热处理设备 电阻炉设计课件

合集下载

热处理炉PPT

热处理炉PPT
要求:考虑物料的形状、尺寸、装料方式、生产率。炉膛的 热交换、温度均匀性、减少热损失、电热元件的安装等。 (1)炉底面积
工件与前后左右炉墙的距离
应为100150mm;有效面积F1
(装料面积)为炉膛总面积的 70%85%,大型炉上限;炉底
宽度B与长度L之比保持在2/3
1/2范围内。

F1
p p0
;
第一层保温层(保温材料); 第二层耐火层(轻质粘土砖); 高温炉一般为三层: 第一层保温层(保温材料) 第二层过渡层(轻质砖) 第三层耐火层(重质砖或高铝转)
(3)炉顶 有平顶和拱顶两种形式,热处理炉大都采用拱顶。 拱
顶采用轻质楔形砖砌筑,上砌轻质保温制品;拱角砖采用重 质异型砖砌筑。 (4)炉门
(2)炉子总功率Q总
①连续作业电阻炉的Q总
炉子在使用过程中,由于炉衬损坏,散热损失加大,电 压波动、电热元件老化等引起炉子功率下降,所以炉子功率 要有一定的储备,其安装功率为
②周期作业电阻炉Q总
周期作业炉按加热阶段作为热平衡计算时间单位时,其 热损失为
Q总=Q件+Q辅+Q散+Q蓄+Q它
空炉升温时间为
⑤炉门开启时的散热损失Q辐
⑥溢气或吸气热损失
开启炉门或炉子有缝隙时,如果是可控气氛炉,则炉压
为正,Q溢;如果是燃料炉,则Q吸,对于一般的箱式电阻炉,
通常是开启炉门时以加热吸入的冷空气所需热量为
Q吸。
⑦砌体蓄热量Q蓄
对双层砌体可按下式计算
⑧ 不宜精确计算的热损失,如电热元件的引出端漏气、导 热,炉子缝隙的吸气等热损失。箱式炉一般为10%20%
与其它工序组成全自动热处理线的趋势。、
2 热处理炉的分类

箱式热处理电阻炉设计

箱式热处理电阻炉设计

辽宁工业大学热工过程与设备课程设计(说明书)题目:箱式热处理电阻炉设计院(系):材料工程及其自动化131专业班级:学号:姓名:指导教师:课程设计任务及评语院(系):教研室:材料教研室学号11111 姓名名字专业班级课程设计题目箱式热处理电阻炉的设计生产率220 kg / h,额定工作温度1200℃,炉底强度95 kg / mh·;炉底强度系数0.83;蛭石保温材料课程设计( 论文)(1) 炉型的选择(2) 确定炉体结构与尺寸(3) 计算砌体平均表面积(4) 计算加热炉功率(5) 计算炉子热效率(6) 计算炉子空载功率(7) 计算空炉升温时间(8) 功率分配与接线(9) 电热元件材料选择与计算(11) 电热体元件图(12) 电阻炉装配图(13) 炉子技术性能指标(14) 参考文献1)布置设计任务,设计方案讨论、选择炉型 1 天2)炉膛尺寸、炉体结构和尺寸、绘制炉衬示意图。

