含绝对值不等式的解法含答案
01绝对值不等式(含经典例题+答案)

绝对值不等式一、绝对值三角不等式1.定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.2.定理2:如果a,b,c是实数,则|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤a x+b≤c ;(2)|a x+b|≥c⇔a x+b≥c或a x+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤ax+b≤c ;(2)|a x+b|≥c⇔ax+b≥c或ax+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.1.不等式|a|-|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.2.|x-a|+|x-b|≥c表示到数轴上点A(a),B(b)距离之和大于或等于c的所有点,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.例4:若不等式|x+1|+|x-2|≥a对任意x∈R恒成立,则a的取值范围是________.解:由于|x+1|+|x-2|≥|(x+1)-(x-2)|=3,所以只需a≤3即可.若本题条件变为“∃x∈R使不等式|x+1|+|x-2|<a成立为假命题”,求a的范围.解:由条件知其等价命题为对∀x∈R,|x+1|+|x-2|≥a恒成立,故a≤(|x+1|+|x-2|)min,又|x+1|+|x-2|≥|(x+1)-(x-2)|=3,∴a≤3.例5:不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则实数a的取值范围是________.解:由绝对值的几何意义知:|x-4|+|x+5|≥9,则log3(|x-4|+|x+5|)≥2所以要使不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则需a<2.例6:某地街道呈现东——西,南——北向的网络状,相邻街距都为1,两街道相交的点称为格点.若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5),(6,6)为报刊零售点,请确定一个格点(除零售点外)________为发行站,使6个零售点沿街道到发行站之间的路程的和最短.解:设格点(x,y)(其中x,y∈Z)为发行站,使6个零售点沿街道到发行站之间的路程的和最短,即使(|x+2|+|y-2|+(|x-3|+|y-1|)+(|x-3|+|y-4|)+(|x+2|+|y-3|)+(|x-4|+|y-5|)+(|x-6|+|y-6|)=[(|x+2|+|x-6|)+(|x+2|+|x-4|)+2|x-3|]+[|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|]取得最小值的格点(x,y)(其中x,y∈Z).注意到[(|x+2|+|x-6|)+(|x+2|+|x-4|) +2|x-3|]≥|(x+2)-(x-6)|+|(x+2)-(x-4)|+0=14,当且仅当x=3取等号;|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|=(|y-1|+|y-6|)+(|y-2|+|y-5|+(|y-3|+|y-4|)≥|(y-1)-(y-6)|+|(y-2)-(y-5)|+|(y-3)-(y-4)|=9,当且仅当y=3或y=4时取等号.因此,应确定格点(3,3)或(3,4)为发行站.又所求格点不能是零售点,所以应确定格点(3,3)为发行站.1.对绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.2.该定理可以强化为:||a|-|b||≤|a±b|≤|a|+|b|,它经常用于证明含绝对值的不等式.3.对于求y=|x-a|+|x-b|或y=|x+a|-|x-b|型的最值问题利用绝对值三角不等式更简洁、方便.例7:设函数f(x)=|x-a|+3x,其中a>0.(1)当a=1时,求不等式f(x)≥3x+2的解集;(2)若不等式f(x)≤0的例9:已知关于x的不等式|2x+1|+|x-3|>2a-32恒成立,求实数a的取值范围.y =⎩⎪⎨⎪⎧ -3x +2,x <-12,x +4,-12≤x <3,3x -2,x ≥3,∴当x =-12时,y =|2x +1|+|x -3|取最小值72,∴72>2a -32,即得a <52. 