第十六章疲劳强度问题
r=c的零件疲劳强度计算题库

r=c的零件疲劳强度计算题库
以下是一些计算零件疲劳强度的题库问题:
1. 一根直径为10mm,长为100mm的钢杆,在往复载荷作用下,疲劳寿命为1000000次,应力幅为300MPa。
求该钢杆的
疲劳强度。
2. 一个轴承零件,在其设计寿命内,所受应力幅为200MPa,
应力比为0.5,疲劳极限强度为400MPa。
求该轴承零件的疲
劳寿命。
3. 一根直径为20mm,长度为200mm的钢杆,在往复疲劳载
荷作用下,其疲劳寿命为200000次。
已知该钢杆的疲劳强度
系数为0.9,求该钢杆的疲劳强度。
4. 一根直径为15mm,长度为150mm的钢杆,在往复载荷下,其疲劳寿命为50000次。
应力幅为250MPa,已知该钢杆的疲
劳强度系数为0.8,求该钢杆的疲劳极限强度。
5. 一个连接件,在其设计寿命内所受应力幅为150MPa,应力
比为0.4,疲劳强度系数为0.85。
已知该连接件的疲劳寿命为500000次,求该连接件的疲劳极限强度。
这些问题旨在考察学生对零件疲劳强度计算的理解和应用能力,需要运用相关的公式和知识来解决。
第 章 疲劳强度问题(共8张PPT)

(载荷不变, 轴转动)
A
My A Iz
yARsi nt
单辉祖-材料力学教程 AM Iz Rsint
起落架因飞机起落 而反复受载
5
第5页,共8页。
循环应力
循环应力-随时间循环变化的应力 (也称交变应力)
循环应力的变化幅度,可能是恒定 的, 也可能是变化的
恒幅循环应力
变幅循环应力
单辉祖-材料力学教程
的强度计算
§7 变幅循环应力与累积损伤概念简述
单辉祖-材料力学教程
2
第2页,共8页。
§1 引 言
循环应力 疲劳破坏及其特点
单辉祖-材料力学教程
3
第3页,共8页。
循环应力
实例
载荷 F 的大小循环变化,联杆内应力随之变化
每个齿随齿轮转动循环受力,齿内应力循环变化
单辉祖-材料力学教程
4
第4页,共8页。
在循环应力作用下,材料或构件产
生可见裂纹或完全断裂的现象-称
为疲劳破坏,简称疲劳
单辉祖-材料力学教程
7
第7页,共8页。
疲劳破坏特点
破坏时应力低于b ,甚至 s
即使是塑性材料,也呈现脆性断裂
断口通常呈现光滑与粗粒状两个区域
钢拉伸疲劳断裂
断
疲劳破坏过程,可理解为裂纹萌生、 逐渐扩展与最后断裂的过程
6
第6页,共8页。
疲劳破坏及其特点
疲劳破坏
在循环应力作用下,如果应力足够大,并经
载荷 F 的大小循环变化,联杆历内应应力随力之变的化 多次循环后,构件将产生可见裂纹 或完全断裂 起§3落S架-N因曲飞线机与起材落料而的反疲复劳受极载限
§7 即变使幅是循塑环性应材力料与,累也积呈损现伤脆概性念断简裂述 §7 提变高幅构循件环疲应劳力强与度累的积措损施伤概念简述 (载提荷高不构变件, 疲轴劳转强动度)的措施 §循2环循应环力应的力变及化其幅类度型,可能是恒定的, 也可能是变化的 起§3落S架-N因曲飞线机与起材落料而的反疲复劳受极载限 在循即环使应是力塑作性用材下料,,如也果呈应现力脆足性够断大裂,并经历应力的多次循环后,构件将产生可见裂纹或完全断裂 §32 循S-环N曲应线力与及材其料类的型疲劳极限 在循提环高应构力件作疲用劳下强,度材的料措或施构件产生可见裂纹或完全断裂的现象-称为疲劳破坏,简称疲劳 每个循齿环随应齿力轮与转疲动劳循的环概受念力,齿内应力循环变化 在循提环高应构力件作疲用劳下强,度材的料措或施构件产生可见裂纹或完全断裂的现象-称为疲劳破坏,简称疲劳 每个循齿环随应齿力轮与转疲动劳循的环概受念力,齿内应力循环变化 §76 变非幅对循称环与应弯力扭与组累合积 循损环伤应概力念下简构述件 起落架因飞机起落而反复受载
疲劳强度理论课件

疲劳强度通常以应力或应变的最 大值表示,单位为应力或应变单
位。
疲劳强度的影响因素
材料性质
