一次函数典型难题
一次函数练习题难题

一次函数练习题难题一、选择题1. 下列函数中,是一次函数的是()A. y = 2x^2 + 1B. y = 3x + 4C. y = √x + 2D. y = 5/x2. 一次函数y = 3x 2的图象经过()A. 第一、二、三象限B. 第一、三象限C. 第一、二、四象限D. 第二、四象限3. 当k > 0时,一次函数y = kx + b的图象一定经过()A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第三、四象限二、填空题1. 一次函数的图象是一条______。
2. 一次函数y = 2x + 3的斜率为______,y轴截距为______。
3. 一次函数y = x + 5与y轴的交点坐标为______。
三、解答题1. 已知一次函数y = kx + b的图象经过点A(2, 3)和B(1, 4),求该一次函数的解析式。
2. 一次函数y = 2x + 5与x轴、y轴分别相交于点A、B,求线段AB的长度。
3. 已知一次函数y = 3x 1与y = x + 4相交于点P,求点P的坐标。
4. 在同一坐标系中,一次函数y = 2x + 3与y = x + 5的图象相交于点Q,求点Q的坐标。
5. 已知一次函数y = kx + 1的图象经过点(2, 5),且与y = x + 3平行,求k的值。
四、应用题1. 某商品的原价为1000元,商场进行打折促销,折后价格为800元。
设折后价格与原价的比例为k,求k的值。
2. 某公司生产一种产品,每件产品的成本为200元,售价为300元。
设公司每月生产x件产品,求公司每月的利润y(元)与生产数量x的函数关系式。
3. 甲、乙两地相距120公里,小明从甲地骑自行车前往乙地,速度为15公里/小时。
设小明骑行时间为t小时,求小明与甲地的距离s (公里)与时间t的函数关系式。
五、判断题1. 一次函数的图象是一条直线,所以它一定经过原点。
()2. 两个一次函数的斜率相同,则它们的图象一定平行。
初中数学一次函数难题汇编及答案

初中数学一次函数难题汇编及答案一、选择题1.如图1,在Rt △ABC 中,∠ACB=90°,点P 以每秒1cm 的速度从点A 出发,沿折线AC -CB 运动,到点B 停止.过点P 作PD ⊥AB ,垂足为D ,PD 的长y (cm )与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长是( )A .1.5cmB .1.2cmC .1.8cmD .2cm 【答案】B【解析】【分析】【详解】由图2知,点P 在AC 、CB 上的运动时间时间分别是3秒和4秒,∵点P 的运动速度是每秒1cm ,∴AC=3,BC=4.∵在Rt △ABC 中,∠ACB=90°,∴根据勾股定理得:AB=5.如图,过点C 作CH ⊥AB 于点H ,则易得△ABC ∽△ACH . ∴CHAC BC AB =,即AC BC3412CH CH AB 55⋅⨯=⇒==.∴如图,点E (3,125),F (7,0).设直线EF 的解析式为y kx b =+,则123k b {507k b =+=+,解得:3k 5{21b 5=-=. ∴直线EF 的解析式为321y x 55=-+. ∴当x 5=时,()3216PD y 5 1.2cm 555==-⨯+==. 故选B .2.如图,一次函数y =﹣x +4的图象与两坐标轴分别交于A 、B 两点,点C 是线段AB 上一动点(不与点A 、B 重合),过点C 分别作CD 、CE 垂直于x 轴、y 轴于点D 、E ,当点C 从点A 出发向点B 运动时,矩形CDOE 的周长( )A .逐渐变大B .不变C .逐渐变小D .先变小后变大【答案】B【解析】【分析】 根据一次函数图象上点的坐标特征可设出点C 的坐标为(m ,-m+4)(0<m<4),根据矩形的周长公式即可得出C 矩形CDOE =8,此题得解.【详解】解:设点C 的坐标为(m ,-m+4)(0<m <4),则CE=m ,CD=-m+4,∴C 矩形CDOE =2(CE+CD)=8.故选B .【点睛】本题考查了一次函数图象上点的坐标特征以及矩形的性质,根据一次函数图象上点的坐标特征设出点C 的坐标是解题的关键.3.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.4.如图,四边形ABCD 的顶点坐标分别为()()()()4,0,2,1,3,0,0,3A B C D ---,当过点B 的直线l 将四边形ABCD 分成面积相等的两部分时,直线l 所表示的函数表达式为( )A .116105y x =+B .2133y x =+ C .1y x =+D .5342y x =+ 【答案】D【解析】【分析】由已知点可求四边形ABCD 分成面积()113741422B AC y =⨯⨯+=⨯⨯=;求出CD 的直线解析式为y=-x+3,设过B 的直线l 为y=kx+b ,并求出两条直线的交点,直线l 与x 轴的交点坐标,根据面积有1125173121k k k k --⎛⎫⎛⎫=⨯-⨯+ ⎪ ⎪+⎝⎭⎝⎭,即可求k 。
一次函数难题

1、某油库有一大型储油罐,在开始的8分钟内,只开进油管,不开出油管,油罐的油进至24吨(原油罐没储油)后,将进油管和出油管同时打开16分钟,油罐内的油从24吨增至40吨,随后又关闭进油管,只开出油管,直至将油罐内的油放完,假设在单位时间内进油管与出油管的流量分别保持不变.(1)试分别写出这三段时间内油罐的储油量Q(吨)与进出油的时间t(分)的函数关系式.(2)在同一坐标系中,画出这三个函数的图象.4、如图,某加油飞机给一战斗机加油,Q1和Q2分别表示战斗机与加油机中的剩油量与时间t之间的关系。
①加油机最开始有多少油?将这些油全部加给战斗机需要多少分钟?②求加油过程中,战斗机的剩油量Q与时间t的函数关系式。
③加完油后战斗机按原速继续飞行,需10小时到达目的地,则油料是否够用?5、A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,S(千米)表示汽车与甲地的距离。
