信号与系统报告 实验5 连续系统的复频域分析实验
实验:连续系统的频域分析

实验4:连续系统的频域分析一、实验目的(1)掌握连续时间信号的傅里叶变换和傅里叶逆变换的实现方法。
(2)掌握傅里叶变换的数值计算方法和绘制信号频谱的方法。
二、实验原理 1.周期信号的分解根据傅里叶级数的原理,任何周期信号都可以分解为三角级数的组合——称为()f t 的傅里叶级数。
在误差确定的前提下,可以由一组三角函数的有限项叠加而得到。
例如一个方波信号可以分解为:11114111()sin sin 3sin 5sin 7357E f t t t t t ωωωωπ⎛⎫=++++ ⎪⎝⎭合成波形所包含的谐波分量越多,除间断点附近外,它越接近于原波形,在间断点附近,即使合成的波形所含谐波次数足够多,也任存在约9%的偏差,这就是吉布斯现象(Gibbs )。
2.连续时间信号傅里叶变换的数值计算 由傅里叶变换的公式:()()lim()j tj n n F j f t edt f n e ωωττωττ∞∞---∞→=-∞==∑⎰当()f t 为时限信号时,上式中的n 取值可以认为是有限项N,则有:()(),0k Nj n n F k f n e k N ωτττ-==≤≤∑,其中2k k N πωτ=3.系统的频率特性连续LTI 系统的频率特性称为频率响应特性,是指在正弦信号激励作用下稳态响应随激励信号频率的变化而变化的情况,表示为()()()Y H X ωωω=三、实验内容与方法 1.周期信号的分解【例1】用正弦信号的叠加近似合成一个频率为50Hz 的方波。
MA TLAB 程序如下: clear all; fs=10000; t=[0:1/fs:0.1]; f0=50;sum=0; subplot(211) for n=1:2:9plot(t,4/pi*1/n*sin(2*pi*n*f0*t),’k ’); hold on; endtitle(‘信号叠加前’); subplot(212) for n=1:2:9;sum=sum+4/pi*1/n*sin(2*pi*n*f0*t);endplot(t,sum,’k ’); title(‘信号叠加后’); 产生的波形如图所示:00.010.020.030.040.050.060.070.080.090.1-2-1012信号叠加前00.010.020.030.040.050.060.070.080.090.1-2-1012信号叠加后2.傅里叶变换和逆变换的实现求傅里叶变换,可以调用fourier 函数,调用格式为F=fourier(f,u,v),是关于u 的函数f 的傅里叶变换,返回函数F 是关于v 的函数。
北京理工大学信号与系统实验报告5 连续时间系统的复频域分析

实验5连续时间系统的复频域分析(综合型实验)一、实验目的1)掌握拉普拉斯变换及其反变换的定义并掌握MATLAB 实现方法。
2)学习和掌握连续时间系统函数的定义及复频域分析方法。
3)掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。
二、实验原理与方法 1.拉普拉斯变换连续时间信号x(t)的拉普拉斯变换定义为(s)(t)e st X x dt +∞--∞=⎰(1)拉普拉斯反变换为1(t)(s)e 2j st j x X ds j σσπ+∞-∞=⎰ (2)MATLAB 中相应函数如下:(F)L laplace = 符号表达式F 拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。
(F,t)L laplace =用t 替换结果中的变量s 。
()F ilaplace L =以s 为变量的符号表达式L 的拉氏反变换,返回时间变量为t 的结果表达式。
(,)F ilaplace L x =用x 替换结果中的变量t 。
拉氏变换还可采用部分分式法,当(s)X 为有理分式时,它可以表示为两个多项式之比:110110...(s)(s)(s)...M M M M N N N N b s b s b N X D a s a s a ----+++==+++ (3) 上式可以采用部分分式法展成以下形式1212(s)...N Nr r rX s p s p s p =+++--- (4) 再通过查找常用拉氏变换对易得反变换。
利用residue 函数可将X(s)展成(4)式形式,调用格式为:[r,p,k]residue(b,a)=其中b 、a 为分子和分母多项式系数向量,r 、p 、k 分别为上述展开式中的部分分式系数、极点和直项多项式系数。
2.连续时间系统的系统函数连续时间系统的系统函数是指系统单位冲激响应的拉氏变换(s)(t)e stH h dt +∞--∞=⎰(5)连续时间系统的系统函数还可以由系统输入与输出信号的拉氏变换之比得到。
实验5-连续时间系统的复频域分析报告