2 天3)炉子的加热功率、热效率、空炉升温时间。

2 天4)功率的分配;电热元件尺寸、布置,绘制电热元件示意图。

1 天5)绘制电热元件布置图和电阻炉装配示意图。

1 天6)撰写、编辑、排版、修改设计说明书。

4 天7)考核、答辩。

1 天成绩:指导教师签字:学生签字:年月日目录目录........................................................................ I..1 炉型的选择................................................................. 1.2 炉体结构及尺寸............................................................. 1...2.1 炉底面积的确定........................................................... 1...2.2 炉膛尺寸的确定........................................................... 1...2.3 炉衬材料及厚度的确定..................................................... 2...3 砌体平均表面积计算......................................................... 3...4. 炉子功率 .................................................................. 6.5 炉子热效率计算............................................................. 9...6 炉子空载功率计算........................................................... 9...7 空炉升温时间计算........................................................... 9...8 功率的分配与接线 (11)9 电热元件材料选择及计算.................................................... 1..2.10 电热体元件图 ............................................................ 1..4.11 电阻炉装配图 ............................................................ 1..5..12 电阻炉技术指标 .......................................................... 1..6.参考文献.................................................................... 1..7..设计任务:为某厂设计一台井式热处理电阻炉,其技术条件为:(1) 用途:碳钢、合金钢毛坯或零件的正火、淬火,处理对象为中、小型零件、非长 杆类零件,无定型产品,小批量,多品种。

04热处理电阻炉概述 ppt课件

04热处理电阻炉概述 ppt课件
热处理电阻炉主要缺点:炉子造价高,耗电量大,工 件加热速度较慢,不通保护气氛加热时工件容易氧化脱碳。
2020/12/2
39
1.39
2020/12/2
40
可控气氛,常用于可锻铸 铁退火,缺点是需要配备 强力起重设备。
1-炉衬;2-电热元件
13.3-2 炉底固202定0/装12/置2 ;4-构升降炉底;5-升降机
32
罩 式 炉
1.33
结构:由固定的炉台和可
第四章 热处理电阻炉概移述动的开口向下外罩和内
罩(钢板及型钢焊接而成)
组成。一加热罩常配有几
个炉底座。放在不同炉底 座上的工件轮流进行加热 和冷却。
分类:井式电阻炉按其工作温度可分为低温、中温、 高温三种。
2020/12/2
20
1.20
第四章 热处理电阻炉概中述温井式电阻炉
结构:如左图。炉衬与
箱式炉相似,炉盖采用砂封、 油封、水封等严密封闭。
特点:最高工作温度为 950℃。采取分段控制功率, 在炉口区段增加功率,以尽 可能提高炉温均匀性。
应用:与箱式电阻炉相
通用性周期作业热处理炉(通用工件)
周期作业化学热处理炉 周期作业炉
处理大尺寸工件的周期作业炉(大型件)
处理小尺寸工件的周期作业炉(小散体)
连续作业炉
输送带式炉 网带式炉 推杆式炉 震底式炉 转底式炉 滚筒式炉等
2020/12/2
8
1.8
第四章 热处理电阻炉概述
电阻炉的基本结构
2020/12/2
1.9
2020/12/2
29
1.29
第四章 热处理电阻炉概述结构特点:由固定加
热室和活动炉底组成。
与箱式炉相比,增加

热处理设备热处理电阻炉PPT演示课件

热处理设备热处理电阻炉PPT演示课件
出料,生产能 力低.
应用:小规模生产. 炉型:箱式、井式、
台车式. 1.箱式电阻炉
5
概述之周期作业式电阻炉
A结构:角钢框架、薄
钢板为壳、焊接结构
B作用:适合中小件的
退火、正火、淬火、 回火、固体渗碳
C缺点:升温慢、温
度不均、工件易氧化、 脱碳,操作不便
6
概述之周期作业式电阻炉
D产品序号:有RX、RX2、RX3系列,其中RX2
炉膛高度的确定
经验法:一般来说H/B =0.52~0.9之间,多在0.8 左右。小炉子比值大些,大炉子比值小些。
23
炉型的选择和炉体尺寸的确定
砌体及外形尺寸的确定应考虑的问题
砌体包括炉墙、炉顶及炉底,通常都由耐火材料 和隔热材料砌筑
砌体的厚度应符合耐火砖的尺寸要求,砌体要保 证一定强度
为节能和提高升温速度,在符合耐火、保温和机 械强度的要求,应尽量采用轻质耐火材料
低温炉(﹤650℃)
3
概述
空气介质炉 (2)按炉膛介质 控制气氛炉
液体介质炉(浴炉) (3)按炉膛形状:箱式、井式、罩式、直通式 (4)按专业程度:通用和专用 (5)按用途:退火、正火、淬火、回火、渗碳等 (6)按作业规程:周期、连续、半连续
4
概述之周期作业式电阻炉
一、周期作业式电阻炉 特点:周期地分批处理工件,加热过程中不进行装
1000~1300℃高温炉,用三层炉衬,分别为高铝砖、 轻质粘土砖与保温粉料。
在保温层与炉壳之间还有一层厚度为5~10mm的石 棉板。
25
炉型的选择和炉体尺寸的确定
炉顶的砌筑
分类:平顶、拱顶和悬挂顶
选用原则: <0.4~0.6m
平顶