例10:已知f (x )=1+x 2,a ≠b ,求证:|f (a )-f (b )|<|a -b |.解:∵|f (a )-f (b )|=|1+a 2-1+b 2|=|a 2-b 2|1+a 2+1+b 2=|a -b ||a +b |1+a 2+1+b 2, 又|a +b |≤|a |+|b |=a 2+b 2<1+a 2+1+b 2,∴|a +b |1+a 2+1+b 2<1.∵a ≠b ,∴|a -b |>0.∴|f (a )-f (b )|<|a -b |.例11:已知a ,b ∈R 且a ≠0,求证:|a |2|a |≥|a |2-|b |2. 证明:①若|a |>|b |,则左边=|a +b |·|a -b |2|a |=|a +b |·|a -b ||a +b +a -b |≥|a +b |·|a -b ||a +b |+|a -b |=11|a +b |+1|a -b |. ∵1|a +b |≤1|a |-|b |,1|a -b |≤1|a |-|b |,∴1|a +b |+1|a -b |≤2|a |-|b |.∴左边≥|a |-|b |2=右边,∴原不等式成立. ②若|a|=|b|,则a 2=b 2,左边=0=右边,∴原不等式成立.③若|a|<|b|,则左边>0,右边<0,原不等式显然成立.综上可知原不等式成立.证明:|f(x)-f(a)|=|x 2-x +43-a 2+a -43|=|(x -a)(x +a -1)|=|x -a|·|x +a -1|.∵|x -a|<1, ∴|x|-|a|≤|x -a|<1.∴|x|<|a|+1.∴|f(x)-f(a)|=|x -a|·|x +a -1|<|x +a -1|≤|x|+|a|+1<2(|a|+1). 例13:已知函数f (x )=log 2(|x -1|+|x -5|-a ).(1)当a =2时,求函数f (x )的最小值;(2)当函数f (x )的定义域为R 时,求实数a 的取值范围.解:函数的定义域满足|x -1|+|x -5|-a >0,即|x -1|+|x -5|>a .(1)当a =2时,f (x )=log 2(|x -1|+|x -5|-2),设g (x )=|x -1|+|x -5|,则g (x )=|x -1|+|x -5|=⎩⎪⎨⎪⎧ 2x -6,x ≥5,4,1<x <5,6-2x ,x ≤1,g (x )min =4,f (x )min =log 2(4-2)=1.(2)由(1)知,g (x )=|x -1|+|x -5|的最小值为4,|x -1|+|x -5|-a >0,∴a <4.∴a 的取值范围是(-∞,4). x -4|-|x -2|>1.解:(1)f (x )=⎩⎪⎨⎪⎧ -2, x >4,-2x +6, 2≤x ≤4,2, x <2.则函数y =f (x )的图像如图所示.(2)由函数y =f (x )的图像容易求得不等式|x -4|-|x -2|>1的解集为5,2⎛⎫-∞ ⎪⎝⎭。
含绝对值不等式的解法(1)

题型四 | f (x) | g(x) , | f (x) | g(x)
不等式两边平方法化为 | f (x) |2 g(x) 2 , | f (x) |2 g(x) 2
作业:解下列不等式。
1、|2x-3|<5x 2、|x2-3x-4|<4 3、| x-1 | > 2( x-3) 4、2x 1 x 2 5. x+|2x+3|>2.
数 都 不 是 原 不 等 式 的 解。 将 点A向 左 移 动1个 单 位 到 点A1, 这 时 有A1 A A1B 5; 同 理, 将 点B向 右 移 动 一 个 单 位 到 点B1, 这 时 也 有B1 A B1B 5, 从 数 轴 上 可 以 看 到 点A1与B1之 间 的 任 何 点 到 点A, B的 距 离 之 和 都 小 于5; 点A1的 左 边 或 点B1的 右 边 的 任 何 点 到 点A,, 的 距 离 之 和 都 大 于。 故 原 不 等
是
.
2 x 0,x 2, x ,2
【做一做】 (3)若不等式|2-x|>2-x成立,则实数x的取值范围
是
.
解析:依题意 x-2<0,解得 x<2.
答案: -∞,2
变式例题:
如果把|x|<2中的x换成“x-1”,也就是 | x-1 | <2如何解?
如果把|x|>2中的x换成“3x-1”,也就 是 | 3x-1 | >2如何解?