t(分)表示汽车行驶的时间,如图,L1、L2分别表示两辆汽车的s与t的关系。
(1)L1表示哪辆汽车到甲地的距离s与行驶时间t的关系?(2)汽车B的速度是多少?(3)求L1、L2分别表示两辆汽车的s与t的表达式?(4)2小时后,两辆车相距多少千米?(5)行驶多长时间后,A、B相遇?7、甲、乙两人同时从相距90 km的A地前往B地,甲乘汽车,乙骑摩托车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离y(km)与x(h)之间的函数关系图像.(1)求甲从B地返回A地的过程中,y与x之间的函数关系式,并写出自变量x的取值范围;(2)若乙出发后2 h和甲相遇,求乙从A地到B地用了多长时间?解:(1)设b kx y +=,根据题意得⎩⎨⎧=+=+905.103b k b k 60180(1.53).y x x =-+≤≤ (2)当2x =时,60218060y =-⨯+=∴骑摩托车的速度为60230÷=(km/h )∴乙从A 地到B 地用时为90303÷=(h )8、某电视台摄影组乘船往返于丽水(A),青田(B)两码头,在A、B间设立拍摄中心C,拍摄瓯江沿岸的景色,往返过程中,船在C、B处均不停留,离开码头A、B的距离S(千米)与航行的时间t(小时)之间的函数关系如图所示,根据图象提供的信息,解答下列问题:(1)船只从码头A→B,航行的时间为小时,航行的速度为千米/时;船只从码头B→A,航行的时间为小时,航行的速度为。
一次函数难题练习【含解析】

1.设b>a ,将一次函数y=bx+a 与y=ax+b 的图象画在同一平面直角坐标系内, ?则有一组a ,b 的取值,使得下列 4个图中的一个为正确的是()(A) (B) © (D)2 .若直线y=kx+b 经过一、二、四象限,则直线 y=bx+k 不经过第()象限.(A ) 一 ( B ) 二 ( C )三 (D )四3 .一次函数y=kx+2经过点(1, 1),那么这个一次函数( )(A ) y 随x 的增大而增大 (B ) y 随x 的增大而减小(C )图像经过原点 (D )图像不经过第二象限4 .无论m 为何实数,直线 y=x+2m 与y=-x+4的交点不可能在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3 3 5 .要得到y=- — x-4的图像,可把直线 y=- — x ().22(A )向左平移4个单位(B )向右平移4个单位(C )向上平移4个单位(D )向下平移4个单位6 .若函数y= ( m-5) x+ (4m+1) x 2 (m 为常数)中的y 与x 成正比例,则 m 的值为()/ A 、 1 (A ) m>-—4(B ) m>5(C ) m=-l4(D ) m=57 .若直线y=3x-1 与y=x-k 的交点在第四象限,则k 的取值范围是()1(A ) k<-(B ) 1 <k<1(C ) k>11(D ) k>1 或 k< —3338 .过点P(-1 , 3)直线,使它与两坐标轴围成的三角形面积为5, ?这样的直线可以作()(A) 4 条 (B) 3 条(C) 2 条(D) 1 条m+b b+c c+a9 •已知abc丰0,而且=p,那么直线y=px+p —定通过()cab(A)第一、二象限(B)第二、三象限(C)第三、四象限(D)第一、四象限10. 当-1 <x< 2时,函数y=ax+6满足y<10,则常数a的取值范围是( )(A) -4<a<0 ( B) 0<a<2(C) -4<a<2 且0 ( D) -4<a<21. B提示:由方程组bX 9的解知两直线的交点为(1, a+b), ?y = ax +b而图A中交点横坐标是负数,故图A不对;图C中交点横坐标是2工1, 故图C不对;图D冲交点纵坐标是大于a,小于b的数,不等于a+b,故图D不对;故选B.2. B 提示:•••直线y=kx+b经过一、二、四象限,二k°’对于直线y=bx+k,lb >0•/ k 0,图像不经过第二象限,故应选 B.b 03. B 提示:T y=kx+2 经过(1, 1), A仁k+2 ,二y=-x+2 ,•/ k=-1<0 ,A y随x的增大而减小,故B正确.•/ y=-x+2不是正比例函数,.••其图像不经过原点,故C错误.••• k<0, b=?2>0,「.其图像经过第二象限,故D错误.4. C5. D 提示:根据y=kx+b 的图像之间的关系可知,3 3 将y=- 3 x?的图像向下平移4个单位就可得到 y=- - x-4的图像.22•①若 a+b+步 0,则 p=(a b) (b c) (c a)=2;②若 a+b+c=0,贝卩 p= _ = ― =-1 ,c c•••当p=2时,y=px+q 过第一、二、三象限;当p=-1时,y=px+p 过第二、三、四象限,综上所述,y=px+p 一定过第二、三象限.10.6. C 提示:•••函数y= ( m-5) x+ (4m+1) x 中的y 与x 成正比例,7.m一5= 0,即4m 1=0,m = 5, i 1 m , I 41••• m=-,故应选C.49 . B 提示:「=b b ccc a=P,本逆王要考查一次国数与一次不春式°[当ti —I)时,jf —ii,满足A< 1口,所二0 成立©②当心(1时,妙=“『+庄是一次函埶目”随『的增加而增加、由一次函数圏象的性质可知,函数的垠咒值在』=2处取得.即2« + G < 10* 即” V £ 所1*^0 < < 2a③当rf < IjfJ, # = fl J + G是一次函数,且H随,r 的焙加而减*K由一次函数图象的性质可知,函数旳最大值在JU-]处取得,即-(i + 6< 10T即心一•所UZ-4 < tr < D s绵上所述.“的取值范围20 故本題正确答棗为D.211. (2016内蒙古包头市)如图,直线y x 4与x轴、y轴分别交于点A和点B,点C、3D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A . (-3, 0) B. (- 6, 0) 【答案】C.3C. ( , 0)25D . ( , 0)2试题分析:作点D关于x轴的对称点A、连接⑵交x轴于点P,此时PC+PD值最小.