热处理工艺及设备ppt课件

热处理工艺及设备ppt课件

1850~1880年,对于运用各种气体(诸如氢气、煤 气、一氧化碳等)进展维护加热曾有一系列专利。 1889~1890年英国人莱克获得多种金属光亮热处置的专 利。
1901~1925年,在工业消费中运用转筒炉进展气体 渗碳 ;30年代出现露点电位差计,使炉内气氛的碳势到达 可控,以后又研讨出用二氧化碳红外仪、氧探头等进一
第二节 淬火槽
1、淬火槽的根本构造 〔1〕淬火槽体 〔2〕循环溢流安装 〔3〕温度控制安装 〔4〕淬火槽的机械搅拌安装 〔5〕排烟安装 〔6〕灭火安装
2、普通淬火槽 3、周期作业机械化淬火槽 〔1〕悬臂式提升机淬火槽 〔2〕料斗式提升机淬火槽 4、延续作业式机械化淬火槽 〔1〕保送带式淬火槽 〔2〕螺旋保送式淬火槽
A1、 A3、 加A热cm临界点:
Ac1、Ac3、 冷A却cc临m界点:
Ar1、Ar3、Arcm
第二章 钢的退火和正火
第一节 退火的定义、目的和分类 第二节 常用的退火工艺 第三节 钢的正火 第四节 退火、正火后钢的组织与性能 第五节 退火、正火缺陷
常用退火工艺方法 分散退火工艺曲线 完全退火工艺曲线 不完全退火 球化退火 再结晶退火和消除应力退火
随着淬火技术的开展,人们逐渐发现淬冷剂对淬火 质量的影响。三国蜀人蒲元曾在今陕西斜谷为诸葛亮打 制3000把刀,相传是派人到成都取水淬火的。这阐明中 国在古代就留意到不同水质的冷却才干了,同时也留意 了油和尿的冷却才干。
中国出土的西汉(公元前206~公元24)中山靖王墓中 的宝剑,心部含碳量为0.15~0.4%,而外表含碳量却达 0.6%以上,阐明已运用了渗碳工艺。但当时作为个人 “手艺〞的,不肯外传,因此开展很慢。
步控制炉内气氛碳势的方法; 20世纪60年代以来,热处置技术运用等离子场,发

热处理设备2课件

热处理设备2课件
➢ 缺点:装炉量少,生产效率低。 ➢ 用途:常用于质量要求较高的零件。
19
§12.1 热处理电阻炉-概述
20
§12.1 热处理电阻炉-概述
4、低温井式电阻炉 ➢ 结构特点
❖结构与中温井式炉相似 ❖炉壳、炉衬、加热元件、导风筒、风扇、炉盖
以及起闭机构 ❖主要靠对流散热,加装风扇,增加空气对流
➢ 特点:装炉量较高,炉内温度均匀,装出料 方便。
➢ 砌砖内腔尺寸 B×L×H
36
§12.2 炉型的选择和炉体尺寸的确定
(一) 炉底面积的确定
➢ 根据炉子一次装料量
❖批量不大,工件尺寸较大且形状特殊。 ❖根据炉子一次装料量,将工件实际摆放面积作为
炉底有效面积;工件之间,工件与电热体之间要 有间隙;工件与炉门之间有间隙。 ❖炉膛长度 L=L1+0.2~0.3(m) ❖炉膛宽度 B=B1+0.2~0.3(m) ❖L1、B1为炉子有效长度和有效宽度(m), B1 / L1=2/3~1/2
2、振底式电阻炉
炉底板及其上的工 件加速前进,当速 度达到一定值时, 炉底板突然停止运 动,工件便借惯性 力克服摩擦力而继 续向前移动一定距 离,然后炉底板缓 慢回复原位;
炉底板用耐热钢铸造 加工而成,整个炉底 板为槽形;
利用压缩空气 作动力,推动 气缸中活塞作 往复运动,从 而带动炉底板 作往复运动;
一般适用于950℃以内的热处理;螺栓、垫圈等形状简单、
不怕碰撞的中小型零件;正火、回火处理,也可向炉内通入
保护气氛进行光亮或光洁热处理。
31
§12.1 热处理电阻炉-概述
3、推杆式电阻炉
推杆将料盘 推入炉内;
复杂工件放 入料盘内;
三段式加热,电热体 置于侧墙或炉顶;