绝对值不等式的解法(一) 郑慧
复习绝对值的意义:
代数的意义
x X>0 |x|= 0 X=0
- x X<0 一个数的绝对值表示:
几何意义
数轴上与这个数对应的 点到原点的距离,|x|≥0
x2
含绝对值不等式的解法(含答案)

含绝对值的不等式的解法一、 基本解法与思想解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。
(一)、公式法:即利用a x >与a x <的解集求解。
主要知识:1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。
2、a x >与a x <型的不等式的解法。
当0>a 时,不等式>x 的解集是{}a x a x x -<>或,不等式a x <的解集是}a x a x <<-;当0<a 时,不等式a x >的解集是{}R x x ∈不等式a x <的解集是∅;3.c b ax >+与c b ax <+型的不等式的解法。
把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。
当0>c 时,不等式c b ax >+的解集是{}c b ax c b ax x -<+>+或,不等式c b ax <+的解集是{}c b ax c x <+<-;当0<c 时,不等式c b ax >+的解集是{}R x x ∈不等式c bx a <+的解集是∅;例1 解不等式32<-x分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。
答案为{}51<<-x x 。
(解略)(二)、定义法:即利用(0),0(0),(0).a a a a a a >⎧⎪==⎨⎪-<⎩去掉绝对值再解。
例2。
解不等式22x xx x >++。
分析:由绝对值的意义知,a a =⇔a ≥0,a a =-⇔a ≤0。
解:原不等式等价于2xx +<0⇔x(x+2)<0⇔-2<x <0。
高二数学绝对值不等式试题答案及解析

高二数学绝对值不等式试题答案及解析1.设函数(1)解不等式;(2)求函数的最小值.【答案】(1);(2).【解析】(1)解含绝对值的不等式,关键是去掉绝对值符号,其方法有三种:①定义法;②平方法;③分区间讨论法,这里用的是分区间讨论法,遇到多个绝对值时常用此方法;(2)求绝对值函数的值域,通常是通过分区间讨论,去掉绝对值符号,将绝对值函数改写成分段函数,然后就每段求的范围,最后再将每段求得的范围求并集,注意不是求交集,从而得到绝对值函数的值域.试题解析:(1)不等式等价于:①;②;③,综合①②③得不等式的解集为:(2)①当时,;②当时,③当时,综合①②③得函数的值域为,因此求函数的最小值为.【考点】1.含绝对值的不等式的解法;2.绝对值函数的值域的求法;3.分类讨论思想.2.已知定义在R上的函数的最小值为.(1)求的值;(2)若为正实数,且,求证:.【答案】(1);(2)证明见解析.【解析】解题思路:(1)利用求得的最小值;(2)利用证明即可.规律总结:不等式选讲内容,一般难度不大,主要涉及绝对值不等式和不等式的证明,证明或求最值,要灵活选用有关定理或公式.试题解析:(1)因为,当且仅当时,等号成立,所以的最小值等于3,即.(2)由(1)知,又因为是正数,所以,即.【考点】1.绝对值不等式;2.重要不等式.3.设函数(1)求不等式的解集;(2)若不等式(,,)恒成立,求实数的范围.【答案】(1);(2).【解析】(1)欲解不等式,需去掉绝对值,考虑到含有两个绝对值,因此分三段去,然后解.(2)要使不等式恒成立,则,考虑到不等式性质,不等式右侧可化简.试题解析:去绝对值,函数可化为,分三段解不等式,可得解集为:.由, 可得, 由(1)可解得:【考点】(1)含绝对不等会的解法;(2)恒成立问题(一般采用分离常数).4.已知函数(1)解关于的不等式;(2)若存在,使得的不等式成立,求实数的取值范围.【答案】(1);(2)【解析】(1)先去掉绝对值得到,然后遂个求解不等式最终可得解集;(2)利用含参不等式的求解方法先确定因为所以则.试题解析:(1)原不等式等价于①: 1分或②: 2分或③: 3分解不等式组①无解; 4分解不等式组②得: 5分解不等式组③得: 6分所以原不等式的解集为 7分;(2)依题意 9分因为,所以 11分所以, 12分所以实数的取值范围为 13分.【考点】1,分段函数2,含参函数不等式的求解.5.对于实数,若,则的最大值为()A.4B.6C.8D.10【答案】B【解析】因为又因为,可得,故选B.【考点】绝对值不等式.6.不等式的解集为A.[-5.7]B.[-4,6]C.D.【答案】C【解析】本题利用绝对值的几何意义,结合数轴求解。
