滞回比较器又称施密特触发器

合集下载

方波——三角板发生电路

方波——三角板发生电路

图1 方波—三角波原理框图
注明:V o1是方波输出点、V o2为三角波输出点
假设t=0时积分电容上的初始电压为零,而滞回比较器的输出端为高电平,即
沈阳大学
沈阳大学
沈阳大学
图4 用DXP软件绘制的仿真原理图
、仿真元件列表
参数
元件名称标号说明
封装形式所属元件库
型号
集成
图5 设置参数表
图6 Vo1矩形波仿真输出波形
沈阳大学
图7 Vo2三角波仿真输出波形
沈阳大学
图8 波形同步比较
沈阳大学
图10 印制电路板3D显示
沈阳大学
沈阳大学
沈阳大学
课程设计任务书
方波-三角波发生器。

探究学习在滞回电压比较器教学中的应用

探究学习在滞回电压比较器教学中的应用

学习者探 究科学 性 问题
2证据 .
学 习者 自己确 定 什 么可 作 为 学习者在他人 的指导下则某 些数 数据 直接给出 ,学 习者进 行分析 数据 和分析方法都 给 了学 习 据 者
学 习者针对 问题 证据并进行收集 收集事实证据 3解 释 . 发形 成解 释
学 看总 结争 _ 让话 Z 后做 头 学习者在得到指导 的情况下搜 集 使用证 据形 成解释的可能途径已知 证据 已知 证据形成解释

探 究 学 习 的含 义
探 究学习具 有五大特征 : 习者 围绕科学性 问题展 开探究活 学 动 ;学习者获取可以帮助他们解释和评 价科 学性问题 的证据 ; 学
习者要根据事 实证据形成解 释 , 对科学性 问题做 出回答 ; 习者 学 通 过 比较其 他可能 的解 释 ,特别是那 些体现 出科 学性理解 的解
探 究 学 习 在 滞 回 电 压 比 较 器 教 学 中 的 应 用
口广西工业职业技术 学院 李仕游
【 摘
器教 学。
要】 引入探究学习先进理念, 利用其设计滞回电压比较
释, 来评 价他们 自己的解释 ; 学习者要交流 和论证 他们所提 出的
解释 。广西师范大学罗星凯教授与他的“ 科学探究性学 习的理论 与实验研究 ”课题组总结探究学 习的特征与不同程度的表现 , 如
表 2
输 入电压变化 同相输入端 电压 反相输人端 电压 L 5 输 出 M3 8
U 0
1a l .x 1 o m

UOl ‘ l l 雠
0 T壮 , uF
I 。
图 l 单限电压 比较器 电路及其 电压传输特性
( ) 二 小组 合 作探 究 如 下 问题

施密特触发器电路及工作原理详解

施密特触发器电路及工作原理详解

施密特触发器电路及工作原理详解什么叫触发器施密特触发电路(简称)是一种波形整形电路,当任何波形的信号进入电路时,输出在正、负饱和之间跳动,产生方波或脉波输出。

不同于比较器,施密特触发电路有两个临界电压且形成一个滞后区,可以防止在滞后范围内之噪声干扰电路的正常工作。

如遥控接收线路,传感器输入电路都会用到它整形。

施密特触发器一般比较器只有一个作比较的临界电压,若输入端有噪声来回多次穿越临界电压时,输出端即受到干扰,其正负状态产生不正常转换,如图1所示。

图 1 (a)反相比较器 (b)输入输出波形施密特触发器如图2 所示,其输出电压经由R1、R2分压后送回到运算放大器的非反相输入端形成正反馈。

因为正反馈会产生滞后(Hysteresis)现象,所以只要噪声的大小在两个临界电压(上临界电压及下临界电压)形成的滞后电压范围内,即可避免噪声误触发电路,如表1 所示图2 (a)反相斯密特触发器(b)输入输出波形上临界电压V TH下临界电压V TL滞后宽度(电压)V H V TL<噪声<V TH输入端信号νI上升到比V TH大时,触发电路使νO 转态输入端信号νI 下降到比V TL小时,触发电路使νO转态上、下临界电压差V H=V TH -V TL噪声在容许的滞后宽度范围内,νO维持稳定状态反相施密特触发器电路如图2 所示,运算放大器的输出电压在正、负饱和之间转换:νO= ±Vsat。

输出电压经由R1 、R2分压后反馈到非反相输入端:ν+= βνO,其中反馈因数=当νO为正饱和状态(+Vsat)时,由正反馈得上临界电压当νO为负饱和状态(- Vsat)时,由正反馈得下临界电压V TH与V TL之间的电压差为滞后电压:2R1图3 (a)输入、输出波形(b)转换特性曲线输入、输出波形及转换特性曲线如图3(b)所示。

