高等代数-矩阵

合集下载

《高等代数》知识点梳理

《高等代数》知识点梳理

高等代数知识点梳理第四章 矩阵一、矩阵及其运算 1、矩阵的概念(1)定义:由n s ×个数ij a (s i ,2,1=;n j ,2,1=)排成s 行n 列的数表sn s n a a a a 1111,称为s 行n 列矩阵,简记为n s ij a A ×=)(。

(2)矩阵的相等:设n m ij a A ×=)(,k l ij a B ×=)(,如果l m =,k n =,且ij ij b a =,对m i ,2,1=;n j ,2,1=都成立,则称A 与B 相等,记B A =。

(3)各种特殊矩阵:行矩阵,列矩阵,零矩阵,方阵,(上)下三角矩阵,对角矩阵,数量矩阵,单位矩阵。

2、矩阵的运算(1)矩阵的加法:++++= +sn sn s s n n sn s n sn s n b a b a b a b a b b b b a a a a 1111111111111111。

运算规律:①A B B A +=+②)()(C B A C B A ++=++③A O A =+ ④O A A =−+)((2)数与矩阵的乘法:= sn s n sn s n ka ka ka ka a a a a k 11111111运算规律:①lA kA A l k +=+)( ②kB kA B A k +=+)(③A kl lA k )()(= ④O A A =−+)((3)矩阵的乘法:= sm s m nm n m sn s n c c c c b b b b a a a a 111111111111其中nj in i i i i ij b a b a b a c +++= 2211,s i ,2,1=;m j ,2,1=。

运算规律:①)()(BC A C AB = ②AC AB C B A +=+)( ③CA BA A C B +=+)( ④B kA kB A AB k )()()(==一般情况,①BA AB ≠②AC AB =,0≠A ,⇒C B = ③0=AB ⇒0=A 或0=A(4)矩阵的转置: =sn s n a a a a A 1111,A 的转置就是指矩阵=ns n s a a a a A 1111'运算规律:①A A =)''( ②'')'(B A B A +=+③'')'(A B AB = ④')'(kA kA =(5)方阵的行列式:设方阵1111n n nn a a A a a= ,则A 的行列式为1111||n n nn a a A a a = 。

高等代数第9章入-矩阵

高等代数第9章入-矩阵

§3 不变因子
• 一.行列式因子 • 定义 设-矩阵A()的秩为r, 对于正整数 k,1kr,A()中必有非零的k阶子式. A() 中全部k阶子式的首项系数为1的最大公 • 由定义可知, 对于秩为r的-矩阵, 行列式 因子一共有r个. • 行列式因子的意义就在于, 它在初等变换 下是不变的. 因式Dk()称为A()的k级行列式因子.
如此继续,A()便可化成所要求的形式.
• 例 用初等变换化-矩阵为标准形
1 A( ) 1 2
2 3 2 1
2 1
• 解
1 A( ) 1 2
1 1 2 1 1 2 0 0 2 3 2 3 1 1 1 1 1
0 d 1 ( ) 0 d 2 ( ) 0 0 0 0
0 A2 ( )
其中d1()与d2()都是首项系数为1的多
项式(d1()与bs()只差一个常数倍数),而
且d1()d2(). d2()能除尽A2()的全部 元素.
A( ) 1 2 2 2 2 2 1 2 2 2 2
三. -矩阵的逆矩阵 • 定义 设A()是一个n×n的-矩阵,如果有 一个n×n的 -矩阵B()使 A()B()=B()A()=E 则称A()是可逆的,称B()为A()的逆矩
• 推论 如果A()可逆,则
A*() 其中d=|A()|是数域中P一个非零常数. • 例2 设
d
-1()= 1 A
因为|A()|=0, 所以A()不可逆.
2 1 B ( ) 1 2 2 3 2 2
2 1 A( ) 1 2 2

高等代数-高代矩阵

高等代数-高代矩阵

解法2
1
( AB)T
BT AT
7
4 2 2 2 0 0
1 0 17 3 14 13 .
1 3 1 1 2 3 10
48
四、对称矩阵和反对称矩阵
设 A为n阶方阵
A为对称矩阵
AT A
A为反对称矩阵 AT A
aii 0
aij a ji aij a ji
49
? 注:A, B是对称矩阵,AB是对称矩阵
(A
B)k
Ak
C
1 k
Ak
1
B
Ck2 Ak2B2
...
Bk
AB BA .
35
例5