绝对值不等式

绝对值不等式重点:形如|ax+b|<c,|ax+b|>c(c>0)的不等式.难点:应用数形结合的思想解不等式,在解决含有字母系数的不等式时,如何进行分类讨论.例1.解下列关于x的不等式:<1>|x|<2<2>|x|<a<3>|x-3|<2<4>|2-3x|>4分析:解含有绝对值号的不等式关键问题是如何去掉绝对值号,从代数形式考虑可利用绝对值的定义,从几何意义入手可利用数轴上点的距离,如果再深入考虑还可利用函数图象去解决问题.解:<1>|x|<2可化为下面两个不等式组:①或②①的解为0≤x<2 ②的解为-2<x<0∴|x|<2的解为-2<x<2.或从绝对值的几何意义去考虑:|x|<2,即到原点距离小于2的所有点, ∴|x|<2的解为:-2<x<2.<2>当a>0时,|x|<a的解为:-a<x<a.当a=0时,|x|<a无解. 当a<0时,|x|<a无解. ∴原不等式的解当a>0时,为-a<x<a. 当a≤0时,为空集.<3>由原不等式可得:-2<x-3<2 同加3得:1<x<5.<4>由原不等式可得:2-3x>4或2-3x<-4. 解得原不等式的解为:x<-或x>2.小结:例1中从|x|<2到|x|<a,应注意|x|<2中2所能代表的一类数,将2换成a以后,右边变成了一个代数式,可代表任意实数,这时由|x|<2所得结论能否推广到|x|<a,是必须考虑的问题.有些学生认为a≤0时无解就只写a>0时的情况即可,应该认识到无解也是不等式的解的一种情况.另外由|x|<a到|x-3|<2,必须树立换元的思想,通过换元将复杂形式化为简单的形式,通过换元又可将未知的问题转化为已知问题去解决.例1中的几个问题若换个角度从函数图象去考虑也可得到如下解法.解:<1>欲解|x|<2. 作出y=|x|的图象,再作出直线y=2交y=|x|图象于点A,B.此时|x|<2的解即y=|x|的纵坐标小于2时的横坐标的取值范围.将y=2代入y=|x|可求出A(-2,2)B(2,2). ∴|x|<2的解为-2<x<2.<2><3>略. <4>欲解|2-3x|>4. 作出y=|2-3x|图象, 作出y=4交y=|2-3x|图象于A,B两点.要求|2-3x|>4的解即y=|2-3x|图象的纵坐标大于4时的横坐标的取值.将y=4代入y=|2-3x|求出A(-,4)B(2,4). ∴原不等式的解为:x<-或x>2.注:虽然初三学过一些函数及其图象的知识,但在解决新问题时能够应用这些函数及图象知识,对刚入高一的学生而言比较困难,但数形结合的思想,函数的思想是非常重要的数学思想方法,应逐步渗透.例2.解下列关于x的不等式:<1>|2x-1|<a<2>|ax-2|≤1解:<1>①当a>0时,原不等式化为:-a<2x-1<a 解得:<x<②当a=0时,无解. ③当a<0时,无解. ∴当a>0时,原不等式的解<x<. a≤0时,原不等式无解.<2>原不等式化为:-1≤ax-2≤1, 同加2得:1≤ax≤3. ①当a>0时,≤x≤②当a=0时,无解.③当a<0时, ≤x≤.小结:解含有字母系数的不等式需要分情况讨论,尤其要注意最后分情况表示解时,有些可以合并成一个形式表达,并且讨论时不要有遗漏,也不要有重复现象出现.思考:对于例2中两个问题应用数形结合的方法应如何解决.例3.解不等式:|x-3|+|x+2|>6.分析:<1>解绝对值不等式关键问题是去绝对值号,基本方法之一是应用定义化为同解的不等式组.<2>要去掉两个绝对值号,应分别考虑两个绝对值内式子的符号,其关键是两个绝对值号内式子取零时x的值,这两个值是两个分界点.<3>两个不同的分界点的x值,将实数轴上的点分为三段,在每一段上都可以去掉两个绝对值号.解:原不等式可化为下面三个不等式组: s①或②③不等式组①的解为:x<-. 不等式组②的解为:无解. 不等式组③的解为:x>.注:<1>原不等式的解是不等式组①②③三个解的并,即三个不等式组的解之间用“或”联系.<2>有时学生在分情况去绝对值号时常写成以下形式: 当x<-2时,-(x-3)-(x+2)>6,∴x<-.