如團所示.丁点G D分别为线段討迟、勿的中点…•.点Q — 3, 2),点D(0, 2>.I点"和点D关于时故锵』・•・点少的坐标为(0, -2).「2 = —3 上+b设直线3’的解析式为尸昭打T直线C"过点匸(- h 2), D f (0, - 2),二有,解得:1 3 } CD f的解折式为$ =—卜一2 .b = -2 34 4 3 3^y = ^x-2中严0」则--x-2 = 0f解得:尸一「二点P的坐标为(一学0).故选C.学科网考点:1•一次函数图象上点的坐标特征;2•轴对称-最短路线问题;3 •最值问题.12. (2016四川省内江市)如图所示,已知点C (1, 0),直线y=-x+7与两坐标轴分别交于A, B两点,D , E分别是AB, OA上的动点,则△ CDE周长的最小值是_____________ . 【解析】—2 = 6【答案】10.试题分析:如團,点C关于0.4的对称点L( - 1,0片点C关于直线妙的对称点c ff (7,6〕,连接C「C" 与加交于点E ,与AB交于点D ,此时△DEC周长最小』AD£C的周长考点:1轴对称-最短路线问题;2 •—次函数图象上点的坐标特征; 3 •推理填空题.13. (2016四川省甘孜州)如图,已知一次函数y=kx+3和y= - x+b的图象交于点P (2, 4),则关于x的方程kx+3=- x+b的解是_____________ .【答案】x=2.【解析】试题分析:T已知一次函数y=kx+3和y=-x+b的图象交于点P(2, 4) , /•关于x的方程kx+3=-x+b的解是x=2,故答案为:x=2.考点:一次函数与一元一次方程.20. (2016四川省眉山市)若函数y =(m-1)x m是正比例函数,则该函数的图象经过第象限.【答案】二、四.【解析】试题分析;由题育得:l?w| = b且W1- 1=^0,解得;函数解析式为尸-比该函数的图象经过第二、四象限.故答案为:二*四.考点:1 •正比例函数的定义;2•正比例函数的性质.14. (2015广元)如图,把RI A ABC放在直角坐标系内,其中/ CAB=90 ° BC=5.点A、B的坐标分别为(1, 0)、(4, 0).将厶ABC沿x轴向右平移,当点C落在直线y = 2x —6上时,线段BC扫过的面积为()A . 4 B. 8 C. 16 D . 8、, 2n一【答案】C.【解析】试题分析:丁点禺R 的坐标分别为Cb 0>v (4, 0)…⑷=3, BC=5f \ /018=900, :AC=4f ?.点C 的坐标为(1, 4),当点Q 落在直线尸"-6上时…•■令円,得|ij4=2x-6,解得曲,二平移的距离为5 TT 二线段恥扫过的面积为4x4-10,故选C.学科网【解析】3.平行四边形的性质;4.平315. ( 2015盐城)如图,在平面直角坐标系xOy 中,已知正比例函数y x 与4y = -x 7的图象交于点A .次函数(2)设x 轴上有一点P( a ,0),过点P 作x 轴的垂线(垂线位于点A 的右侧),分别交 和y - -X • 7的图象于点 B 、C ,连接OC .若BC=7OA ,求△ OBC 的面积.52.一次函数图象上点的坐标特征;移的性质.【答案】(1) A (4, 3); (2) 28.试题分析:(1)麻立两一次函数的解析式求出恥y 的值即可得出虫点坐标;⑵ 过点/作疋轴的垂练 垂足为6在皿中根据勾股定理求岀①的长,故可得出眈的长,根 据P 0)可用。
一次函数难题精选

一次函数放作料题1.(2014·云南昆明)某校运动会需购买A、B两种奖品.若购买A 种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍.设购买A 种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式,求出自变量m的取值范围,并确定最少费用W的值.2、(2014年江苏南京)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h 后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?3.(2014•新疆)如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地.两车同时出发,匀速行驶.图2是客车、货车离C站飞路程y1,y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)填空:A,B两地相距千米;(2)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)客、货两车何时相遇?4.(2014年天津市)在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l 于点Q,当OQ=PQ时,试用含t的式子表示m.(2014•新疆)如图,直线y=﹣x+8与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位的速度沿AO方向向点O匀速运动,同时动点Q从B点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为t(s)(0<t≤3).(1)写出A,B两点的坐标;(2)设△AQP的面积为S,试求出S与t之间的函数关系式;(2013•滨州压轴题)根据要求,解答下列问题:(1)已知直线l1的函数表达式为y=x,请直接写出过原点且与l1垂直的直线l2的函数表达式;(2)如图,过原点的直线l3向上的方向与x轴的正方向所成的角为30°.①求直线l3的函数表达式;③把直线l3绕原点O按逆时针方向旋转90°得到的直线l4,求直线l4的函数表达式.(3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过原点且与直线y=﹣垂直的直线l5的函数表达式.。
一次函数难题汇编及答案解析