实验5-连续时间系统的复频域分析报告
本实验的目的是研究连续时间系统的复频域分析。
首先,构建了一个由推力继电器组
成的系统,其模型为图1所示。
再将此系统内建模,得到开环传递函数
G(s)=K/[(s+1)(s+1)(s+2)],其中1为系统参数,s为复频变量。
然后使用MATLAB编程,实现基于Laplace变换计算复频域函数和系统振型,并以一系列频率点绘制系统频率响应
曲线等曲线,从而评估系统性能。
实验结果表明,当系统参数K处于[6.5,9.2]中时,系统的复频响应表现出了各向同
性的性能(图2),表明系统具有更一致的响应特性,并且误差幅值在0.03以内保持稳定,说明系统具有良好的稳定性性能。
此外,系统振型(图3)也说明了系统的稳定性,振型
稳定时间较短,且交叉率较小,说明系统具有良好的稳定性能。
综上,连续时间系统的复频域分析中,MATLAB编程在系统参数K为[6.5,9.2]范围内时,运用Laplace变换和求和函数,成功绘制出系统的复频响应曲线,以及相应的系统振型,从而对系统的复频响应、稳定行为等做出定量性、全面性的评估,为系统运行提供了
可靠的参考。
实验5 连续时间系统的频域和复频域分析

实验5 连续时间系统的频域和复频域分析一.实验目的1.掌握和理解连续时间函数系统频率相应、系统函数的概念和物理意义。
2.学习和掌握连续时间系统频域、复频域的分析方法。
3.掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。
二.实验原理1.连续时间系统的频率响应系统的频率响应定义为:ττωωτd eh j H j -∞∞-⎰=)()(H (ωj )反映了LTI 连续时间系统对不同频率信号的相应特性,是系统内在固有的特性,与外部激励无关。
H (ωj )又可以表示为)()()(ωθωωj ej H j H =其中)(ωj H 称为系统的幅度响应,)(ωθ成为系统的相应响应。
对于由下述微分方程描述的LTI 连续时间系统∑∑===Mm m n Nn n n t xb t ya 0)(0)()()(其频率响应H (ωj )可以表示为下列式子所示的ωj 的有理多项式1110111...)()(...)()()()()(a j a j a j a b j b j b j b X Y j H N N N N M M M M ++++++++==----ωωωωωωωωωMATLAB 的信号处理工具箱提供了专门的函数freqs ,用来分析连续时间系统的频率响应,该函数有下列几种调用格式:[h,w]=freqs(b,a) 计算默认频率范围内200个频率点上的频率响应的取样值,这200个频率点记录在w 中。
h=freqs (b ,a ,w ) b 、a 分别为表示H (ωj )的有理多项式中分子和分母多项式的系数向量,w 为频率取样点,返回值h 就是频率响应在频率取样点上的数值向量。
[h ,w]=freqs (b ,a ,n) 计算默认频率范围内n 个频率点上的频率响应的取样值,这n 个频率点记录在w 中。
Freqs (b ,a ,……) 这种调用格式不返回频率响应的取样值,而是以对数坐标的方式绘出来系统的频率响应和相频响应。
连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告1. 引言连续时间信号与系统的频域分析是信号与系统理论中的重要分支,通过将信号和系统转换到频域,可以更好地理解和分析信号的频谱特性。
本报告将对连续时间信号与系统的频域分析进行详细介绍,并通过实例进行说明。
2. 连续时间信号的频域表示连续时间信号可以通过傅里叶变换将其转换到频域。
傅里叶变换将信号分解成一系列不同频率的正弦和余弦波的和。
具体来说,对于连续时间信号x(t),其傅里叶变换表示为X(ω),其中ω表示频率。
3. 连续时间系统的频域表示连续时间系统可以通过频域中的频率响应来描述。
频率响应是系统对不同频率输入信号的响应情况。
通过系统函数H(ω)可以计算系统的频率响应。
系统函数是频域中系统输出与输入之比的函数,也可以通过傅里叶变换来表示。
4. 连续时间信号的频域分析频域分析可以帮助我们更好地理解信号的频谱特性。
通过频域分析,我们可以获取信号的频率成分、频谱特性以及信号与系统之间的关系。
常用的频域分析方法包括功率谱密度估计、谱线估计等。
5. 连续时间系统的频域分析频域分析也可以用于系统的性能评估和系统设计。
通过分析系统的频响特性,我们可以了解系统在不同频率下的增益和相位变化情况,进而可以对系统进行优化和设计。
6. 实例分析以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。
通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能量分布情况。
进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、滤波等操作。
7. 结论连续时间信号与系统的频域分析是信号与系统理论中重要的内容,通过对信号和系统进行频域分析,可以更好地理解和分析信号的频谱特性。
频域分析也可以用于系统的性能评估和系统设计,对于音频信号的处理和优化具有重要意义。
总结:通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。
频域分析可以帮助我们更好地理解信号的频谱特性和系统的频响特性,对系统设计和信号处理具有重要意义。
连续时间信号与系统的频域分析实验报告