热处理设备热处理电阻炉41页PPT

热处理设备热处理电阻炉41页PPT
ቤተ መጻሕፍቲ ባይዱ
60、人民的幸福是至高无个的法。— —西塞 罗
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
热处理设备热处理电阻炉
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克

第五章热处理电阻炉的设计.精选PPT

第五章热处理电阻炉的设计.精选PPT
✓ 对长周期作业的退火炉和渗碳炉,炉膛应高一些, 对短周期作业的淬火炉和正火炉以及强制气流循环 的炉子炉膛应低一些。
✓ 依统计资料,炉膛高度与宽度之比多数在0.5-0.9 的范围内变动.近年来有降低炉膛高度的趋势,对 上述比值常取中下限。
✓ 井式炉的炉膛尺寸通常按工件和夹具的实际布置情 况确定。工件之间的距离一般不少于其直径或厚度, 工件至电热元件的距离应保持在0.1-0.2m,至炉 底和炉顶的距离为0.15-0.25m。
第五章热处理电阻炉的设计
★热处理电阻炉的设计是一项综合性的技术工作:
所需知识:炉子知识;热处理工艺;机械设计;电工 及温度控制等有关内容;
设计原则:密切结合生产实际,综合运用有关知识。
★设计准备:详尽收集有关原始资料:
包括:生产任务(公斤或件/小时或年)及作业制度(一、 二班或连续生产);加热工件的材料、形状、尺寸 和重量;工件的热处理工艺规程和质量要求;电源 及车间厂房等条件;炉子的制造维修能力和 金额 等。
★热处理电阻炉的设计内容
(1)炉型的选择; (2)炉膛尺寸的确定; (3)炉体结构设计(包括炉衬、构架、炉门等); (4)电阻炉功率的计算及功率分配; (5)电热元件材料的选择; (6)电热元件材料的设计计算; (7)炉用机械设备和电气、控温仪表的设计与选用; (8)技术经济指标的核算; (9)绘制炉子总图、砌体图、零部件图、安装图和
P=(50~75)V 2/3
件和操作人员的技能 包括:生产任务(公斤或件/小时或年)及作业制度(一、二班或连续生产);
小批量:井式气体渗碳炉; 当R与L不变时,越大,则f越大,提高强度,延长寿命。
7、其它
车间厂房结构、地基、炉子建造维修、
维护、 等。
☆几种常见的炉型选用情况: ✓汽车齿轮等渗碳零件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)开启炉门的辐射热损失
设装出料所需时间为每小时6分钟,根据式(5—6)
Q辐
3.6 5.675F[t (1T0g0)4
( Ta )4 ] 100
式中:C—黑体辐射系数; F—炉门开启面积或缝隙面积(m);
3.6—系数;φ—炉口遮蔽系数;
δt—炉门开启率(即平均1小时内开启的时间),对常开炉门或炉壁 缝隙而言δt=1。
S2
2
788.6 730.4 0.05 0.129
497.8℃
t3墙 t3墙 t3墙
497.8 485 100% 485
2.64%
5%,不需重算。
③验算炉壳温度t4墙
t4墙
t3墙
q墙
S3
3
497.8 730.4
0.115 0.194
64.9℃<
70℃
满足一般热处理电阻炉表面温升<50℃的要求。室温20 ℃
热处理设备
热处理电阻炉设计计算举例

