概率与数理统计教案-(2)
概率论与数理统计课件(1-2)

频率与概率到底有怎样的关系呢? 频率与概率到底有怎样的关系呢?
历史上曾有人做过试验,试图证明抛掷匀质 硬币时,出现正反面的机会均等。 实验者
De Morgan Buffon K. Pearson K. Pearson
n
2048 4040 12000 24000
nH
1061 2048 6019 12012
这两个公式的思想贯穿着整个概率问题的求解
可重复排列:从含有n 个元素的集合中随机 抽取k 次,每次取一个,记录其结果后放回, 将记录结果排成一列
n n n
n
共有nk 种不同排列方式
无重复排列: 无重复排列:从含有n 个元素的集合中随机抽 每次取一个,取后不放回, 取k 次,每次取一个,取后不放回,将所取元 素排成一列
1.2 概率
从直观上来看,事件A的概率是描绘事件A 从直观上来看,事件A的概率是描绘事件A 发生的可能性大小的量 P(A)应具有何种性质? ( 应具有何种性质? 抛一枚硬币,币值面向上的概率为多少? * 抛一枚硬币,币值面向上的概率为多少? 掷一颗骰子,出现6点的概率为多少? * 掷一颗骰子,出现6点的概率为多少? 出现单数点的概率为多少? 出现单数点的概率为多少? 向目标射击,命中目标的概率有多大? * 向目标射击,命中目标的概率有多大?
•频率的性质
(1) 0≤ fn(A) ≤1; ≤ ≤ ; (2) fn( )=1; fn(Φ)=0 = ; Φ (3) 可加性:若AB= Φ ,则 可加性: = fn(A∪B)= fn(A) +fn(B). =
二、 概率的公理化定义与性质 注意到不论是对概率的直观理 解,还是频率定义方式,作为事件 的概率,都应具有前述三条基本性 质,在数学上,我们就可以从这些 性质出发,给出概率的公理化定义
四年级下册数学教案:统计与概率

四年级下册数学教案:统计与概率一、教学目标:通过本单元的学习,学生能够:1. 掌握统计的基本方法和过程,并能够根据给出的数据进行统计分析;2. 熟练掌握概率的定义和基本概念,并能够用概率的思想解决问题;3. 认识到统计与概率在生活中的应用,并能够用所学知识进行分析。
二、教材分析:本单元的教材主要包括以下几个方面:1. 统计的基本概念和方法:如调查、统计表、图表的绘制和分析等;2. 概率的基本概念和公式:如概率的定义、加法原理、乘法原理等;3. 统计和概率的应用:如生活中的概率问题、统计调查的分析等。
本单元的教材重点在于让学生掌握统计和概率的基本概念和方法,并能够应用所学知识解决实际问题。
在教学中应注重培养学生的观察力、分析能力和解决问题的能力。
三、教学过程:1. 教学准备:制定教学计划、准备教学资料和教具、备课、安排师生活动空间等。
2. 教学设计:(1)引入新课通过一段小故事或实例来介绍统计和概率在生活中的应用,激发学生的兴趣,引发学生的思考。
(2)知识点讲解通过多媒体、图表、讲解等形式,将统计和概率的基本概念和方法讲解给学生,让学生掌握统计表、图表的绘制和分析方法,熟练掌握概率的基本概念和公式,学习如何用概率的思想解决问题等。
(3)课堂练习为巩固学生的所学知识,教师可以出一些课堂练习,要求学生用所学知识解决问题,检验学生的掌握程度。
(4)拓展学习引导学生学习相关领域的知识,如生态统计、生物统计、经济统计等,拓展学习领域。
(5)教学反思及时反思教学过程,总结教学效果,发现问题并加以改进,提高自身教学水平。
四、教学方法:本单元的教学方法主要为多种形式相结合的综合性教学方法。
在教学中应采用针对性强、实用性强的授课方法,注重培养学生的实践能力和解决问题的能力,推崇启发式教学方法,引导学生发现问题,激发他们的思考和创造力。
五、教学手段:本单元的教学手段主要包括多媒体、图表、实物模型等多种手段。
通过多种形式的教学手段可以激发学生的学习兴趣,提高教学质量。
概率论与数理统计 教案

概率论与数理统计教案教案标题:引入概率论与数理统计的基本概念教学目标:1. 了解概率论和数理统计的基本概念和重要性;2. 掌握概率和统计的基本术语和符号;3. 能够应用概率和统计的方法解决简单问题;4. 培养学生的数学思维和分析问题的能力。
教学内容:1. 概率论的基本概念和应用;2. 数理统计的基本概念和应用;3. 概率和统计的关系和区别;4. 概率和统计在实际生活中的应用。
教学步骤:一、导入(5分钟)1. 引入概率论和数理统计的重要性和应用领域;2. 激发学生对概率和统计的兴趣。