不同材料的疲劳强度存在差异,与材料 的弹性模量、屈服点、抗拉强度等机械
性能有关。
环境条件
温度、湿度、腐蚀介质等环境因素对 疲劳强度有一定影响,例如高温环境
下材料的疲劳强度会降低。
应力集中
零件结构上的缺口、孔洞、台阶等引 起的应力集中,会降低疲劳强度。
通过分析汽车关键零部件如发动机、底盘和车身的应力分布和疲劳特性, 可以预测其疲劳寿命和可靠性。
此外,疲劳强度理论还用于优化汽车零部件的设计和制造工艺,以提高其 耐久性和可靠性,降低维修成本和提高车辆整体性能。
THANK YOU
疲劳强度理论课件
目录
• 疲劳强度理论概述 • 疲劳损伤累积理论 • 材料疲劳强度 • 疲劳寿命预测 • 疲劳强度的提高方法 • 疲劳强度理论的应用
01
疲劳强度理论概述
疲劳强度的定义
疲劳强度:材料在循环应力或应 变作用下,抵抗疲劳断裂的能力
。
疲劳强度是材料的一种机械性能 ,反映了材料在交变载荷作用下
其中,D为累积损伤,n为实际循环次数,N为疲 劳寿命。
基于损伤的疲劳寿命预测
总结词:基于损伤的疲劳寿命预测是通过分析材料内 部微观结构损伤的演化过程,预测结构的疲劳寿命。
输标02入题
详细描述:该方法关注材料内部微观结构的变化,如 位错、空洞和裂纹的形成和扩展,通过建立损伤演化 模型来描述疲劳过程中的微观结构变化。
线性累积损伤理论适用于低周疲劳和应力水平较高的高周疲劳。
非线性累积损伤理论
01
非线性累积损伤理论认为,疲劳 损伤的累积是非线性的,随着循 环次数的增加,疲劳损伤的增长 速度会逐渐减缓。
第十六章工程材料课后习题

nσ =
K σ a σ + σ mψ σ εσ β
σ −1
≥ nf
可得
F≤
150 × 106 N = 2.12 × 105 N = 212kN 1.95 1.7 × (162 × + 243 × 0.05) 0.78 × 1
外力的许用值取为
Fmax = 212kN
利用线性插入法可求得 σ b = 700MPa 钢材的
ε = 0.69 +
0.79 − 0.69 × (1200 − 700) = 0.755 = εσ 1200 − 400
根据 σ b 值及粗车加工情况查图 16-16 所示的表面质量因数,得
σ b = 1200 MPa 钢材的 β = 0.61
2
ξ = 0.96
又根据 R / d = 3 / 25 = 0.12 及 σ b = 600MPa ,查图 16-9,得
σ b = 400 MPa 钢材的 K σ0 = 1.38 σ b = 800 MPa 钢材的 K σ0 = 1.73
用线性插入法,得 σ b = 600MPa 钢材的
K σ0 = 1.38 +
拉−压 已知:D =50mm,d =40mm,R =5mm, σ b = 600MPa, σ − =170MPa, ψ σ = 0.05。杆表面 1
经精车加工。
题 16-6 图 解:1.计算工作应力
Fmax 100 × 10 3 N = σ max = = 7.96 × 10 7 Pa = 79.6MPa π A × (0.040) 2 m 2 4 F σ min = min = 7.96MPa A σ − σ min = 35.8MPa σ a = max 2 σ + σ min = 43.8MPa σ m = max 2
疲劳强度理论课件

疲劳强度理论课件是关于机械疲劳强度的详尽介绍,涵盖了定义、基本原理、 影响因素、试验方法、工程应用、控制与提高等内容。
疲劳强度概述
疲劳强度是指材料在持续循环加载下能够承受的最大应力水平。了解疲劳强 度的概念和重要性对机械设计和制造非常关键。
疲劳强度的基本原理
1 塑性应变
材料在疲劳加载下的变形形式,对材料的疲劳强度起到重要影响。
疲劳强度的试验方法
1
疲劳试验机
用于模拟真实工况下的疲劳加载,并采集疲劳试验数据。
2
疲劳试验的步骤
包括样品准备、加载设定、试验运行和数据分析等步骤。
