定的 φ| s 或 ∂φ/∂n | s 值。

证明 设有两个解φ'和φ" 满足上述条件,令,ϕϕϕ'''=-则φ满足20,ϕ∇=(V '体内) (4.2---11) 0,i S dS nϕ∂-=∂⎰ iS ϕ=常量 (4.2---12)S ϕ=0或Snϕ∂∂=0 (4.2---13)对区域 V ' 用公式()V d dV ϕϕϕϕ'∇⋅=∇⋅∇⎰⎰S22''()V V dV dV ϕϕϕ=∇+∇⎰⎰ (4.2---14)上式左边的面积分包括V 的边界S 以及每个导体的表面 S i 上的积分。

作为 V ' 的边界, S i 的法线指向导体内部。

若我们用n 表示导体向外的法线分量,由(4.2---12)式,在 S i 上的积分为0ii i S S d dS nϕϕϕϕ∂∇⋅=-=∂⎰⎰S 由(4.2---13)式,在S 上的面积分亦为零。

因而(4.2---14)式左边等于零。

该式右边最后一项由(4.2---11)式得零,因此,2()0dV ϕ∇=⎰ 由此得0ϕ∇=即φ'和φ" 至多只能相差一个常量,因而电场唯一确定。

当导体外的电势确定后,由边值关系 iS nϕεσ∂-=∂ (4.2---15)因而导体上的电荷面密度亦同时确定。

由本定理的证明可以看出电场与电荷的相互制约关系。

若空间内有一些导体,给定各导体上的总电荷后,在空间中就激发了电场。

同时导体上的电荷受到电场作用。

在静止情况,导体上的电荷分布使得导体表面为一个等势面。

因此,由导体上的总电荷和导体面为等势面的条件同时确定空间中的电场以及导体上的电荷面密度。

例 如图2-4,两同心导体球壳之间充以两种介质,左半部电容率为 ε1,右半部电容率为 ε2。

设内球壳带总电荷Q ,外球壳接地,求电场和球壳上的电荷分布。

解 设两介质内的电势、电场强度和电位移分别为 φ1, E 1,D 1 和 φ2 ,E 2,D 2。

由于左右两半是不同介质,因此电场一般不同于只有一种均匀介质时的球对称解。

在找尝试解时,我们先考虑两介质分界面上的边值关系21,t t E E = (4.2---16) 21,n n D D = (4.2---17) 如果我们假设E 仍保持球对称性,即 13Ar =r E ,(左半部) 23Ar=r E ,(右半部) (4.2---18) (A 为待定常数),则在分界面两侧电场与界面相切,并有相同数值。

因而边值关系(4.2---16)得到满足。

而且由于 D 2n = D 1n = 0 ,因而(4.2---17)式亦被满足。

球对称的E 再到体面上处处与球面垂直,因而保证导体球面为等势面。

为了满足内导体总电荷等于Q 的条件,我们计算内导体球面上的积分121122,S S d d d εε⋅=⋅+⋅=⎰⎰⎰D S E S E S Q (4.2---19)其中 S 1和 S 2 分别为左右半球面。

把(4.2---18)式代入得 122().A Q πεε+= 解得122()A πεε=+Q代入(4.2---18)式得 1312,2()rπεε=+QrE (左半部) 2312.2()r πεε=+QrE (右半部) (4.2---20)此解满足唯一性定理的所有条件,因此是唯一正确的解。

虽然 E 仍保持球对称性,但是D 和导体上的电荷面密度σ不具有球对称性。

设内导体球半径为a ,则球面上的电荷面密度为11111212,2()r r D E a εσεπεε===+Q(左半部)22222212.2()r r r D E aεσεπεε===+Q(右半部) 注意导体两半球上的面电荷密度是不同的,但E 却保持球对称性。

读者试解释这一点。

第21讲 习题解答:第35-36页,第7,8,9,11,12,13题。

7.有一内外半径分别为1r 和2r 的空心介质球,介质的介电常数为ε使介质内均匀带静止自由点荷f ρ求:(1) 空间各点的电场(2) 极化体电荷和极化面电荷分布解:(1)在1r 内取同心球面,以r (1r r <)为半径 ∵D ρ∇⋅=∴0SD d σ⋅=⎰⎰ ∴0DE ==在12r r r <<内取同心球面r ,233144()3f D d E r r r σεππρ⋅=⋅=-⎰⎰ ∴3313()3fr r E r r ρε-=在2r r >取同心球:23302144()3f D d S E r r r εππρ⋅=⋅=-⎰⎰ ∴333210()/3f E r r r r ρε=- 方向:f ρ为正,均为圆心射线方向,f ρ为负,均为汇聚圆心方向 (2)∴0000()(1)p f f p E D χεχεερχερρεεε=-∇⋅=-∇⋅=-∇⋅=-=- ∴1r r <或2r r >处是真空 ∴0p ρ= 在12r r r << 0(1)p f ερρε=- ∴1100p r r Eσε=== (1r r =)2332122200))()3((f r r p r r rEσρεεεεε==-=--3302122(1)3f r r r ερε-=- 2122211223333002121444440()(1)()(1)033r p p P r f f r r r drr r r r πσπσρπεεπρπρεε++=+--+--=⎰即,介质的总极化电荷为零。

相关文档
最新文档