二、概率论的基本概念(15分钟)1. 介绍概率的定义和基本性质;2. 解释概率的计算方法和应用;3. 通过例题让学生掌握概率的计算方法。
三、数理统计的基本概念(20分钟)1. 介绍统计的定义和基本性质;2. 解释统计的计算方法和应用;3. 通过例题让学生掌握统计的计算方法。
四、概率与统计的关系和区别(10分钟)1. 对比概率和统计的定义和应用;2. 强调概率和统计在实际问题中的互补性。
五、概率与统计的应用(15分钟)1. 介绍概率和统计在实际生活中的应用场景;2. 分析并解决实际问题,应用概率和统计的方法。
六、小结与展望(5分钟)1. 总结本节课学习的内容;2. 展望下节课的教学内容。
教学方法:1. 讲授法:通过讲解和示范引导学生理解概率论和数理统计的基本概念;2. 互动讨论法:通过提问和回答的方式激发学生的思考和参与度;3. 实践操作法:通过例题和实际问题的解决培养学生的应用能力。
教学评估:1. 课堂练习:布置概率和统计的练习题,检查学生对概念和方法的掌握程度;2. 课堂讨论:引导学生参与讨论,评估学生对概率和统计的理解和应用能力。
教学资源:1. 教科书和教学课件:提供基本概念和例题;2. 练习册和习题集:提供练习题和实际问题。
教学延伸:1. 指导学生进行实际调查和数据收集,应用概率和统计的方法进行分析;2. 引导学生阅读相关的科普文章和研究报告,拓宽对概率和统计的理解。
概率论与数理统计教案(48课时)(最新整理)

( x, y )G
,注意二重积分运算知识点的复习。
d) 二维均匀分布的密度函数的具体表达形式。
五.思考题和习题
思考题:1. 由随机变量 X ,Y 的边缘分布能否决定它们的联合分布?
2. 条件分布是否可以由条件概率公式推导? 3. 事件的独立性与随机变量的独立性是否一致? 4.如何利用随机变量之间的独立性去简化概率计算,试举例说明。 习题:
第四章 随机变量的数字特征 一.教学目标及基本要求
(1)理解数学期望和方差的定义并且掌握它们的计算公式;
(2)掌握数学期望和方差的性质与计算,会求随机变量函数的数学期望,特别是利用
期望或方差的性质计算某些随机变量函数的期望和方差。
(3)熟记 0-1 分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的数学期
第四节 二维随机变量的函数的分布
已知(X,Y)的分布率 pij 或密度函数 (x, y) ,求 Z f ( X ,Y ) 的分布律或密度
函数Z (z) 。特别如函数形式: Z X Y , Z max( X ,Y ), Z min( X ,Y ) 。
2 学时
三.本章教学内容的重点和难点
a) 二维随机变量的分布函数及性质,与一维情形比较有哪些不同之处;
5.列举正态分布的应用。
习题:
第三章 多维随机变量及其分布
一.教学目标及基本要求
(1)了解二维随机变量概念及其联合分布函数概念和性质,了解二维离散型和连续 型随机变量定义及其概率分布和性质,了解二维均匀分布和正态分布。
(2)会用联合概率分布计算有关事件的概率,会求边缘分布。 (3)掌握随机变量独立性的概念,掌握运用随机变量的独立性进行概率计算。 (4)会求两个独立随机变量的简单函数(如函数 X+Y, max(X, Y), min(X, Y))的分布。
数学教案 统计和概率

数学教案统计和概率数学教案统计和概率一、引言在数学教育中,统计和概率是非常重要的内容之一。
通过学习统计和概率,学生可以了解并分析数据,并利用概率来推断和预测事件的可能性。
本教案将详细介绍统计和概率在中学数学教育中的教学方法和活动。
二、教学目标1. 了解统计学和概率论的基础概念;2. 学会分析统计数据,并运用统计方法解决问题;3. 掌握概率计算方法,并应用概率理论解决实际问题;4. 培养学生的逻辑思维能力和创新意识。
三、教学内容和活动1. 统计学统计学是研究数据收集、分析和解释的学科。
在教学中,可以引导学生通过以下活动来学习统计学的基本概念:活动一:数据收集与整理让学生分组进行调查,收集某一问题的相关数据,并整理成表格或图表形式。
例如,调查同学们喜欢的运动项目,并将结果绘制成条形图。
活动二:数据分析与解释让学生观察图表,并回答相关问题。
例如,根据条形图分析哪种运动项目最受欢迎,哪种运动项目相对较少。
2. 概率论概率论是研究随机现象和不确定性的学科。