3
结果处理和分析
通过对疲劳试验数据进行处理和分析,得出材料的疲劳强度。
疲劳强度的工程应用
疲劳寿命预测
疲劳裂纹扩展
通过疲劳试验数据和理论模型, 预测机械零件的使用寿命。
2 塑性应力
材料在疲劳加载下的应力状态,可能导致材料失效。
3 应力集中
材料中存在的几何形状或表面不平整引起的应力集中对疲劳强度产生负面影响。
疲劳强度的影响因素
材料的影响
不同材料的疲劳特性会导致 其疲劳强度的差异。
加载方式的影响
不同的加载方式会对材料的 疲劳强度产生不同的影响。
工作环境的影响
工作环境的温度、湿度等因 素会对材料的疲劳强度有一 定的影响。
探讨疲劳加载下裂纹扩展对材 料的损伤和失效。
疲劳断裂
了解疲劳断裂过程和失效原因, 避免机械部件发生疲劳破坏。
疲劳强度的控制与提高
1
设计防止疲劳破坏
通过合理的设计和工艺,避免疲劳破坏的发生。
2
增强材料的抗疲劳能力
通过改进材料的组成和结构,提高其抗疲劳能力。
机设习题集16-20

选择题16-1工作时承受弯矩并传递转矩的轴,称为 __________ 。
(A )心轴(B )转轴(C )传动轴16-2工作时承受弯矩,不传递转矩的轴,称为 _______________ 。
(A )心轴(B )转轴(C )传动轴16-3工作是以传递转矩为主,不承受弯矩或弯矩很小的轴,称为 _________________ 。
(A )心轴(B )转轴(C )传动轴 16-4自行车的前轴是 _____________ 。
(A )心轴(B )转轴(C )传动轴 16-5自行车的中轴是 _____________ 。
(A )心轴(B )转轴(C )传动轴 16-6轴环的用途是 ____________ 。
(A )作为轴加工时的定位面(B )提高轴的强度(C )提高轴的刚度(D )是轴上零件获得轴向 定位 16-7当轴上安装的零件要承受轴向力时,采用 _____________ 来进行轴向固定,所能承受的轴向力较 大。
(A )螺母(B )紧定螺钉(C )弹性挡圈16-8增大轴在载面变化处的过渡圆角半径,可以 _____________ 。
(A )使零件的轴向定位比较可靠 (B )降低应力集中,提高轴的疲劳强度( C )是轴的加工方便16-9轴上安装有过盈配合零件时,应力集中将发生在轴上()。
(A )轮毂中间部位(B )沿轮毂两端部位(C )距离轮毂端部为 1/3轮毂长度处16-10采用表面强化如辗压、喷丸、碳氮共渗、氮化、渗氮、高频或火焰表面淬火等方法,可显 著提高轴的()。
(A )静强度(B )刚度(C )疲劳强度(D )耐冲性能 16-11在轴的初步计算中,轴的直径是按()初步确定的。
(A )弯曲强度(B )扭转强度(C )复合强度(D )轴段上零件孔径 16-12减速器中,齿轮轴的承载能力主要受到()的限制。
(A )短期过载下的静力强度(B )疲劳强度(C )脆性破坏(D )刚度 16-13转轴上载荷和支点位置都已确定后,轴的直径可以根据( )来进行计算或校核。
第十六章轴——精选推荐

第十六章轴第十六章轴一、判断题:1.同一轴上不同轴段的键槽,最好布置在沿周向相隔180度。
A. 正确B. 错误2.轴上的定位轴肩高度应尽量大,以保证轴上零件轴向定位可靠。
A. 正确B. 错误3.当转轴作正反传递转矩T时,其疲劳强度计算中的应力折和系数α=1.0。
A. 正确B. 错误4.铁路车辆的车轴属于心轴。
A. 正确B. 错误5.在设计轴的尺寸时,支点位置和力作用位置均未确定的情况下,只能按扭转强度初步估算轴径。
A. 正确B. 错误6.某碳钢制成的轴若刚度不足,设计时改为性能更好的合金钢,可使刚度提高。
A. 正确B. 错误7.在一般情况下,轴的工作能力取决于它的刚度和强度,对于机床类工作机的主轴,后者尤为重要。