容易忽略x<-2这个条件,即两不等式之间用“且”来联系.<3>此不等式也可用数轴上的点的距离即绝对值几何意义去解.只需将|x-3|和|x+2|分别看到数轴上点到3和到-2两点的距离,所求|x-3|+|x+2|>6的解即到3和到-2两点距离之和大于6的点的x值范围.例4.如果关于x的不等式|ax+1|≤b的解是-≤x≤,求a,b的取值.解:当b≤0时,|ax+1|≤b无解. 当b>0时, |ax+1|≤b化为-b≤ax+1≤b. 则有:-1-b≤ax≤b-1.<1>当a>0时,≤x≤. ∵原不等式解为-≤x≤.则有: 解得: 与b>0,a>0不符,舍去.<2>当a<0时, ≤x≤. 由已知则有: 解得:<3>当a=0时,|ax+1|≤b,只需b≥1时,x为任意实数与已知-≤x≤不符.∴a=-2,b=2.本周小结:本周主要内容是含绝对值的不等式,应掌握基本方法,注重数形结合.本周参考练习:解下列关于x的不等式:<1>3|2x-1|<|2x-1|+<2>(1+|x|)(|2x+1|-4)>0<3>≤0<4>≥8<5>|x-2|+|x+2|<10.本周练习参考答案:<1>分析:首先移项合并,然后求解。
高中数学第一章不等关系与基本不等式1.2含有绝对值的

【做一做3】 解不等式|2x-5|-|x+1|<2.
分析:利用零点分区间法解题.
解:令 2x-5=0,得 x= 5 . 令x+1=0,得 x=-1.
2
(1)当 x≤-1 时,原不等式等价于-(2x-5)+(x+1)<2,
即-x+6<2,即 x>4,无解.
(2)当-1<x<
5 2
时,原不等式等价于-(2x-5)-(x+1)<2,
题型一 题型二 题型三
解法一:(几何法)如图,设数轴上与-2,1对应的点分别是A,B,则A,B 两点的距离是3,因此区间[-2,1]上的数都不是原不等式的解.为了求 出不等式的解,关键要在数轴上找出与点A,B的距离之和为5的点. 将点A向左移动1个单位到点A1,这时有|A1A|+|A1B|=5;
同理,将点B向右移动1个单位到点B1,这时也有|B1A|+|B1B|=5. 从数轴上可以看到,点A1与B1之间的任何点到点A,B的距离之和 都小于5;点A1的左边或点B1的右边的任何点到点A,B的距离之和都 大于5. 所以,原不等式的解集是(-∞,-3]∪[2,+∞).
2.2 绝对值不等式的解法
1.会用数轴上的点表示绝对值不等式的范围. 2.会解|ax+b|≤c,|ax+b|≥c,|x-a|+|x-b|≥c和|x-a|+|x-b|≤c四种类 型的绝对值不等式.
1.(1)解绝对值不等式的主要依据 解含绝对值的不等式的主要依据为绝对值的定义、绝对值的几 何意义及不等式的性质. (2)绝对值不等式的解法
【做一做1】 解下列绝对值不等式: (1)|x|<3;(2)|x|>4.
含绝对值的不等式解法(总结归纳).doc

含绝对值的不等式解法(总结归纳)
含绝对值的不等式解法、一元二次不等式解法[教材分析]|x|的几何意义是实数x在数轴上对应的点离开原点O的距离,所以|x|0)的解集是{x|-a0)的解集是{x|x>a或x0)中的x替换成ax+b,就可以得到|ax+b|c(c>0)型的不等式的解法。
一元二次不等式ax2+bx+c>0(或0的解,图象在x轴下方部分对应的x值为不等式ax2+bx+c,当a=0时,不等式化为20时不等式解集是{x|-0,即x2-x-20,其中a∈R。
[分析与解答]a的不同实数取值对不等式的次数有影响,当不等式为一元二次不等式时,a的取值还会影响二次函数图象的开口方向,以及和x轴的位置关系。
因此求解中,必须对实数a的取值分类讨论。
当a=0时,不等式化为8x+1>0。
不等式的解为{x|x>-,x∈R}。
当a≠0时,由Δ=(a-8)2-4a=a2-20a+64=(a-4)(a-16)。
(1)若00,抛物线y=ax2-(a-8)x+1开口向上,方程ax2-(a-8)x+1=0两根为,。
不等式的解为{x|x}。
(2)若40的解为xβ,且β-α≤5(α≠β),求实数a的取值范围。
[参考答案]:1.解:由|ax+1|≤b,∴-b≤ax+1≤b,∴-b-1≤ax≤b-1。
当a>0时,≤x≤。
∴,不满足a>0,舍去。
当a0两边同除以a(a∴β-α=,∴a2+24a≤25,-25≤a。
含绝对值不等式

典型例题
例3、解不等法: (1)零点分段法;(通性通法) (2)几何意义法; (3)函数图象法.