在教学中,可以通过以下活动来培养学生的概率计算能力和解决实际问题的能力:活动三:事件发生的可能性让学生进行事件的可能性猜测,例如抛硬币的结果是正面还是反面的概率是多少。
通过实际操作,让学生体验概率的随机性。
活动四:概率计算教授概率计算的方法,并给学生提供一些实际问题,让学生应用概率计算方法解决问题。
例如,某班级同学的身高数据,学生可以利用概率计算方法预测下一位同学的身高范围。
四、教学评估与反馈1. 在整个教学过程中,教师可以通过观察学生的表现、听取学生的回答等方式进行即时评估,并提供针对性的反馈。
2. 针对学生的理解程度和掌握程度,可以设置一些小测验或作业,进一步评估学生的学习情况。
五、教学延伸1. 在教学过程中,教师可以引导学生进行实际数据的收集和分析,使学生更好地理解统计学的应用。
2. 教师可以鼓励学生自主学习,通过查阅相关资料或进行课外阅读来进一步拓展知识。
概率论与数理统计教案

概率论与数理统计教案【篇一:概率论与数理统计教案】《概率论与数理统计》课程教案第一章随机事件及其概率一.本章的教学目标及基本要求(1) 理解随机试验、样本空间、随机事件的概念; (2) 掌握随机事件之间的关系与运算,;(3) 掌握概率的基本性质以及简单的古典概率计算; 学会几何概率的计算; (4) 理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。
了解概率的公理化定义。
(5) 理解条件概率、全概率公式、bayes 公式及其意义。
理解事件的独立性。
二.本章的教学内容及学时分配第一节随机事件及事件之间的关系第二节频率与概率 2学时第三节等可能概型(古典概型) 2 学时第四节条件概率第五节事件的独立性 2 学时三.本章教学内容的重点和难点1)随机事件及随机事件之间的关系; 2)古典概型及概率计算;3)概率的性质;4)条件概率,全概率公式和bayes公式 5)独立性、n 重伯努利试验和伯努利定理四.教学过程中应注意的问题1)使学生能正确地描述随机试验的样本空间和各种随机事件;2)注意让学生理解事件a?b,a?b,a?b,a?b,ab??,a…的具体含义,理解事件的互斥关系;3)让学生掌握事件之间的运算法则和德莫根定律;4)古典概率计算中,为了计算样本点总数和事件的有利场合数,经常要用到排列和组合,复习排列、组合原理;5)讲清楚抽样的两种方式——有放回和无放回;五.思考题和习题思考题:1. 集合的并运算?和差运算-是否存在消去律?2. 怎样理解互斥事件和逆事件?3. 古典概率的计算与几何概率的计算有哪些不同点?哪些相同点?习题:第二章随机变量及其分布一.本章的教学目标及基本要求(1) 理解随机变量的概念,理解随机变量分布函数的概念及性质, 理解离散型和连续型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率; (2) 熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律或密度函数及性质;二.本章的教学内容及学时分配第一节随机变量第二节第二节离散型随机变量及其分布离散随机变量及分布律、分布律的特征第三节常用的离散型随机变量常见分布(0-1分布、二项分布、泊松分布) 2学时第四节随机变量的分布函数分布函数的定义和基本性质,公式第五节连续型随机变量及其分布连续随机变量及密度函数、密度函数的性质 2学时第六节常用的连续型随机变量常见分布(均匀分布、指数分布、正态分布)及概率计算 2学时三.本章教学内容的重点和难点a) 随机变量的定义、分布函数及性质;b) 离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何事件的概率;c) 六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布);四.教学过程中应注意的问题a) 注意分布函数f(x)?p{x?x}的特殊值及左连续性概念的理解; b)构成离散随机变量x的分布律的条件,它与分布函数f(x)之间的关系;c) 构成连续随机变量x的密度函数的条件,它与分布函数f(x)之间的关系; d) 连续型随机变量的分布函数f(x)关于x处处连续,且p(x?x)?0,其中x为任意实数,同时说明了p(a)?0不能推导a??。
概率论与数理统计教案(48课时)