A. 正确B. 错误8.当转矩由轴上一个传动件输入,而由几个传动件输出时,应将输入的传动件布置在一端,并依次将转矩由输出轮输出,这样对提高轴的强度有利。
A. 正确B. 错误二、选择题:1.轴上滚动轴承的定位轴肩高度应()。
A. 大于轴承内圈端面的高度B. 小于轴承内圈端面的高度C. 与轴承内圈端面高度相等D. 愈大愈好2.在下列轴上周向定位零件中,()不能用于传递较大的力。
A. 紧定螺钉B. 键C. 花键D. 过盈配合3.轴的计算弯矩公式Mca中的系数α是考虑()A. 强度理论的要求B. 材料抗弯与抗扭性能的不同C. 弯曲应力σ和扭转切应力τ的循环特性r不同D. 同一轴径d的抗扭截面系数不同4.在下列轴上轴向定位零件中,()定位方式不能承受较大的轴向力。
A. 轴肩B. 套筒C. 圆螺母D. 紧定螺钉5.在下列轴上轴向定位零件中,()定位方式不产生应力集中。
A. 圆螺母B. 套筒C. 轴肩6.为了使轴上零件能靠紧轴肩而得到准确可靠定位,轴肩处圆角半径r与相配零件孔端部圆角半径R间关系应为()。
A.r大于RB.可任意选定C. r小于RD. r小于或等于R7.转动的轴,受不变的载荷,其所受弯曲应力的性质为()。
疲劳强度的计算

摘要:零件的疲劳强度是一个值得深刻探讨的问题,在众多领域有着至关重要的地位,零件的疲劳强度决定了其疲劳寿命,也就决定了对零件的选择和对这个器件的设计。
本论文在参考多方资料,以及在平日学习中积累总结的经验之后,对零件疲劳强度的计算有了一些结论,得出影响导致零件疲劳的原因有破坏应力与循环次数之间量的变化影响,静应力的影响,应力集中的影响,零件绝对尺寸的影响,表面状态与强化的影响等方面。
在分析零件疲劳产生原因之后,得出许多关系变化图与计算方法。
运用这些计算方法,对零件疲劳极限进行了计算上的确定。
并总结出疲劳强度在一些条件下的相关计算方法,如在简单应力状态,复杂应力状态下的不同。
对疲劳强度安全系数的确定也进行了一系列分析,最后,尝试建立了疲劳强度的统计模型。
Abstract:The fatigue strength of parts is a worthy of deep discussion,have a vital role in many fields, the fatigue strength of parts determines its fatigue life, also decided on the part of the selection and the device design.This paper in reference to various data, and after the usual study accumulation experience, calculation of the fatigue strength of parts have some conclusion, that caused damage should change between force and the number of cycles of the causes of fatigue parts, the influence of static stress, effect of stress concentration, affects the absolute size, surface state and strengthening effect etc.. After the analysis of fatigue causes, draw many relationship graph and calculation method. Using the calculation method of fatigue limit, determined the calculation. And summarizes the related calculation