A
0
1
0 1 ,
求 Ak .
0 0

A2
0
1
0
10
1
0 1
0 0 0 0
2 2 1 0 2 2 .
0
0
2
36
2
A3 A2 A 0
2 2
1 1 2 0
y1 a11x1 a12 x2 a1n xn ,
y2 a21x1 a22 x2 a2n xn ,
ym am1 x1 am2 x2 amn xn .
表示一个从变量x1, x2,, xn 到变量 y1, y2,, ym的 线性替换. 其中aij为常数.
16
y1 a11x1 a12 x2 a1n xn ,
a12 a22
a1n a2n
ann
a11
a21 a22
.
an1 an2 ann
i j, aij 0
i j, aij 0
14
三、矩阵与线性变换

高等代数课件北大版第四章矩阵

高等代数课件北大版第四章矩阵

高等代数课件(北大版)第四章矩阵第一节:矩阵的概念及基本运算矩阵是现代数学的重要基础,是线性代数理论的核心概念之一。

在数学和应用领域有着重要的应用价值。

1.1 矩阵的定义定义1.1:矩阵是一个有规律的数表,其中的每一个数称为矩阵的一个元素,通常用一个大写字母表示。

例如:$$A=\begin{pmatrix}a_{11} & a_{12} & a_{13} \\a_{21} & a_{22} & a_{23} \\a_{31} & a_{32} & a_{33}\end{pmatrix}$$其中 $a_{ij}$ 称为矩阵 $A$ 的第 $i$ 行第 $j$ 列元素。

1.2 矩阵的基本运算1.2.1 矩阵的加法定义1.2:设 $A=(a_{ij})_{m \times n},B=(b_{ij})_{m \times n}$,则其和 $C=A+B$ 定义为矩阵 $C$ 的元素为 $c_{ij}=a_{ij}+b_{ij}$。

例如:$$A=\begin{pmatrix}1 &2 &3 \\4 &5 &6 \\7 & 8 & 9\end{pmatrix},B=\begin{pmatrix}-1 & -2 & -3 \\-4 & -5 & -6 \\-7 & -8 & -9\end{pmatrix},$$则 $C=A+B$ 得:$$C=\begin{pmatrix}0 & 0 & 0 \\0 & 0 & 0 \\0 & 0 & 0\end{pmatrix}$$1.2.2 矩阵的数乘定义1.3:设 $A=(a_{ij})_{m \times n}$,$k \in K$,则矩阵 $kA$ 定义为矩阵 $kA$ 的元素为 $ka_{ij}$。

《高等代数》知识点梳理

《高等代数》知识点梳理

高等代数知识点梳理第四章 矩阵一、矩阵及其运算 1、矩阵的概念(1)定义:由n s ×个数ij a (s i ,2,1=;n j ,2,1=)排成s 行n 列的数表sn s n a a a a 1111,称为s 行n 列矩阵,简记为n s ij a A ×=)(。

(2)矩阵的相等:设n m ij a A ×=)(,k l ij a B ×=)(,如果l m =,k n =,且ij ij b a =,对m i ,2,1=;n j ,2,1=都成立,则称A 与B 相等,记B A =。

(3)各种特殊矩阵:行矩阵,列矩阵,零矩阵,方阵,(上)下三角矩阵,对角矩阵,数量矩阵,单位矩阵。

2、矩阵的运算(1)矩阵的加法:++++= +sn sn s s n n sn s n sn s n b a b a b a b a b b b b a a a a 1111111111111111。

运算规律:①A B B A +=+②)()(C B A C B A ++=++③A O A =+ ④O A A =−+)((2)数与矩阵的乘法:= sn s n sn s n ka ka ka ka a a a a k 11111111运算规律:①lA kA A l k +=+)( ②kB kA B A k +=+)(③A kl lA k )()(= ④O A A =−+)((3)矩阵的乘法:= sm s m nm n m sn s n c c c c b b b b a a a a 111111111111其中nj in i i i i ij b a b a b a c +++= 2211,s i ,2,1=;m j ,2,1=。

运算规律:①)()(BC A C AB = ②AC AB C B A +=+)( ③CA BA A C B +=+)( ④B kA kB A AB k )()()(==一般情况,①BA AB ≠②AC AB =,0≠A ,⇒C B = ③0=AB ⇒0=A 或0=A(4)矩阵的转置: =sn s n a a a a A 1111,A 的转置就是指矩阵=ns n s a a a a A 1111'运算规律:①A A =)''( ②'')'(B A B A +=+③'')'(A B AB = ④')'(kA kA =(5)方阵的行列式:设方阵1111n n nn a a A a a= ,则A 的行列式为1111||n n nn a a A a a = 。