一次函数难题汇编及答案解析一、选择题1.一次函数y mx n =-+结果是( )A .mB .m -C .2m n -D .2m n -【答案】D【解析】【分析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,∴﹣m <0,n <0,即m >0,n <0,=|m ﹣n |+|n |=m ﹣n ﹣n=m ﹣2n ,故选D .【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.2.给出下列函数:①y =﹣3x +2:②y =3x ;③y =﹣5x:④y =3x ,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( ) A .①③B .③④C .②④D .②③ 【答案】B【解析】【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ②y =3x,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ③y =﹣5x,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; ④y =3x ,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; 故选:B .【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键.3.一次函数y=ax+b与反比例函数a byx-=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.【答案】C【解析】【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.【详解】A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项不正确;B. 由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=a bx-的图象过二、四象限,所以此选项不正确;C. 由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0,满足ab<0,∴a −b>0,∴反比例函数y=a b x-的图象过一、三象限, 所以此选项正确; D. 由一次函数图象过二、四象限,得a<0,交y 轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】 此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a 、b 的大小4.如图,已知一次函数22y x =-+的图象与坐标轴分别交于A 、B 两点,⊙O 的半径为1,P 是线段AB 上的一个点,过点P 作⊙O 的切线PM ,切点为M ,则PM 的最小值为( )A .2B 2C 5D 3【答案】D【解析】【分析】【详解】 解:连结OM 、OP ,作OH ⊥AB 于H ,如图,先利用坐标轴上点的坐标特征:当x=0时,y=﹣22,则A (0,2),当y=0时,﹣2=0,解得2,则B (2,0),所以△OAB 为等腰直角三角形,则2OA=4,OH=12AB=2, 根据切线的性质由PM 为切线,得到OM ⊥PM ,利用勾股定理得到22OP OM -21OP -当OP 的长最小时,PM 的长最小,而OP=OH=2时,OP 的长最小,所以PM 的最小值为2213-=【点睛】本题考查切线的性质;一次函数图象上点的坐标特征.5.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【答案】C【解析】【分析】根据一次函数的图象与系数的关系进行解答即可.【详解】∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,故选C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k <0,b>0时图象在一、二、四象限.6.一次函数y=kx+b(k<0,b>0)的图象可能是()A. B. C.D.【解析】【分析】根据k 、b 的符号来求确定一次函数y=kx+b 的图象所经过的象限.【详解】∵k<0,∴一次函数y=kx+b 的图象经过第二、四象限.又∵b >0时,∴一次函数y=kx+b 的图象与y 轴交与正半轴.综上所述,该一次函数图象经过第一象限.故答案为:C.【点睛】考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.7.若点()11,x y ,()22,x y ,()33,x y 都是一次函数1y x =--图象上的点,并且123y y y <<,则下列各式中正确的是( )A .123x x x <<B .132x x x <<C .213x x x <<D .321x x x <<【答案】D【解析】【分析】根据一次函数的性质即可得答案.【详解】∵一次函数1y x =--中10k =-<,∴y 随x 的增大而减小,∵123y y y <<,∴123x x x >>.故选:D .【点睛】本题考查一次函数的性质,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.8.某一次函数的图象经过点()1,2,且y 随x 的增大而减小,则这个函数的表达式可能是( )A .24y x =+B .24y x =-+C .31y xD .31y x -=-【答案】B【解析】【分析】 设一次函数关系式为y kx b =+,把(1,2)代入可得k+b=2,根据y 随x 的增大而减小可得k <0,对各选项逐一判断即可得答案.【详解】设一次函数关系式为y kx b =+,∵图象经过点()1,2,2k b ∴+=;∵y 随x 增大而减小,∴k 0<,A.2>0,故该选项不符合题意,B.-2<0,-2+4=2,故该选项符合题意,C.3>0,故该选项不符合题意,D.