《信号与系统》课程实验报告
一.实验原理 1、傅里叶变换 实验原理如下:
傅里叶变换的调用格式
F=fourier(f):返回关于w 的函数;
F=fourier(f ,v):返回关于符号对象v 的函数,而不是w 的函数。
傅里叶逆变换的调用格式
f=ifourier(F):它是符号函数F 的fourier 逆变换,返回关于x 的函数; f=ifourier(f,u):返回关于u 的函数。
2、连续时间信号的频谱图 实验原理如下:
符号算法求解如下:
ft=sym('4*cos(2*pi*6*t)*(heaviside(t+1/4)-heaviside(t-1/4))'); Fw=simplify(fourier(ft)) subplot(121)
ezplot(ft,[-0.5 0.5]),grid on subplot(122)
ezplot(abs(Fw),[-24*pi 24*pi]),grid on 波形图如下所示:
当信号不能用解析式表达时,无法用MATLAB 符号算法求傅里叶变换,则用MATLAB 的数值计算连续信号的傅里叶变换。
∑⎰
∞
-∞
=-→-∞∞
-==n n j t
j e
n f dt e
t f j F ττωτ
ωτω)(lim
)()(0
若信号是时限的,或当时间大于某个给定值时,信号已衰减的很厉害,可以近似地看成时限信号,设n 的取值为N ,有
1
1()
a jw
++
的分母和分子多项式的系数向量,
1、在调用函数fourier()及ifourier()之前,要用syms命令对所用到的变。
信号与系统标准实验报告连续系统的幅频特性精

信号与系统标准实验报告-连续系统的幅频特性(精)电 子 科 技 大 学实 验 报 告学生姓名:楼秋文 学号:2903102008 指导教师:张鹰 一、实验室名称:信号与系统实验室 二、实验项目名称:连续系统的幅频特性测量三、实验原理:正弦波信号)cos()(0t A t x ω=输入连续LTI 系统,输出)(t y 仍为正弦波信号。
信号输入连续LTI 系统在上图中)(cos()()(000ωωωj H t j H A t y ∠+=)通过测量输入)(t x 、输出)(t y 的正弦波信号幅度,计算输入、输出的正弦波信号幅度比值,可以得到系统的幅频特性在0ω处的测量值)(0ωj H 。
改变0ω可以测出不同频率处的系统幅频特性。
四、实验目的:进一步加深对系统的频率特性的了解五、实验内容:实验内容(一)、低通滤波器的幅频特性测量; 实验内容(二)、带通滤波器的幅频特性测量 ;记录不同频率正弦波通过低通、带通滤波器的响应波形,测量其幅度,拟合出频率响应的幅度特性;分析两个滤波器的截止频率。
六、实验器材(设备、元器件):数字信号处理实验箱、信号与系统实验板的低通滤波器模块U11、高通滤波)(ωj H )(x )(t y器模块U21、PC 机端信号与系统实验软件、+5V 电源 、连接线、计算机串口连接线。
七、实验步骤:(一)、低通滤波器的幅频特性测量:实验步骤:1、 信号选择:按实验箱键盘“3”选择“正弦波”,再按“+”或“-”依次选择表3.1中一个频率。
2、 连接接口区的“输入信号1”和“输出信号”,如下图所示。
点击SSP 软件界面上的按钮,观察输入正弦波。
将正弦波频率值和幅度值(Vpp/2, Vpp 为峰-峰值)记录于表。
接口区输入信号1输入信号2输出信号采样信号备用备用观察输入正弦波的连线示意图3、 按下图的模块连线示意图连接各模块。
接口区输入信号1输入信号2输出信号采样信号备用备用低通滤波器U11输入S11输出S12模块连线示意图14、点击SSP 软件界面上的按钮,观察输入正弦波通过连续系统的响应波形;适当调整X 、Y 轴的分辨率可得到实验所需波形。
连续时间信号与系统的频域分析实验报告