高等代数课件(北大版)第四章 矩阵§4-4

高等代数课件(北大版)第四章 矩阵§4-4

立即可得,
a11 a 21 * AA a n1 a12 a 22 an2 a1n a2n a nn A1 1 A 2 1 A1 2 A 2 2 A1 n A 2 n
d 0 0 0 d 0 dE . 0 0 d数学与计算科学学院 2012-9-22 §4.4 矩阵的逆
AB A 2B
求矩阵B.
解:由
,得 ( A
2 E ) B A ,又
2 3 3 A 2 E 1 1 0 2 0 1 2 1
A 2E
可逆,且
(A 2E )
1
1 1 3 3 1 1 3 2 1 1 1
0 3 3 1 B ( A 2 E ) A 1 2 3 1 1 0
数学与计算科学学院
1 1 E 1

A
1
§4.4 矩阵的逆
2012-9-22
三、逆矩阵的运算规律
1 若 A 可逆 , 则 A 亦可逆 , 且 A
1 1 1

A.
2 若 A 可逆 , 数 0 , 则 A 可逆 , 且
§4.4 矩阵的逆
2012-9-22
X A CB
1
1
.
数学与计算科学学院
3. 矩阵积的秩
定理4
A s n ,
若 Ps s , Q n n 可逆,则
R( A) R( PA) R( AQ ) R( PAQ )
证: 令
B PA,
由定理2, R ( B ) R ( A ),
数学与计算科学学院

高等代数-矩阵方法

高等代数-矩阵方法
从右往左看, 这是因为先作的初等行变换对应的初等矩阵在后作的初等行变换对 应的初等矩阵的右边., B 是由单位矩阵 E 连续作六次初等行变换的来的, A 右 乘 B ,即 BA 表示了对 A 连续作了对应的六个初等行变换: 第一步: A 的第三行乘以 5 ,得
a1 a2 A1 = b1 b2 5c 5c 2 1
4 鞍山师范学院数学系
高等代数方法技巧——小胡糊工作室
E − BD −1 A B E −1 E C D −D C 0
0 A − BD −1C = E 0
0 D
类似地,若 A 可逆, D 是否可逆未知或不可逆,只能得到前者;若 D 可逆, A 是 否可逆未知或不可逆,只能得到后者. 二、连续性理论 例如东北大学 2002 年真题的最后一题中的方法就是连续性理论: 设 A, B, C , D 均为 n 阶方阵,且 AC = CA . 求证: A B = AD − CB . C D 证明:若 A 可逆,则 E −1 −CA
第五步: A4 的第二行加上第一行的 3 倍,得
4b3 5c3 + 2b3 + a3
a3
a1 a2 A5 = 4b1 + 3a1 4b2 + 3a2 5c + 2b + a 5c + 2b + a 1 1 2 2 2 1
第六步: A5 的第一行乘以 2,得
4b3 + 3a3 5c3 + 2b3 + a3
A 0 B D − CA−1 B = A ⋅ D − CA−1 B = A( D − CA−1 B) = AD − ACA−1 B = AD − CAA−1 B = AD − CB

高等代数 -矩阵

高等代数 -矩阵

高等代数-矩阵矩阵(matrix)是一种代数对象,它是由元素排列成矩形形式的矩阵,通常用方括号括起来。

例如,一个3×3的矩阵A可以表示为:A = [a11 a12 a13a21 a22 a23a31 a32 a33]其中,a11, a12, ..., a33是矩阵A的元素。

一个m×n的矩阵可以表示成一个m 行n列的矩形矩阵,其中第i行第j列的元素记作aij。

这样,一个矩阵可以用一个二维数组表示。

矩阵加法运算:设A和B是两个m×n的矩阵,它们的和A+B定义为一个m×n的矩阵C,其中C中每个元素都等于对应的A和B矩阵中相应元素之和,即Cij = Aij + Bij矩阵数乘运算:设A是一个m×n的矩阵,k是一个实数或复数,则kA定义为一个m×n的矩阵B,其中B中每个元素都等于对应的A中相应元素乘以k,即Bij = kAij矩阵乘法运算:设A是一个m×n的矩阵,B是一个n×p的矩阵,则它们的乘积AB定义为一个m×p的矩阵C,其中C中第i行第j列的元素为Cij = ∑AikBkj (k=1,2,...,n)其中,∑表示对k从1到n的求和。