∵31y x -=-,∴y=-3x+1,-3+1=-2,故该选项不符合题意,故选:B .【点睛】本题考查一次函数的性质及一次函数图象上的点的坐标特征,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.9.如图,在矩形AOBC 中,A (–2,0),B (0,1).若正比例函数y=kx 的图象经过点C ,则k 的值为( )A .–12B .12C .–2D .2【答案】A【解析】【分析】根据已知可得点C 的坐标为(-2,1),把点C 坐标代入正比例函数解析式即可求得k.【详解】∵A(-2,0),B(0,1),∴OA=2,OB=1,∵四边形OACB 是矩形,∴BC=OA=2,AC=OB=1,∵点C 在第二象限,∴C 点坐标为(-2,1),∵正比例函数y =kx 的图像经过点C ,∴-2k=1,∴k=-12, 故选A. 【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C 的坐标是解题的关键.10.如图,在平面直角坐标系中,OABC 的顶点A 在x 轴上,定点B 的坐标为(6,4),若直线经过定点(1,0),且将平行四边形OABC 分割成面积相等的两部分,则直线的表达式( )A .+1y x =B .4455y x =-C .1y x =-D .33y x =-【答案】C【解析】【分析】 根据过平行四边形的中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形中心的坐标,再利用待定系数法求一次函数解析式解答即可.【详解】∵点B 的坐标为(6,4),∴平行四边形的中心坐标为(3,2),设直线l 的函数解析式为y kx b =+,则320k b k b +=⎧⎨+=⎩,解得11k b =⎧⎨=-⎩,所以直线l 的解析式为1y x =-. 故选:C .【点睛】本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.11.若一次函数y=kx+b 的图象经过一、二、四象限,则一次函数y=-bx+k 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】【分析】根据一次函数y=kx+b 图象在坐标平面内的位置关系先确定k ,b 的取值范围,再根据k ,b 的取值范围确定一次函数y=-bx+k 图象在坐标平面内的位置关系,从而求解.【详解】解:一次函数y=kx+b 过一、二、四象限,则函数值y 随x 的增大而减小,因而k <0;图象与y 轴的正半轴相交则b >0,因而一次函数y=-bx+k 的一次项系数-b <0,y 随x 的增大而减小,经过二四象限,常数项k <0,则函数与y 轴负半轴相交,因而一定经过二三四象限,因而函数不经过第一象限.故选:A .【点睛】本题考查了一次函数的图象与系数的关系.函数值y 随x 的增大而减小⇔k <0;函数值y 随x 的增大而增大⇔k >0;一次函数y=kx+b 图象与y 轴的正半轴相交⇔b >0,一次函数y=kx+b 图象与y 轴的负半轴相交⇔b <0,一次函数y=kx+b 图象过原点⇔b=0.12.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .k 0<【答案】B【解析】【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k 的取值范围.【详解】∵在一次函数y=(k-2)x+1中,y 随x 的增大而增大,∴k-2>0,∴k >2,故选B.【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.13.一次函数 y = mx +1m -的图像过点(0,2),且 y 随 x 的增大而增大,则 m 的值为( )A .-1B .3C .1D .- 1 或 3【答案】B【解析】【分析】 先根据函数的增减性判断出m 的符号,再把点(0,2)代入求出m 的值即可.【详解】∵一次函数y=mx+|m-1|中y 随x 的增大而增大,∴m >0.∵一次函数y=mx+|m-1|的图象过点(0,2),∴当x=0时,|m-1|=2,解得m 1=3,m 2=-1<0(舍去).故选B .【点睛】本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.如图,过点1(1,0)A 作x 轴的垂线,交直线2y x =于点1B ;点2A 与点O 关于直线11A B 对称;过点2(2,0)A 作x 轴的垂线,交直线2y x =于点2B ;点3A 与点O 关于直线22A B 对称;过点3A 作x 轴的垂线,交直线2y x =于点3B ;按3B 此规律作下去,则点n B 的坐标为( )A .(2n ,2n-1)B .(12n -,2n )C .(2n+1,2n )D .(2n ,12n +)【答案】B【解析】【分析】 先根据题意求出点A 2的坐标,再根据点A 2的坐标求出B 2的坐标,以此类推总结规律便可求出点n B 的坐标.【详解】∵1(1,0)A∴11OA =∵过点1(1,0)A 作x 轴的垂线,交直线2y x =于点1B∴()11,2B∵2(2,0)A∴22OA =∵过点2(2,0)A 作x 轴的垂线,交直线2y x =于点2B∴()12,4B∵点3A 与点O 关于直线22A B 对称∴()()334,0,4,8A B以此类推便可求得点A n 的坐标为()12,0n -,点B n 的坐标为()12,2n n - 故答案为:B .【点睛】本题考查了坐标点的规律题,掌握坐标点的规律、轴对称的性质是解题的关键.15.生物活动小组的同学们观察某植物生长,得到该植物高度y (单位:cm )与观察时间x (单位:天)的关系,并画出如图所示的图象(//CD x 轴),该植物最高的高度是( )A .50cmB .20cmC .16cmD .12cm【答案】C【解析】【分析】 设直线AC 的解析式为()0y kx b k =+≠,然后利用待定系数法求出直线AC 的解析式,再把50x =代入进行计算即可得解.