当输入信号上升到大于上临界电压V TH时,输出信号由正状态转变为负状态即:νI >V TH→νo = - Vsat当输入信号下降到小于下临界电压V TL时,输出信号由负状态转变为正状态即:νI <V TL→νo = + Vsat输出信号在正、负两状态之间转变,输出波形为方波。

施密特触发器 (1)

施密特触发器 (1)

多谐振荡器(无稳电路)没有没有有有信号源(二)施密特触发器具体分析我们知道,门电路有一个阈值电压,当输入电压从低电平上升到阈值电压或从高电平下降到阈值电压时电路的状态将发生变化。

施密特触发器是一种特殊的门电路,与普通的门电路不同,施密特触发器有两个阈值电压,分别称为正向阈值电压和负向阈值电压。

在输入信号从低电平上升到高电平的过程中使电路状态发生变化的输入电压称为正向阈值电压(),在输入信号从高电平下降到低电平的过程中使电路状态发生变化的输入电压称为负向阈值电压()。

正向阈值电压与负向阈值电压之差称为回差电压()。

普通门电路的电压传输特性曲线是单调的,施密特触发器的电压传输特性曲线则是滞回的[图6.2.2(a)(b)]。

图6.2.1 用CMOS反相器构成的施密特触发器(a)电路(b)图形符号图6.2.2 图6.2.1电路的电压传输特性(a)同相输出(b)反相输出用普通的门电路可以构成施密特触发器[图6.2.1]。

因为CMOS门的输入电阻很高,所以的输入端可以近似的看成开路。

把叠加原理应用到和构成的串联电路上,我们可以推导出这个电路的正向阈值电压和负向阈值电压。

当时,。

当从0逐渐上升到时,从0上升到,电路的状态将发生变化。

我们考虑电路状态即将发生变化那一时刻的情况。

因为此时电路状态尚未发生变化,所以仍然为0,,于是,。

与此类似,当时,。

当从逐渐下降到时,从下降到,电路的状态将发生变化。

我们考虑电路状态即将发生变化那一时刻的情况。

因为此时电路状态尚未发生变化,所以仍然为,,于是,此公式中VT+应该位VT-。

通过调节或,可以调节正向阈值电压和反向阈值电压。

不过,这个电路有一个约束条件,就是。

如果,那么,我们有及,这说明,即使上升到或下降到0,电路的状态也不会发生变化,电路处于“自锁状态”,不能正常工作。

图6.2.4 带与非功能的TTL集成施密特触发器集成施密特触发器比普通门电路稍微复杂一些。

我们知道,普通门电路由输入级、中间级和输出级组成。

集成运算放大电路

集成运算放大电路

iL
uI R1
(2) 悬浮负载电压—电流变换器 悬浮负载电压—电流变换器电路如图27所示。
(a)反相电压—电流变换器
(b)同相电压—电流变换器
图27 悬浮负载的电压—电流变换器
图27(a)是一个反相电压—电流变换器,它是一个电流并联负反馈电 路,它的组成与反相放大器很相似,所不同的是现在的反馈元件(负载) 可能是一个继电器线圈或内阻为RL的电流计。流过悬浮负载的电流为
(a)基本电路
图28 电流—电压变换器
(b)典型电路
图28(a)是一个基本的电流—电压变换器,根据集成运放的“虚断”和 “虚地”概念,有 和 ,故
u 0
,从而有
i 0
i F 是一个经常用在光电转换电路中的典型电路。图中 iI 图28(b) V是光电二 极管,工作于反向偏置状态。
O F F I F 根据集成运放的“虚断”和“虚地”概念可得
u u 0 i i 0 iI iF
uO uI R1 RF RF uO uI R1
2. 同相比例运算电路 同相比例运算电路如图21所示。
图21同相运算电路 由虚短、虚断可得:
u u uI i i 0 i1 i F
RF u O (1 )u I R1
RF RX
4. 测量放大器 测量放大器电路如图33所示
图33 测量放大电路
由图33可知: (1) 热敏电阻 和R组成测量电桥。当电桥平衡时 信号,故输出 ,相当于共模
Rt ,若测量桥臂感受温度变化后,产生与 相应的微小
u S1 u S,这相当于差模信号,能进行有效地放大。 信号变化 uO 0 2
③ 不接基准电压,即 称为过零比较器。