点: 设计方法与步骤
教学要求:了解箱式电阻炉的设计内容、方法与步骤。
一、设计任务
二、炉型的选择
根据设计任务给出的生产特点,拟选用箱式热处理电 阻加热炉,不通保护气氛。
三、确定炉体结构和尺寸
1.炉底面积的确定
因无定型产品,故不能用实际排料法确定炉底面积,
只能用加热能力指标法。已知生产率p为160kg/h,按表
炉底隔砖采用重质粘土砖,电热元件搁砖选用重质 高铝砖。(注①67=65+2,2是砖缝的宽度。)
炉底板材料选用Cr—Mn—N耐热钢,根据炉底实际尺寸 给出,分三块或四块,厚20mm。
四、砌体平均表面积计算
砌体外廓尺寸如图5—15所示
(教材图5-9)。
L外=L+2×(115+50+115) = 2300mm
Q总
Q件 (Q辐
Q溢)
202931.2
95117 (8877.7
33713)
100
%
59.3%
七、炉子空载功率计算
P空
Q散 Q它 3600
25020.4 23346.1 3600
13.4kw
八、空炉升温时间计算
由于所设计炉子的耐火层结构相似,而保温层蓄 热较少,为简化计算,将炉子侧墙、前后墙及炉顶按 相同数据计算,炉底由于砌砖方法不同,进行单独计 算,因升温时炉底板也随炉升温,也要计算在内。
高 H (65 2) 9 37 640 mm
拱角砖矮边 高度
炉底支撑砖厚度
为避免工件与炉内壁或电热元件搁砖相碰撞,应使工 件与炉膛内壁之间有一定的空间,确定工作室有效尺寸为: L效=1500mm ; B效=700 mm; H效=500mm
4.炉衬材料及厚度的确定
由于侧墙、前墙及后墙的工作条件相似,采用相同 炉衬结构,即113mmQN—1.0轻质粘土砖+50mm密度为 250kg/m3的普通硅酸铝纤维毡+ 113mrnB级硅藻土砖。
2 3
(t g
ta )
20
2 3
(950
20)
640℃
Q溢 qVa aC(a t'g ta) t
314.11.29 1.342 (640 20) 0.1
33713kJ / h
(5)其它热损失 其它热损失约为上述热损失之和的10%~20%,故
Q它=0.13(Q件+Q散+Q辐+Q溢) =0.13 × (95117+25020.4+8877.75+33713) =23346 .1 kJ/h
按统计资料,炉膛高度H与宽度B之比H/B通常在 0.5~0.9之间,根据炉子工作条件,取H/B=0.7左右,根据 标准砖尺寸,选定炉膛高度H=0.640m。
因此,确定炉膛尺寸如下:
砖长 砖 缝
长 L (230 2) 7 (230 1 2) 1741 mm
长度
炉底搁砖宽度 2
宽 B (1mm
由tS2均= 632.5 ℃,得 λ2=0 .129W/ ( m﹒℃)
当炉壳温度为60℃,室温为20℃时,由附表2经近似
计算得α∑=12. 17W /(m2﹒℃) (综合传热系数) ① 求热流
q墙
s1
tg ta s2 s3
1
1 2 3 a
950 20
0.115 0.05 0.115 1
P安= 1.4 2029312 =78.9 Kw 3600
与标准炉子相比较,取炉子功率为75kW。
六、炉子热效率计算
1.正常工作时的效率 Q件 100 %
由式(5—12)
Q总
(5 12)
Q件 100% 95117 100% 47.2%
Q总
202931.2
2.在保温阶段,关闭炉门时的效率
1.炉墙及炉顶蓄热
拱角砖的厚度
V侧粘= 2×[1.741×(12×0.067+0.135) ×0.115=0.376m3 V前粘后= 2×[(0.869+0.115×2)×(16×0.067+0.135)]=0.305m3
V顶粘= 0.97×(1.741+0.276) ×0.115=0.225m3
④计算炉墙散热损失
Q墙散=q墙·F墙均=730 .4 ×6.25=4562.5W 同理可以求得
t2顶=844 .39℃; t3顶=562 .6 ; t4顶=53℃; q 顶= 485 .4 W/m2
t2底=782 .2℃,t3底568 .54℃,t4底=53.7℃, q底=572 . 2 W/m2 炉顶通过炉衬散热
炉顶 采用113mmQN —1. 0轻质粘土砖十80mm密度 为250kg/m3的普通硅酸铝纤维毡十115mm膨胀珍珠岩。
炉底 采用三层QN—1.0轻质粘土砖(67① ×3)mm + 50mm密度为250kg/m3的普通硅酸铝纤维毡十182mmB级 硅藻土砖和膨胀珍珠岩复合炉衬。
炉门 用65mmQN—1.0轻质粘土砖+80mm密度为 250kg/m3的普通硅酸铝纤维毡+65mmA级硅藻土砖。
3.炉底平均面积
F底内 B L 0.869 1.741 1.51m2
F底外 B外 L外 1.430 2.300 3.36m2
F底均 F底内 F底外 1.51 3.36 2.23m2
五、计算炉子功率
1.根据经验公式法计算炉子功率
由式(5—14)
P安
C
F 0.5