【详解】解:设直线AC 的解析式为()0y kx b k =+≠∵()0,6A ,()30,12B∴61230b k b =⎧⎨=+⎩∴156k b ⎧=⎪⎨⎪=⎩ ∴165y x =+ ∴当50x =时,16y =∴该植物最高的高度是16cm .故选:C 【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.16.如图1,在Rt △ABC 中,∠ACB=90°,点P 以每秒1cm 的速度从点A 出发,沿折线AC -CB 运动,到点B 停止.过点P 作PD ⊥AB ,垂足为D ,PD 的长y (cm )与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长是( )A .1.5cmB .1.2cmC .1.8cmD .2cm【答案】B【解析】【分析】【详解】 由图2知,点P 在AC 、CB 上的运动时间时间分别是3秒和4秒,∵点P 的运动速度是每秒1cm ,∴AC=3,BC=4.∵在Rt △ABC 中,∠ACB=90°,∴根据勾股定理得:AB=5.如图,过点C 作CH ⊥AB 于点H ,则易得△ABC ∽△ACH .∴CH AC BC AB =,即AC BC 3412CH CH AB 55⋅⨯=⇒==. ∴如图,点E (3,125),F (7,0). 设直线EF 的解析式为y kx b =+,则 123k b {507k b=+=+, 解得:3k 5{21b 5=-=. ∴直线EF 的解析式为321y x 55=-+. ∴当x 5=时,()3216PD y 5 1.2cm 555==-⨯+==. 故选B .17.函数()312y m x =+-中,y 随x 的增大而增大,则直线()12y m x =---经过( ) A .第一、三、四象限B .第二、三、四象限C .第一、二、四象限D .第一、二、三象限 【答案】B【解析】【分析】根据一次函数的增减性,可得310m +>;从而可得10m --<,据此判断直线()12y m x =---经过的象限.【详解】 解:函数()312y m x =+-中,y 随x 的增大而增大,310m ∴+>,则13m >- 10m ∴--<,∴直线()12y m x =---经过第二、三、四象限.故选:B .【点睛】本题考查了一次函数的性质,正确掌握一次函数图象与系数的关系是解题的关键.即一次函数y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大,图象经过一、三象限;当k <0时,y 随x 的增大而减小,图象经过二、四象限;当b >0时,此函数图象交y 轴于正半轴;当b <0时,此函数图象交y 轴于负半轴.18.函数12y x =-与23y ax =+的图像相交于点(),2A m ,则( )A .1a =B .2a =C .1a =-D .2a =-【答案】A【解析】【分析】将点(),2A m 代入12y x =-,求出m ,得到A 点坐标,再把A 点坐标代入23y ax =+,即可求出a 的值.【详解】 解:函数12y x =-过点(),2A m , 22m ∴-=,解得:1m =-,()1,2A ∴-,函数23y ax =+的图象过点A ,32a ∴-+=,解得:1a =.故选:A .【点睛】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了一次函数图象上点的坐标特征.19.已知一次函数21,y x =-+当0x ≤时, y 的取值范围为( )A .1y ≤B .0y ≥C .0y ≤D .1y ≥【答案】D【解析】【分析】根据不等式的性质进行计算可以求得y 的取值范围.【详解】解:∵0x ≤∴2x -0≥ 21x -+1≥故选:D.【点睛】此题主要考查一次函数的图象与性质,既可以根据函数的图象与性质,也可以根据不等式的性质求解,灵活选择简便方法是解题关键.20.在同一平面直角坐标系中的图像如图所示,则关于21k x k x b <+的不等式的解为( ).A .1x >-B .2x <-C .1x <-D .无法确定【答案】C【解析】【分析】 求关于x 的不等式12k x b k x +>的解集就是求:能使函数1y k x b =+的图象在函数2y k x =的上边的自变量的取值范围.【详解】解:能使函数1y k x b =+的图象在函数2y k x =的上边时的自变量的取值范围是1x <-. 故关于x 的不等式12k x b k x +>的解集为:1x <-.故选:C .【点睛】本题考查了一次函数与一元一次不等式的关系,从函数的角度看,就是寻求使一次函数y ax b =+的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y kx b =+在x 轴上(或下)方部分所有的点的横坐标所构成的集合.利用数形结合是解题的关键.。
(专题精选)初中数学一次函数难题汇编及答案

解:根据题意,由图可知,甲走了480米后才发现了没带票,返回公司用时12分钟,行进过程中速度不变,
即:甲步行的速度为每分钟 米,乙步行的速度也为每分钟80米,
故A正确;
又∵甲乙再次相遇时是16分钟,
∴16分乙共走了 米,
由图可知,出租车的用时为16-12=4分钟,
∴出租车的速度为每分 米,
故B正确;
A. B.
C. D.
【答案】A
【解析】
【分析】
直接根据两函数图象的交点求出不等式的解集,再在数轴上表示出来即可.
【详解】
解:∵由函数图象可知,
当x>-2时,一次函数y=3x+b的图象在函数y=ax-3的图象的上方,
∴不等式3x+b>ax-3的解集为:x>-2,
在数轴上表示为:
故选:A.
【点睛】
本题考查的是一次函数与一元一次不等式,能利用函数图象求出不等式的解集是解答此题的关键.
A.﹣5B. C. D.7
【答案】C
【解析】
【分析】
把(-2,0)和(0,1)代入y=kx+b,求出解析式,再将A(3,m)代入,可求得m.
【详解】
把(-2,0)和(0,1)代入y=kx+b,得
,
解得
所以,一次函数解析式y= x+1,
再将A(3,m)代入,得
m= ×3+1= .