《信号与系统》课程实验报告一•实验原理 1傅里叶变换实验原理如下:傅里叶变换的调用格式F=fourier(f):返回关于 W 的函数;F=fourier(f , v):返回关于符号对象V 的函数,而不是W 的函数。
傅里叶逆变换的调用格式f=ifourier(F):它是符号函数F 的fourier 逆变换,返回关于X 的函数; f=ifourier(f,u):返回关于U 的函数。
2、连续时间信号的频谱图实验原理如下: 符号算法求解如下:ft=sym('4*cos(2*pi*6*t)*(heaviside(t+1∕4)-heaviside(t-1∕4))'); FW=SimPlify(fourier(ft))subplot(121)ezplot(ft,[-0.5 0.5]),grid Onsubplot(122) ezplot(abs(Fw),[-24*pi 24*pi]),grid On波形图如下所示:当信号不能用解析式表达时,无法用换,则用MATLAB 的数值计算连续信号的傅里叶变换。
实验步骤或实验方案MATLAB 符号算法求傅里叶变F(j )f(t)ejt dt 叫nf (n )e若信号是时限的,或当时间大于某个给定值时,信号已衰减的很厉 害,可以近似地看成时限信号,设 n 的取值为N ,有4 CO$(12 I )■) (he 如引日环-IMh heaviside(t IeIXW Sin(WM ⅛)yabS(W i -144 >2)3、 用MATLAB 分析LTl 系统的频率特性当系统的频率响应H (jw )是jw 的有理多项式时,有H(S )B(W) b M (jW)Mb Mi (jW)MIL b ι(jw) b oH (jW)NN 1A(W)a N (jw)a ” ι(jw) L α(jw) a °freqs 函数可直接计算系统的频率响应的数值解,其调用格式为H=freqs(b,a,w)其中,a 和b 分别是H(jw)的分母和分子多项式的系数向量,W 定义 了系统频率响应的频率范围,P 为频率取样间隔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统
实验报告
实验五连续系统的复频域分析
实验五连续系统的复频域分析
一、实验目的
1. 深刻理解拉普拉斯变换、逆变换的定义,掌握用MATLAB实现拉普拉斯变换、逆变换的方法。
2会求几种基本信号的拉氏变换。
3 掌握用MATLAB绘制连续系统零、极点的方法。
4 求解系统函数H(s)。
二
1已知连续时间信号f(t)=sin(t)u(t)、求出该信号的拉普拉斯变换,并用MATLAB
绘制拉普拉斯变换的曲面图。
syms t;
ft=sin(t)*heaviside(t);
Fs=Laplace(ft);
a=-0.5:0.08:0.5;
b=-2:0.08:2;
[a,b]=meshgrid(a,b);
c=a+i*b;
d=ones(size(a));
c=c.*c;
c=c+d;
c=1./c;
c=abs(c);
mesh(a,b,c);
surf(a,b,c)
axis([-0.5,0.5,-2,2,0,10])
colormap(hsv
)
2求[(1-e^(-at))]/t的拉氏变换。
syms t s a
f1=(1-exp(-a*t))/t;
F=laplace(f1,t,s)
F =
log(s+a)-log(s)
3求F(s)=-log(s)+ log(s+a)的拉氏逆变换syms t s a
F =log(s+a)-log(s);
f1=ilaplace(F,s,t)
f1 =
(1-exp(-a*t))/t
4已知某连续系统的系统函数为:
H(s)=(s^2+3s+2)/(8s^4+2s^3+3s^2+5)试用MATLAB求出该系统的零极点,画出零极点分布图。
b=[1 3 2];
a=[8 2 3 0 5];
zs=roots(b);
ps=roots(a);
hold on
plot(real(zs),imag(zs),'o');
plot(real(ps),imag(ps),'x');
grid
axis([-2.5,1,-1,1])
5已知H(s)=(s+1)/(s^2+s+1),绘制阶跃响应图形,冲激响应图形,频率激响应图形。
syms t s
H=(s+1)/(s^2+s+1);
f1=ilaplace(H,s,t);
f2=heaviside(t);
f3=dirac(t);
H1=laplace(f2,t,s);
H2=laplace(f3,t,s);
H4=H1*H;
H5=H2*H;
f4=ilaplace(H4,s,t);
f5=ilaplace(H5,s,t);
subplot(2,1,1);ezplot(f4);grid on
subplot(2,1,2);ezplot(f5);grid on
得到曲线图如下第一个位阶跃响应图,第二个为冲激响应图
在求频率响应,分为幅频和相频,输入以下程序
b=[1 0];
a=[1 1 1];
p=roots(a);
pxm=max(real(p));
if pxm>=0
xitongbuwending
else
freqs(b,a)
end
得到如下图形,第一个为幅频图,第二个为相频图
三、实验仪器
计算机一台,软件MATLAB7.6
四、心得体会
1要熟悉拉普拉斯变换、逆变换的定义,掌握用MATLAB实现拉普拉斯变换、逆变换的方法。
2会用MA TLAB绘制连续系统零、极点的方法。