滞回比较器电路设计

滞回比较器电路设计

课程设计说明书课程名称:电子技术课程设计设计题目:滞回比较器电路设计专业:电气工程及其自动化班级:电气1502班*名:***学号: ************ 指导教师:设计时间: 2017年6月19日—2017 年6月30日目录1 . 概述 (1)2 . Multisim单元电路设计、仿真及原理介绍 (1)2.1.电源设计 (1)2.2.滞回比较器 (2)2.3.窗口比较器电压部分 (4)3.2.1窗口比较器 (4)3.2.1窗口比较器的限幅 (5)3.2.1总电路图 (5)3. 仿真测试 (6)4. 设计心得体会 (7)5. 参考文献 (9)6. 附录 (10)1 概述压比较器可以看作是放大倍数接近"无穷大"的运算放大器。

电压比较器的功能:比较两个电压的大小(用输出电压的高或低电平,表示两个输入电压的大小关系): 当"+"输入端电压高于"-"输入端时,电压比较器输出为高电平; 当"+"输入端电压低于"-"输入端时,电压比较器输出为低电平。

电压比较器的作用:它可用作模拟电路和数字电路的接口,还可以用作波形产生和变换电路等。

利用简单电压比较器可将正弦波变为同频率的方波或矩形波。

简单的电压比较器结构简单,灵敏度高,但是抗干扰能力差,因此人们就要对它进行改进。

改进后的电压比较器有:滞回比较器和窗口比较器。

运放,是通过反馈回路和输入回路的确定"运算参数",比如放大倍数,反馈量可以是输出的电流或电压的部分或全部。

而比较器则不需要反馈,直接比较两个输入端的量,如果同相输入大于反相,则输出高电平,否则输出低电平。

电压比较器输入是线性量,而输出是开关(高低电平)量。

一般应用中,有时也可以用线性运算放大器,在不加负反馈的情况下,构成电压比较器来使用。

可用作电压比较器的芯片:所有的运算放大器。

常见的有LM324 LM358 uA741 TL081\2\3\4 OP07 OP27,这些都可以做成电压比较器(不加负反馈)。

单稳态触发器与施密特触发器原理及应用

单稳态触发器与施密特触发器原理及应用

单稳态触发器与施密特触发器原理及应用1.单稳态触发器的原理:单稳态触发器,也称为单稳多谐振荡器,是一个能够在输入信号发生变化时,产生一个固定时间的输出脉冲的元件。

它有两个稳态,一个是触发态,另一个是稳定态。

在触发态时,输出保持一个较低的电平;在稳定态时,输出保持一个较高的电平。

当输入信号发生变化时,触发器进入触发态并产生一个固定宽度的输出脉冲,然后返回稳定态。

单稳态触发器的原理是通过RC电路的充放电过程实现的。

当输入信号变为高电平时,电容开始充电,直到电压达到了触发器的门限电压。

这时,触发器进入稳定态。

而当输入信号变为低电平时,电容开始放电,直到电压降到触发器的触发电平。

这时,触发器进入触发态并产生一个固定宽度的输出脉冲。

2.单稳态触发器的应用:-消抖器:将机械开关产生的抖动信号转换为一个稳定的输出信号。

-一次性多谐振荡器:使用单稳态触发器的稳定脉冲输出来控制多谐振荡器的频率,实现一个稳定的脉冲输出。

-电平传递:将一个短时脉冲信号转换为一个稳定的电平信号输出。

3.施密特触发器的原理:施密特触发器,又称为滞回比较器,是一种具有正反馈的比较器。

它的输入信号必须经过两个不同的阈值电平才能改变输出状态。

施密特触发器有两个稳态,一个是高稳态,另一个是低稳态。

当输入信号超过上阈值电平时,触发器从低稳态切换到高稳态;当输入信号低于下阈值电平时,触发器从高稳态切换到低稳态。

施密特触发器的原理是利用正反馈产生滞回特性。

当输入信号超过上阈值电平时,正反馈会加强这个变化,使得输出电平更快地从低电平切换到高电平。

而当输入信号降低到下阈值电平时,正反馈会加强这个变化,使得输出电平更快地从高电平切换到低电平。

4.施密特触发器的应用:施密特触发器常用于数字信号处理中的滤波和门控电路等应用。

具体应用包括:-模数转换器:将模拟信号转换为数字信号时,需要滤除输入信号中的噪声和抖动。

施密特触发器可以用来实现这个滤波功能。

-数字信号选择器:当多个数字信号输入时,施密特触发器可以用来实现对一些信号的优先级选择。

斯密特触发器

斯密特触发器

斯密特触发器斯密特触发器又称斯密特与非门,就是具有滞后特性得数字传输门、①电路具有两个阈值电压,分别称为正向阈值电压与负向阈值电压②与双稳态触发器与单稳态触发器不同,施密特触发器属于"电平触发"型电路,不依赖于边沿陡峭得脉冲、它就是一种阈值开关电路,具有突变输入——输出特性得门电路、这种电路被设计成阻止输入电压出现微小变化(低于某一阈值)而引起得输出电压得改变、当输入电压由低向高增加,到达V+时,输出电压发生突变,而输入电压Vi由高变低,到达V-,输出电压发生突变,因而出现输出电压变化滞后得现象,可以瞧出对于要求一定延迟启动得电路,它就是特别适用得、从IC内部得逻辑符号与“与非”门得逻辑符号相比略有不同,增加了一个类似方框得图形,该图形正就是代表斯密特触发器一个重要得滞后特性。