故选C.
【点睛】
本题考核知识点:考查了待定系数法求一次函数的解析式,根据解析式再求函数值.
所以此选项不正确;
故选C.
【点睛】
此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a、b的大小
3.已知过点 的直线 不经过第一象限.设 ,则s的取值范围是()
数学人教版八年级下册第2课时 一次函数经典较难题

一次函数经典较难题1.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( )A. (3,1)B. (3,43) C. (3, 53) D. (3,2) 2.点P 1(x 1,y 1) 、P 2(x 2,y 2)是一次函数y =-4x +3图象上的两点,当x 1<x 2<0时,则y 1与y 2的大小关系是( )A. y 1>y 2B. y 1<y 2C. y 1<y 2<0D. y 1>y 2 >0 3.若直线不经过第三象限,则下列不等式中,总成立的是 ( )A. b ﹥0B. b -a ﹤0C. b -a ﹥0D. a +b ﹥04.当b <0时,一次函数y =x +b 的图象大致是 ( )A. B. C. D. 5.在一次函数y =-x +3的图象上取一点P ,作PA ⊥x 轴,垂足为A ,作PB⊥y 轴,垂足为B ,且矩形OAPB 的面积为94,则这样的点P 共有( ) A. 4个 B. 3个 C. 2个 D. 1个6.如图,将斜边长为4的直角三角板放在直角坐标系xOy 中,两条直角边分别与坐标轴重合,点P 为斜边的中点.现将此三角板绕点O 顺时针旋转120°后,点P 的对应点的坐标是( )A. )1-B. (1,C. ()2-D. (2,-7.如图,已知直线l : y x =,过点A(0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点1A ;过点1A 作y 轴的垂线交直线l 于点1B ,过点1B 作直线l 的垂线y 轴于点A 2;……按此作法继续下去,则点A 4的坐标为( )A. 44B. 43C. 42D. 48.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)正方形RSKT顶点R的坐标为(-1,1),K的坐标为(2,-2),点M的坐标为(m,3),若在正方形RSKT边上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.9.五一期间,某电器商城推出了两种促销方式,且每次购买电器时只能使用其中一种方式:第一种是打折优惠,凡是在该商城购买家用电器的客户均可享受八折优惠;第二种方式是:赠送优惠券,凡在商城三天内购买家用电器的金额满400元且少于600元的,赠优惠券100元(优惠券在购买该物品时就可使用);不少于600元的,所赠优惠劵是购买电器金额的14,另再送50元现金.(1)以上两种促销方式中第二种方式,可用如下形式表达:设购买电器的金额为x(x ≥400)元,优惠券金额为y元,则:①当x=500时,y=;②当x≥600时,y=;(2)如果小张想一次性购买原价为x(400≤x<600)元的电器,可以使用优惠劵,在上面的两种促销方式中,试通过计算帮他确定一种比较合算的方式?(3)如果小张在促销期间内在此商城先后两次购买电器时都得到了优惠券(两次购买均未使用优惠券),第一次购买金额在600元以内,第二次购买金额超过600元,所得优惠券金额累计达800元,设他购买电器的金额为W元,W至少..应为多少?(W=支付金额-所送现金金额)10.已知一次函数364y x=+的图象与坐标轴交于A、B点(如图),AE平分∠BAO,交x轴于点E.(1)求点B 的坐标;(2)求直线AE 的表达式;(3)过点B 作BF ⊥AE ,垂足为F ,连接OF ,试判断△OFB 的形状,并求△OFB 的面积.(4)若将已知条件“AE 平分∠BAO ,交x 轴于点E ”改变为“点E 是线段OB 上的一个动点(点E 不与点O 、B 重合)”,过点B 作BF ⊥AE ,垂足为F .设OE=x ,BF=y ,试求y 与x 之间的函数关系式,并写出函数的定义域.11.同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y (cm )与燃烧时间x (min )的关系如图所示.(1)求乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式;(2)求点P 的坐标,并说明其实际意义;(3)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.12.A 校和B 校分别库存有电脑12台和6台,现决定支援给C 校10台和D 校8台.已知从A 校调运一台电脑到C 校和D 校的运费分别为40元和10元;从B 校调运一台电脑到C 校和D 校的运费分别为30元和20元.(1)设A 校运往C 校的电脑为x 台,请仿照下图,求总运费W (元)关于x 的函数关系式;(2)求出总运费最低的调运方案,最低运费是多少?13.已知菱形OABC 在坐标系中的位置如图所示, O 是坐标原点,点C ()1,2,点A 在x 轴上,点M(0,2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B C O y 2
y 1
x
y
P 一次函数压轴题专题
典型例题
题型一、A 卷压轴题
一、A 卷中涉及到的面积问题
例1、如图,在平面直角坐标系xOy 中,一次函数12
23
y x =-
+与x 轴、y 轴分别相交于点A 和点B ,直线2 (0)y kx b k =+≠经过点C (1,0)且与线段AB 交于点P ,并把△ABO 分成两部分.