矩阵的逆:设A是一个n×n的方阵,若存在另一个n×n的方阵B,使得AB=BA=I,其中I是n×n的单位矩阵,则称B是A的逆矩阵,记作B=A-1。

只有可逆矩阵才有逆矩阵,而且逆矩阵是唯一的。

矩阵的转置:设A是一个m×n的矩阵,它的转置AT是一个n×m的矩阵,其中AT中第i 行第j列的元素等于A中第j行第i列的元素,即ATij = Aji矩阵的秩:一个矩阵的秩指的是它的行向量组或列向量组张成的线性空间的维数。

即一个矩阵的秩指的是它的非零行向量或非零列向量的极大线性无关组数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 列向量 n=1的特殊矩

a1
a2
M
am
• 行向量 m=1的特殊矩阵
a1 a2 L an
特殊矩阵及其元素表示_5
• n维标准单位向量
1 0
0
e1
0
M
,
e2
1
M
,L
, en
0
M
0
0
1
特殊矩阵及其元素表示_6
• n阶基础矩阵Eij
0
O
Eij
0 O
a11 b11 a12 b12 a11 b11 a12 b12 a11 b11
a21 b21 a22 b22
a21
a22
b21
a12 b12 b22
矩阵的加减法2_运算规则
• 运算规则
✓交换律: A+B = B+A ✓结合律: (A+B)+C = A+(B+C) ✓0+A=A+0 = A ✓A+ (-A) = 0 ✓A+(-B) = A-B
产品 产量 产品1
分厂1 20 分厂2 30
产品2
17 20
产品3
12 10
3200
17 20
1102
这里2×3个数排成2行3列,成为一个整体,抛 去它所包含的实际意义,构成了高等代数中的 一个2×3阶矩阵。
关于矩阵_1
• 矩阵这个词是由西尔维斯特(Sylvester, 18141897)于1850年首先提出。他是犹太人,故他 在取得剑桥大学数学荣誉会考第二名的优异成 绩时,仍被禁止在剑桥大学任教。从1841年起 他接受过一些较低的教授职位,也担任过书记 官和律师。经过一些年的努力,他终于成为霍 布金斯大学的教授,并于1884年70岁时重返英 格兰成为牛津大学的教授。他开创了美国纯数 学研究,并创办了《美国数学杂志》。在长达 50多年的时间内,他是行列式和矩阵论始终不 渝的作者之一。
交通网络模型_2
求:d 国和 f 国城市通路形式?

2x1 5x2 3
x1 3x2 1
(*)
变量代换 x1 3 y1 5 y2
x2
y1
2
y2
带入(*)
y1 3 原方程解为 x1 4
y2
1
x2
1
矩阵的乘法1_定义
• 设A为m×s矩阵,B为s×n矩阵,A与B 的乘积为一m×n矩阵C,定义如下:
a11 0 L 0
A
0
a22 L
0
L L L L
0
0
L
ann
aij 0,i j, i, j 1, 2,L , n
• 单位矩阵 In: 亦记作En
1 0 L 0
In
0
L
1 L
L L
0
L
0
0L
1
0 i j aij 1 i j
• 数量阵:c为一数 亦记作cIn
i, j 1, 2,L , n
矩阵的数乘_2
• 运算规则:
✓c(A+B)=cA+cB
✓(c+d)A=cA+dA
✓(cd)A=c(dA)
✓1·A=A
✓0·A=0
• 特例:A为n阶方阵,Eij为n阶基础矩阵,

A
a E n
i , j1 ij ij
例1_4
• 续1 设该化工厂第一季度各厂的生产情况 以及各产品成本和出产价如下表所示:
✓ cAB = (cA)B = A(cB) c为数
✓ 对任意m×n阶矩阵A,Im A = A = A In 特别提示 矩阵乘积不满足消去律
AB 0且A 0 B 0
0
0
11
0
0
0 0
0,