典型例题
xa 例4、已知不等式 x 3 的解集为A. 2 (1)若A= 求实数a 的取值范围;
f ( x) a (a 0) a f ( x) a; f ( x) a (a 0) f ( x) a或f ( x) a
f ( x ) g( x ) f 2 ( x ) g 2 ( x )
3、零点分段法:如 ax b cx d k
若ab 0, 则 a b a b , a b a b
二、含绝对值不等式的解法: 1、等价转化法: 2、平方法:
f ( x) a (a 0) a f ( x) a; f ( x) a (a 0) f ( x) a或f ( x) a
【思维点拨】 1、需分别证明充分性和心要性; 2、通过分类讨论利用结论:
若ab 0, 则 a b a b , a b a b
若ab 0, 则 a b a b , a b a b
典型例题
例2、解不等式:
1 x 2x 2
2
【思维点拨】 本题有多种解法: (1)定义法; (2)等价转化法; (3)函数图象法. 注意: f ( x) g( x) g( x) f ( x) g( x);
高中数学第六章《不等式》 第 5 课
含绝对值不等式
问题:
a>b是a2>b2的什么条件? 答案:既非充分又非必要条件.
知识梳理:
一、含绝对值不等式的证明:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含绝对值的不等式的解法
一、 基本解法与思想
解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。
(一)公式法:即利用
a x >与a x <的解集求解。
主要知识:
1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。
2、a x >与a x <型的不等式的解法。
当0>a 时,不等式>x 的解集是{}a x a x x -<>或, 不等式a x <的解集是{}a x a x <<-;
当0<a 时,不等式a x >的解集是{}R x x ∈ 不等式a x <的解集是∅;
3.c b ax >+与c b ax <+型的不等式的解法。
把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。
当0>c 时,不等式
c b ax >+的解集是{}c b ax c b ax x -<+>+或, 不等式c b ax <+的解集是{}c b ax c x <+<-;
当0<c 时,不等式c b ax >+的解集是{}R x x ∈ 不等式c bx a <+的解集是∅;
[例1] 解不等式32<-x
分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。
答案为
{}51<<-x x 。
[例2] 不等式|x 2-3x|>4的解集是________.
分析 可转化为(1)x 2-3x >4或(2)x 2-3x <-4两个一元二次不等式. 由可解得<-或>,.(1)x 1x 4(2)∅
答 填{x|x <-1或x >4}.
[例3]解不等式2<|2x -5|≤7.
解法1:原不等式等价于⎩
⎨⎧≤->-7|52|2|52|x x ∴⎩⎨⎧≤-≤--<--7|5272522|52x x x 或即⎪⎩⎪⎨⎧≤≤-<>6
12327x x x 或
∴原不等式的解集为{x |-1≤x <
23或2
7<x ≤6} 解法2:原不等式的解集是下面两个不等式解集的并集.