under some conditions the method of fatigue strength, as in the simple stress state, the complex stress state under the different. Determination of the fatigue strength safety factor is also carried out a series of analysis, finally, try to establish a statistical model of fatigue strength.关键词:零件疲劳寿命疲劳强度Key word:Spare parts Fatigue life Fatigue strength目录1、疲劳强度的基本规律…………………………………………………1.1、破坏应力和循环次数之间量的关系………………………………1.2、疲劳曲线方程式……………………………………………………1.3、静应力对疲劳强度的影响………………………………………………………1.4、应力集中对疲劳强度的影响……………………………………………………1.5、零件绝对尺寸对疲劳强度的影响………………………………………………1.6、表面液态与强化对疲劳强度的影响……………………………………………2、零件疲劳极限的确定…………………………………………………2.1、试验确定……………………………………………………………2.2、计算-试验确定……………………………………………………3、疲劳强度条件…………………………………………………………3.1、简单应力状态………………………………………………………3.2、复杂应力状态………………………………………………………4、疲劳强度安全系数的确定……………………………………………4.1、安全系数的基本理论………………………………………………4.2、复杂应力状态下的疲劳强度安全系数……………………………4.3、不稳定载荷作用时疲劳强度安全系数的确定……………………5、疲劳强度的统计模型…………………………………………………6、总结……………………………………………………………………1、疲劳强度的基本规律疲劳破裂时机器零件破坏的主要原因,并且由于破裂时突然发生的,往往会造成严重的后果,因此对零件疲劳强度进行分析计算时很重要的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 16 章 疲劳强度问题
疲劳强度问题
结 构 的 构 件 或 机 械 、 仪 表 的 零 部 件 在 交 变 应 力 ( alternative stress)作用下发生的失效,称为疲劳失效,简称为疲劳(fatigue)。 对于矿山、冶金、动力、运输机械以及航空航天等工业部门,疲劳是 零件或构件的主要失效形式。统计结果表明,在各种机械的断裂事故 中,大约有 80%以上是由于疲劳失效引起的。因此,对于承受交变应 力的设备,疲劳分析在设计中占有重要的地位。
最小应力 应力幅值
1.循环应力与疲劳破坏
应力比-应力循环中最小应力与最大应力之比
r Smin S max
S S min
max
1.循环应力与疲劳破坏
对称循环-应力比 r = -1 的应力循环
1.循环应力与疲劳破坏
脉冲循环-应力比 r = 0 的应力循环
1.循环应力与疲劳破坏
疲劳失效特征与失效原因分析
光滑区域
1.循环应力与疲劳破坏
晶界
滑移带
初始裂纹
1.循环应力与疲劳破坏
初始缺陷
滑移
滑移带
疲劳破坏过程
初始裂纹(微裂纹)
脆性断裂 宏观裂纹扩展 宏观裂纹
2. 疲劳极限与应力-寿命曲线
疲劳极限- 疲劳强度设计的依据 疲劳极限-经过无穷多次应力循环而 不发生疲劳失效时的最大应力值。又称为 持久极限(endurance limit).