概率论与数理统计教案(48课时)第一章随机事件及其概率本章的教学目标及基本要求(1)理解随机试验、样本空间、随机事件的概念;(2)掌握随机事件之间的关系与运算,;(3)掌握概率的基本性质以及简单的古典概率计算;学会几何概率的计算;(4)理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。
了解概率的公理化定义。
(5)理解条件概率、全概率公式、Bayes公式及其意义。
理解事件的独立性。
本章的教学内容及学时分配第一节随机事件及事件之间的关系第二节频率与概率2学时第三节等可能概型(古典概型)2学时第四节条件概率第五节 事件的独立性2学时三.本章教学内容的重点和难点1)随机事件及随机事件之间的关系;2)古典概型及概率计算;3)概率的性质;5)独立性、n 重伯努利试验和伯努利定理四.教学过程中应注意的问题1)使学生能正确地描述随机试验的样本空间和各种随机事件;2)注意让学生理解事件4uB,AuB 、AcB,4-B,4B = ®,A... 的具体含义,理解事件的互斥关系;根定律;4)条件概率, 全概率公式和Bayes 公式 3) 让学生掌握事件之间的运算法则和德莫4)古典概率计算中,为了计算样本点总数和1)事件的有利场合数,经常要用到排列和组合,复习排列、组合原理;2)讲清楚抽样的两种方式有放回和无放回;思考题和习题思考题:1.集合的并运算和差运算-是否存在消去律?2.怎样理解互斥事件和逆事件?3.古典概率的计算与几何概率的计算有哪些不同点?哪些相同点?习题:第二章随机变量及其分布本章的教学目标及基本要求(1)理解随机变量的概念,理解随机变量分布函数的概念及性质,理解离散型和连续型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率;(2)熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律或密度函数及性质;二.本章的教学内容及学时分配第一节随机变量第二节第二节离散型随机变量及其分布离散随机变量及分布律、分布律的特征第三节常用的离散型随机变量常见分布(0-1分布、二项分布、泊松分布)2学时第四节随机变量的分布函数分布函数的定义和基本性质,公式第五节连续型随机变量及其分布连续随机变量及密度函数、密度函数的性质2学时第六节常用的连续型随机变量常见分布(均匀分布、指数分布、正态分布)及概率计算2学时三.本章教学内容的重点和难点a)随机变量的定义、分布函数及性质;b)离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何事件的概率;C)六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布);四.教学过程中应注意的问题a)注意分布函数F(x) P{X x}的特殊值及左连续性概念的理解;b)构成离散随机变量X的分布律的条件,它与分布函数F(x)之间的关系;c)构成连续随机变量X的密度函数的条件,它与分布函数F(x)之间的关系;d)连续型随机变量的分布函数F(x)关于x处处连续,且P(X x) 0,其中x为任意实数,同时说明了P(A) 0不能推导A 。
概率论与数理统计B教案第二章

第二章随机变量及其分布在随机试验中,人们除对某些特定事件发生的概率感兴趣外,往往还关心某个与随机试验的结果相联系的变量. 由于这一变量的取值依赖于随机试验结果,因而被称为随机变量. 与普通的变量不同,对于随机变量,人们无法事先预知其确切取值,但可以研究其取值的统计规律性. 本章将介绍两类随机变量及描述随机变量统计规律性的分布.第一节随机变量的概念内容要点:一、随机变量概念的引入为全面研究随机试验的结果, 揭示随机现象的统计规律性, 需将随机试验的结果数量化,即把随机试验的结果与实数对应起来.1. 在有些随机试验中, 试验的结果本身就由数量来表示.2. 在另一些随机试验中, 试验结果看起来与数量无关,但可以指定一个数量来表示之.二、随机变量的定义定义设随机试验的样本空间为S, 称定义在样本空间S上的实值单值函数)X=(eX为随机变量.随机变量与高等数学中函数的比较:(1) 它们都是实值函数,但前者在试验前只知道它可能取值的范围,而不能预先肯定它将取哪个值;(2) 因试验结果的出现具有一定的概率,故前者取每个值和每个确定范围内的值也有一定的概率.三、引入随机变量的意义随机变量的引入,使得随机试验中的各种事件可通过随机变量的关系式表达出来.由此可见,随机事件这个概念实际上是包容在随机变量这个更广的概念内.