(Ⅰ)2<2x -5≤7
(Ⅱ)2<5-2x ≤7
不等式(Ⅰ)的解集为{x |27<x ≤6},不等式(Ⅱ)的解集是{x |-1≤x <2
3} ∴原不等式的解集是{x |-1≤x <23或27<x ≤6}. [例4] 解关于x 的不等式10832<-+x x
解:原不等式等价于1083102<-+<
-x x , 即⎩
⎨⎧<-+->-+1083108322x x x x ⇒⎩⎨⎧<<--<->3621x x x 或 ∴ 原不等式的解集为)3,1()2,6(---
练习:
(1)
4321x x ->+; (2)4|23|7x <-≤ ;
(3)3529x ≤-<; (4)1|1|3x <+< (5)x x 3102≤- (6) 241<--x 。
解答:(1) ⎭⎬⎫⎩
⎨⎧><231x x x 或 (2)⎭
⎬⎫⎩⎨⎧≤<-<≤-527212x x x 或 (3)(][)2,14,7- (4)(4,2)(0,2)--(5){}|25x x ≤≤
(6){}7315<<-<<-x x x 或
(二)定义法:即利用(0),0(0),(0).a a a a a a >⎧⎪==⎨⎪-<⎩
去掉绝对值再解。
[例] 解不等式22
x x x x >++. 分析:由绝对值的意义知,a a =⇔a ≥0,a a =-⇔a ≤0。
解:原不等式等价于
2
x x +<0⇔x(x+2)<0⇔-2<x <0。
练习: (1)|x +2|>x +2的解集是 ; {x |x <-2} (2)不等式
x
x x x ->-22的解集是 。
{}02<>x x x 或
(三)平方法:解()()f x g x >型不等式。
[例]、解不等式123x x ->-.
解:原不等式⇔22(1)(23)x x ->-⇔22
(23)(1)0x x ---< ⇔(2x-3+x-1)(2x-3-x+1)<0⇔(3x-4)(x-2)<0 ⇔
423
x <<。
练习:解关于x 的不等式 (1)x x ->+512; (2)212+<-x x ; (3)|2||1|x x -<+
答案:(1) ;(2))3,31(-
;(3) ⎭⎬⎫⎩
⎨⎧>21x x 。
(四)分类讨论法:即通过合理分类去绝对值后再求解。
[例1] 解不等式125x x -++<. 分析:由
01=-x ,02=+x ,得1=x 和2=x 。
2-和1把实数集合分成三个区间,即
2-<x ,12≤≤-x ,1>x ,按这三个区间可去绝对值,故可按这三个区间讨论。
解:当x <-2时,得2(1)(2)5x x x <-⎧⎨---+<⎩,
解得:23-<<-x
当-2≤x ≤1时,得21,(1)(2)5x x x -≤≤⎧⎨
--++<⎩, 解得:12≤≤-x 当1>x 时,得1,(1)(2) 5.
x x x >⎧⎨-++<⎩ 解得:21<<x 综上,原不等式的解集为
{}23<<-x x 。
[例2] 解关于x 的不等式1312++<--x x x .
解:当3-<x 时,得⎩
⎨⎧++-<----<1)3()12(3x x x x ,无解 当213≤≤-x ,得⎪⎩
⎪⎨⎧++<---≤≤-13)12(213x x x x ,解得:2143≤<-x 当21>x 时,得⎪⎩
⎪⎨⎧++<-->131221x x x x ,解得:21>x 综上所述,原不等式的解集为43(-,)2
1
练习:1.解不等式:221>-+-x x (答案: ⎭⎬⎫⎩⎨⎧><
2521x a x x 或 ) 2.解不等式:521≥++-x x (答案:),2[]3,(+∞--∞ )
3. 解不等式:|21||
2|4x x ++-> (答案:⎭⎬⎫⎩⎨⎧>-<121x x x 或
(五)几何法:即转化为几何知识求解。
[例] 对任何实数x ,若不等式12x x k +-->恒成立,则实数k 的取值范围为 (
)
(A)k<3 (B)k<-3 (C)k ≤3 (D) k ≤-3 分析:设12y x x =+--,则原式对任意实数x 恒成立的充要条件是min k y <,于是题转化为求y 的最小值。
解:1x +、2x -的几何意义分别为数轴上点x 到-1和2的距离1x +-2x -的几何意义为数轴上点x 到-1与2的距离之差,如图可得其最小值为-3,故选(B )。
练习:
()1对任意实数x ,|1||2|x x a ++->恒成立,则a 的取值范围是 ; ()2对任意实数x ,|1||3|x x a --+<恒成立,则a 的取值范围是 ; ()3若关于x 的不等式|4||3|x x a -++<的解集不是空集,则a 的取值范围是 ;
⑴ 3<a ; ⑵ 4>a ; ⑶ 7>a ;
2
x。