(1)求△ABO 的面积; (2)若△ABO 被直线CP 分成的两部分的面积相等,求点P 的坐标及直线CP 的函数表达式。
二、A 卷中涉及到的平移问题
例2、 正方形ABCD 的边长为4,将此正方形置于平面直角坐标系中,使AB 边落在X 轴的正半轴上,且A 点的坐标是(1,0)。
①直线y=43x-8
3
经过点C ,且与x 轴交与点E ,求四边形AECD 的面积;
②若直线l 经过点E 且将正方形ABCD 分成面积相等的两部分求直线l 的解析式, ③若直线1l 经过点F ⎪⎭
⎫
⎝⎛-
0.23且与直线y=3x 平行,将②中直线l 沿着y 轴向上平移32个单位
交x 轴于点M ,交直线1l 于点N ,求NMF ∆的面积.
题型二、B 卷压轴题
一、一次函数与特殊四边形
例1、如图,在平面直角坐标系中,点A 、B 分别在x 轴、y 轴上,线段OA 、OB 的长(0A<OB)
是方程组⎩
⎨⎧=+-=632y x y
x 的解,点C 是直线x y 2=与直线AB 的交点,点D 在线段OC 上,
OD=52
(1)求点C 的坐标; (2)求直线AD 的解析式;
(3)P 是直线AD 上的点,在平面内是否存在点Q ,使以0、A 、P 、Q 为顶点的四边形是菱形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.
2、(2011•玉溪)如图,在Rt △OAB 中,∠A=90°,∠ABO=30°,OB=
83
3
,边AB 的垂直平分线CD 分别与AB 、x 轴、y 轴交于点C 、G 、D . (1)求点G 的坐标;
(2)求直线CD 的解析式;
(3)在直线CD 上和平面内是否分别存在点Q 、P ,使得以O 、D 、P 、Q 为顶点的四边形是菱形?若存在,求出点Q 得坐标;若不存在,请说明理由.
例3
、已知如图,直线y =+与x 轴相交于点A
,与直线y =相交于点P . ①求点P 的坐标.
②请判断OPA ∆的形状并说明理由.
③动点E 从原点O 出发,以每秒1个单位的速度沿着O →P →A 的路线向点A 匀速运动(E 不与点O 、A 重合),过点E 分别作EF ⊥x 轴于F ,EB ⊥y 轴于B .设运动t 秒时,矩形EBOF 与△OPA 重叠部分的面积为S .求: S 与t 之间的函数关系式.
练习1、如图,已知直线1l :2+-=x y 与直线2l :82+=x y 相交于点F ,1l 、2l 分别交x 轴
于点E 、G ,矩形ABCD 顶点C 、D 分别在直线1l 、2l ,顶点A 、B 都在x 轴上,且点B 与点G 重合。
(1)、求点F 的坐标和∠GEF 的度数; (2)、求矩形ABCD 的边DC 与BC 的长; (3)、若矩形ABCD 从原地出发,沿x 轴正方向以每秒1个单位长度的速度平移,设移动时间为t ()60≤≤t 秒,矩形ABCD 与△GEF 重叠部分的面积为s ,求s 关于t 的函数关系式,并写出相应的t 的取值范围。
例4、如图,已知直线的解析式为,直线与x轴、y轴分别相交于A、B两点,直线经过B、
C两点,点C的坐标为(8,0),又已知点P在x轴上从点A向点C移动,点Q在直线从点C向点B移动.点P、Q同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t 秒().
(1)求直线的解析式.
(2)设△PCQ的面积为S,请求出S关于t的函数关系式.
练习1、已知直线y=x+4与x轴、y轴分别交于A、B两点,
∠ABC=60°,BC与x轴交于点C.
(1)试确定直线BC的解析式.
(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发沿CBA向点A运动(不与C、A重合),动点P的运动速度是每秒1个单位长度,动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围.
(3)在(2)的条件下,当△APQ的面积最大时,y轴上有一点M,平面内是否存在一点N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标;若不存在,请说明理由.
练习1、如图,直线1l 过点A (0,4),点D (4,0),直线2l :12
1
+=x y 与x 轴交于点C ,两直线1l ,2l 相交于点B 。
(1)、求直线1l 的解析式和点B 的坐标; (2)、求△ABC 的面积。
练习2、如图,在平面直角坐标系中,直线1l :x y 3
=
与直线2l :b kx y += 相交于点A ,点A
的横坐标为3,直线2l 交y 轴于点B ,且OB OA
2
1
=。
(1)试求直线2l 函数表达式。
(6分)
(2)若将直线1l 沿着x 轴向左平移3个单位,交 y 轴于点C ,交直线2l 于点D ;试求 △BCD 的面积。
(4分)。
练习3、如图,在平面直角坐标系xOy 中,已知直线PA 是一次函数y=x+m (m>0)的图象,直线PB 是一次函数n n x y (3+-=>m )的图象,点P 是两直线的交点,点A 、B 、C 、Q 分别是两条直线与坐标轴的交点。
(1)用m 、n 分别表示点A 、B 、P 的坐标及∠PAB 的度数;
(2)若四边形PQOB 的面积是
2
11
,且CQ:AO=1:2,试求点P 的坐标,并求出直线PA 与PB 的函数表达式;
(3)在(2)的条件下,是否存在一点D ,使以A 、B 、P 、D 为顶点的四边形是平行四边形?若存在,求出点D 的坐标;若不存在,请说明理由。