0 0
1 0
0,
1 0
0 0
0
矩阵的乘积4_行向量与列向量的乘积
•设 则
(a1 , a2 ,L , an ),
a1n a2n L amn
0
M
1
M
0 n1
a1 j a2 j
M
amj
a11 a12 L a1n
ei ' A 0 L
1L
0
a21
1m L
a22 L LL
a2n
L
ai1
ai 2
L
ain
am1 am2 L
amn
矩阵的乘积6_n阶基础矩阵
• n阶基础矩阵Eij
例1_3
• 续1依据该化工厂第一季度各厂的生产情 况矩阵A,预测全年各厂生产情况为B:
A
20 30
17 20
12 10
80 68 48 B 120 80 40
20 17 12 4 30 20 10 4A
矩阵数乘
a11 a12 L
c
a 21
a 22
L
L L L
an1 an2 L
a1n c?a11 ca12 L
0
0
L
ann
• 严格上三角矩阵A A为上三角阵,且对角元全为0
• 下三角阵A 常用L表示
a11 0 L 0
A
a21
a22
L
0
L L L L
an1 an2 L
ann
aij 0,i j, i, j 1, 2,L , n
• 严格下三角阵A A为下三角阵,且对角元全为0
特殊矩阵及其元素表示_4
• 复矩阵 矩阵元素为复数,即
aij∈C, i = 1,2,…, m; j = 1, 2,…, n
• 零矩阵0m×n 矩阵元素全为零,即
aij= 0, i = 1,2,…, m; j = 1, 2,…, n
• n阶方阵A: A的行数=列数= n
特殊矩阵及其元素表示_2
• 对角阵A: 亦记作diag(a11,a22, … ann)
矩阵定义
• 由排m成nm个行数、anij列(i 的 1矩,2阵,阵, m列;:j 1,2, , n)
A=
(aij
)mn
称为 m 行 n 列矩阵,简记为m×n矩阵,
aij称为 A 的第 i 行第 j 列元素。
特殊矩阵及其元素表示_1
• 实矩阵 矩阵的元素全为实数,即
aij∈R, i = 1,2,…, m; j = 1, 2,…, n
11
11 12 12
13 13
a
21
a22
a
23
b21
b22
b33
a21
b21
a22 b22
a23 b23
a31 a32 a33 b31 b32 b33 a31 b31 a32 b32 a33 b33
矩阵的加减法1_定义
• 两同为m×n的矩阵相加(减)后得一m×n 矩阵,其元素为两矩阵对应元素的和(差)
j
Aek
)ei
el
a jk Eil
矩阵转置
a11 a12 L a1n
a11 a 21 L an1
a
21
a 22
K
a
2
n
转置
a
12
a 22
L
an
2
L L L L
an1 an2 K ann
L L L L
a1n a 2n L ann
如 02×3≠01×6 ≠03×2
110
特别提示 行列式
1
01
0 0
1
0 1
建立了 n 阶方阵 1 1 0 1 1 0 1
的全体到某数域 的一个对应,即 但 其结果为数值。
1 1 0
1
1
0 1
1 0
0 1
0 1
1 0
0
1
例1_2
• 续1 设该化工厂第一、二季度各厂的生产情况 分别用矩阵A、B表示:
第二章 矩阵 Matrix
目的要求
• 熟练掌握矩阵的定义、两矩阵的相等概念; • 熟练掌握矩阵的运算及其运算规则,尤其
是乘法运算的不可交换性、不可消去性; • 注意对照数、行列式与矩阵的区别。
例1_1
• 例1 某化工厂所属的两个工厂都生产三种产品 B况1,如B下2,表B3:。在某年第一季度,各厂的生产情
0
L
L L
0 L
a2i L
0 L
L L
0
L
0
L
0 ani
0L
0
j列
L
L
L
0 0 L
Eij
A
a
j1
aj2
L
0
0L
L L L
0
0L
L
0
a
jn
i

0
L
0
Eij AEkl a jk Eil
AEij
Aei
e
j
Eij
A
ei
e
j
A
Eij AEkl
ei
e
j
Aek
el
ei
(e
j
Aek
)el
(e
1
0 O
j列
i行 0
1 k i且l j ekl 0 其他
矩阵的相等
• A = (aij)m×n,B = (bij)s×t 则A = B 必须同时满足如 下两个条件
✓ m = s, n = t
✓ aij = bij i=1, 2, …, m; j = 1, 2, …, n
特别提示 具有不同行列数的零矩阵代表不同的矩阵。
• 例2 右图示明了d 国三个城市,e 国三个 城市,f 国两个城市相互间之道路。
相关文档
最新文档