构件外形的影响-有效应力集中因数Kσ, Kτ 零件尺寸的影响-尺寸因数 ε 表面加工质量的影响-表面质量因数 β
3. 影响疲劳寿命的因素
构件外形的影响
在构件或零件截面形状和尺寸突变处(如阶梯轴轴 肩圆角、开孔、切槽等),局部应力远远大于按一般理论 公式算得的数值,这种现象称为应力集中。显然,应力 集中的存在不仅有利于形成初始的疲劳裂纹,而且有利 于裂纹的扩展,从而降低零件的疲劳极限。
零件承受弯曲或扭转时,表层应力最大,对于几何
形状有突变的拉压构件,表层处也会出现较大的峰值应 力。因此,表面加工质量将会直接影响裂纹的形成和扩 展,从而影响零件的疲劳极限。
表面加工质量对疲劳极限的影响,用表面质量
因数度量:
1
1
式中, -1和(-1)β分别为磨削加工和其它加工时的对称循
环疲劳极限。
ma x
K fσ
max
n
1 d
1
ma x
K fBiblioteka axn n σ τ —工作安全因数;
1、 1 — 光滑小试样在对称应力循环下的疲劳极限;
Kfσ 、Kfτ — 有效应力集中因数;
—尺寸因数;
—表面质量因数。
4. 基于有限寿命设计方法的疲劳强度
考虑到上一节中关于应力集中、尺寸和表面加工 质量的影响,正应力和剪应力循环时的工作安全因数 分别为
对于对称 正应力循环
1
1
n f
K n f
1
强度条件为
max 1
K n f
1
4. 基于有限寿命设计方法的疲劳强度
n
1 d
1
疲劳强度已从经典的无限寿命设计发展到现代的有限寿命设计和可 靠性分析。累积损伤理论为解决疲劳寿命问题提供了重要基础及工程计 算方法。零件、构件以至设备的寿命、可靠性等已成为国内外市场上产 品竞争的重要指标。
这一部分的主要内容包括:疲劳失效的主要特征与失效原因简述; 疲劳极限及其影响因素;线性累积损伤理论以及有限寿命和无限寿命 的疲劳强度设计方法等。
在弹性范围内,应力集中处的最大应力(又称峰值
应力)与名义应力的比值称为理论应力集中因数。用Kt
表示
3. 影响疲劳寿命的因素
零件尺寸对疲劳极限的影响用尺寸因数
度量:
1
d
1
式中, -1和(-1)d分别为试样和光滑零件在对称
循环下的疲劳极限。上式也适用于剪应力循环的
情形。
3. 影响疲劳寿命的因素
表面加工质量的影响-表面质量因数
疲劳失效(破坏)-材料与构件在交变应力 作用下的失效(破坏),称为疲劳失效 (fatigue failure),简称疲劳(fatigue)。
1.循环应力与疲劳破坏
承受交变应力作用的构件或零部件,大部分 都在规则或不规则变化的应力作用下工作。
t
t
t
1.循环应力与疲劳破坏
交变应力的若干名词和术语
最大应力 平均应力
疲劳极限由疲劳实验确定.
2. 疲劳极限与应力-寿命曲线
疲劳试验装置
疲劳试样
2. 疲劳极限与应力-寿命曲线
实际结构疲劳试验装置
2. 疲劳极限与应力-寿命曲线
应力-寿命曲线 (S-N曲线)
2. 疲劳极限与应力-寿命曲线
每一应力水平有一组试样的数据
O
2. 疲劳极限与应力-寿命曲线
条件疲劳极限
对于有渐近线的S-N曲线,规定经
历107次应力循环而不发生疲劳破坏,即 认为可以承受无穷多次应力循环。
对于没有渐近线的S-N曲线,规定经 历2×107次应力循环而不发生疲劳破坏, 即认为可以承受无穷多次应力循环。
3. 影响疲劳寿命的因素
前面介绍了光滑小试样的疲劳极限,并不是零件的疲 劳极限,零件的疲劳极限则与零件状态和工作条件有关。 零件状态包括应力集中、尺寸、表面加工质量和表面强化 处理等因素;工作条件包括载荷特性、介质和温度等因素。 其中载荷特性包括应力状态、应力比、加载顺序和载荷频 率等。
疲劳强度问题
1. 循环应力与疲劳破坏 2. 疲劳极限与应力-寿命曲线 3. 影响疲劳寿命的因素 4. 基于有限寿命设计方法的疲劳强度
1.循环应力与疲劳破坏
疲劳源
飞传弹机动簧轴的的的疲疲疲劳劳劳失失失效效效
(破 坏)
1.循环应力与疲劳破坏
交变应力-一点的应力若随时间而变化,这 种应力称为交变应力或循环应力(alternative stress)
破坏时,名义应力值远低于材料的静载强 度极限;
交变应力作用下的疲劳破坏需要 经过一定数量的 应力循环;
破坏前没有明显的塑性变形,即使韧性很好的材料, 也会呈现脆性断裂;
同一疲劳断口,一般都有明显的光滑区域和颗粒状 区域。
1.循环应力与疲劳破坏
同一疲劳断口,
一般都有明显的光滑 区域和颗粒状区域。
颗粒状区域