当把输入端并接成非门时,它们得输入、输出特性就是:当输入电压V1上升到VT+电平时,触发器翻转,输出负跳变;过了一段时间输入电压回降到VT+电平时,输出并不回到初始状态而需输入V1继续下降到VT-电平时,输出才翻转至高电平(正跳变),这种现象称它为滞后特性,VT+—VT-=△VT。

△VT称为斯密特触发器得滞后电压。

△VT 与IC得电源电压有关,当电源电压提高时,△VT略有增加,一般△VT值在3V左右。

因斯密特触发器具有电压得滞后特性,常用它对脉冲波形整形,使波形得上升沿或下降沿变得陡直;还可以用它作电压幅度鉴别。

在数字电路中它也就是很常用得器件。

施密特触发器施密特波形图施密特触发器也有两个稳定状态,但与一般触发器不同得就是,施密特触发器采用电位触发方式,其状态由输入信号电位维持;对于负向递减与正向递增两种不同变化方向得输入信号,施密特触发器有不同得阀值电压。

门电路有一个阈值电压,当输入电压从低电平上升到阈值电压或从高电平下降到阈值电压时电路得状态将发生变化。

施密特触发器就是一种特殊得门电路,与普通得门电路不同,施密特触发器有两个阈值电压,分别称为正向阈值电压与负向阈值电压。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在单限比较器中,输入电压在阈值电压附近的任何微小变化,都会引起输出电压的跃变,不管这种电压是来自输入信号还是外部干扰。

因此,虽然单限比较器很灵敏,但是抗干扰能力差,滞回比较器具有滞回特性,即具有惯性,因而也就具有一定的抗干扰能力。

滞回比较器又称施密特触发器,迟滞比较器。

这种比较器的特点是当输入信号ui逐渐增大或逐渐减小时,它有两个阈值,且不相等,其传输特性具有“滞回”曲线的形状。

滞回比较器也有反相输入和同相输入两种方式。

UR是某一固定电压,改变UR值能改变阈值及回差大小。

以图4(a)所示的反相滞回比较器为例,计算阈值并画出传输特性
图4 滞回比较器及其传输特性 66666
(a)反相输入;(b)同相输入
1,正向过程
正向过程的阈值为
形成电压传输特性的abcd段
2,负向过程
负向过程的阈值为
形成电压传输特性上defa段。

由于它与磁滞回线形状相似,故称之为滞回电压比较器。

利用求阈值的临界条件和叠加原理方法,不难计算出图4(b)所示的同相滞回比较器的两个阈值
两个阈值的差值ΔUTH=UTH1–UTH2称为回差。

由上分析可知,改变R2值可改变回差大小,调整UR可改变UTH1和UTH2,但不影响回差大小。

即滞回比较器的传输特性将平行右移或左移,滞回曲线宽度不变。

图5 比较器的波形变换
(a)输入波形;(b)输出波形
例如,滞回比较器的传输特性和输入电压的波形如图6(a)、(b)所示。

根据传输特性和两个阈值(UTH1=2V, UTH2=–2V),可画出输出电压uo的波形,如图6(c)所示。

从图(c)可见,ui在UTH1与UTH2之间变化,不会引起uo的跳变。

但回差也导致了输出电压的滞后现象,使电平鉴别产生误差。

图6 说明滞回比较器抗干扰能力强的图
(a)已知传输特性;(b)已知ui 波形;
(c)根据传输特性和ui波形画出的uo波形
因为矩形波电压只有两种状态,不是高电平,就是低电平,所以电压比较器是它的重要组成部分;因为产生振荡,就是要求输出的两种状态自动地相互转换,所以电路中必须引入反馈;因为输出状态应按一定的时间间隔交替变化,即产生周期性变化,所以电路中要有延迟环节来确定每种状态维持的时间。

电路组成:如图所示为矩形波发生电路,它由反相输入的滞回比较器和RC电路组成。

RC回路既作为延迟环节,又作为反馈网络,通过RC充、放电实现输出状态的自动转换。

电压传输特性如图所示。

相关文档
最新文档