0.9
( t )1. 1000
V纤侧= 2×[(1.741+0.115) ×(12×0.067+0.135) ×0.05=0.174 m V前粘后=2×[(0.87+0.115×2)×(16×0.067+0.135)×0.05
0.511 0.129 0.194 12.17
730.4W / m 2
②验算交界面上的温度t2墙、t3墙
t2墙
t1
q墙
S1
1
950 730.4
0.115 0.511
788.6

t2墙
t
2墙
t
2

788.6 780 100% 780
1.1%
5%,满足设计要求,不需重算。
t3墙
t2墙
q墙
i1 i F
对于炉墙散热,如图5—16所 示,首先假定界面上的温度及炉
壳温度,
t′2 墙 = 780℃ , t′3 墙 = 485℃, t′4 墙=60℃则
耐火层S1的平均温度 ts1均=(950+780)/2=865℃, 硅酸铝纤维层S2的平均温度 ts2均=(780+485)/2=632.5℃, 硅藻土砖层S3的平均温度 ts3均=(485+60)/2=272.5℃, S1、S3层炉衬的热导率由附表3得
B外=B+2×(115+50+115)=1430mm
H外=H+f+(115+80+115)+67×4+50+182
炉顶厚
4 块粘土砖高 炉 底保温层厚
=640+116+310+268+50+182
=1566 mm
式中:f —拱顶高度,此炉子采用600标准拱顶,取拱弧
半径R=B,则f可由f =R(1- co300 )求得。
Q件= P(C件2 t1—C件1to) =160 × (0.63×950-0.486 × 20)
=95117 kJ/h
( p每小时装炉量)
(2)通过炉衬的散热损失Q散 由于炉子侧壁和前后墙炉衬结构相似,故作统一数据 处理,为简化计算,将炉门包括在前墙内。
根据式(1—15)
Q散
t1 t n1 n si
所以
P安
C
0.5 升
F
0.9
(t 1000
)1.
55
30 40.5 6.440.9 ( 950 )1.55 1000
74.1kW
由经验公式法计算得P安≈75 (kW)
2.根据热平衡计算炉子功率
(1)加热工件所需的热量Q件
由附表6得,工件在950℃及20℃时比热容分别为
C件2 = 0. 63kJ/(kg ﹒℃) , C件1=0.486kJ/(kg·℃), 根据式(5—1) Q件 P(c2t2 c1t1)(kJ / h) (5 —1)
1.炉顶平均面积
F顶内
2R
6
L
2 3.14 0.869 6
1.741
1.585
m2
F顶外 B外 L外 1.430 2.300 3.318 m2
F顶均 F顶内 F顶外 1.585 3.318 2.29 m2
相关文档
最新文档