也可以说,随机事件是从静态的观点来研究随机现象,而随机变量则以动态的观点来研究之.其关系类似高等数学中常量与变量的关系.随机变量概念的产生是概率论发展史上的重大事件. 引入随机变量后,对随机现象统计规律的研究,就由对事件及事件概率的研究转化为随机变量及其取值规律的研究,使人们可利用数学分析的方法对随机试验的结果进行广泛而深入的研究.随机变量因其取值方式不同, 通常分为离散型和非离散型两类. 而非非离散型随机变量中最重要的是连续型随机变量. 今后,我们主要讨论离散型随机变量和连续型随机变量.例题选讲:例1(讲义例1)在抛掷一枚硬币进行打赌时, 若规定出现正面时抛掷者赢1元钱, 出现反面时输1元钱, 则其样本空间为S{正面, 反面},=记赢钱数为随机变量X, 则X作为样本空间S的实值函数定义为⎩⎨⎧=-==.,1,,1)(反面正面e e e X例2 (讲义例2) 在将一枚硬币抛掷三次, 观察正面H 、反面T 出现情况的试验中, 其样本空间};,,,,,,,{TTT TTH THT HTT THH HTH HHT HHH S = 记每次试验出现正面H 的总次数为随机变量X , 则X 作为样本空间S 上的函数定义为1112223X TTTTTH THT HTT THH HTH HHT HHH e易见, 使X 取值为})2({2=X 的样本点构成的子集为},,,{THH HTH HHT A = 故 ,8/3)(}2{===A P X P 类似地,有.8/4},,,{}1{==≤TTT TTH THT HTT P X P例3 (讲义例3) 在测试灯泡寿命的试验中, 每一个灯泡的实际使用寿命可能是),0[+∞中任何一个实数, 若用X 表示灯泡的寿命(小时),则X 是定义在样本空间}0|{≥=t t S 上的函数,即t t X X ==)(,是随机变量.课堂练习1. 一报童卖报, 每份0.15元,其成本为0.10元. 报馆每天给报童1000份报, 并规定他不得把卖不出的报纸退回. 设X 为报童每天卖出的报纸份数, 试将报童赔钱这一事件用随机变量的表达式表示.第二节 离散型随机变量及其分布函数内容要点:一、离散型随机变量及其概率分布定义 设离散型随机变量X 的所有可能取值为),2,1( =i x i , 称,2,1,}{===i p x X P i i为X 的概率分布或分布律, 也称概率函数.常用表格形式来表示X 的概率分布:n i n p p p p x x x X 2121二、常用离散分布退化分布 两点分布 n 个点上的均匀分布 二项分布 几何分布 超几何分布泊松分布:泊松分布是概率论中最重要的几个分布之一. 实际问题中许多随机现象都服从或近似服从泊松分布.三、二项分布的泊松近似定理1 (泊松定理) 在n 重伯努利试验中, 事件A 在每次试验中发生的概率为n p (注意这与试验的次数n 有关), 如果∞→n 时, λ→n np (0>λ为常数), 则对任意给定的k , 有λλ-∞→=e k p n k b kn n !),,(lim .例题选讲:离散型随机变量及其概率分布例1 (讲义例1) 某篮球运动员投中篮圈的概率是0.9, 求他两次独立投篮投中次数X 的概率分布.例2 (讲义例2) 设随机变量X 的概率分布为:0,,2,1,0,!}{>===λλ k k aK X P k.试确定常数a .二项分布例3 (讲义例3) 已知100个产品中有5个次品, 现从中有放回地取3次, 每次任取1个, 求在所取的3个中恰有2个次品的概率.例4 (讲义例4) 某人进行射击, 设每次射击的命中率为0.02, 独立射击400次, 试求至少击中两次的概率.例5 (讲义例5) 设有80台同类型设备, 各台工作是相互独立的,发生故障的概率都是0.01, 且一台设备的故障能由一个人处理. 考虑两种配备维修工人的方法, 其一是由4人维护, 每人负责20台; 其二是由3人共同维护80台. 试比较这两种方法在设备发生故障时不能及时维修的概率的大小. 几何分布例6 (讲义例6) 某射手连续向一目标射击, 直到命中为止, 已知他每发命中的概率是p , 求所需射击发数X 的概率分布. 泊松分布例7 (讲义例7) 某一城市每天发生火灾的次数X 服从参数8.0=λ的泊松分布, 求该城市一天内发生3次或3次以上火灾的概率. 二项分布的泊松近似例8 (讲义例8) 某公司生产的一种产品300件. 根据历史生产记录知废品率为0.01. 问现在这300件产品经检验废品数大于5的概率是多少?例9 (讲义例9) 一家商店采用科学管理,由该商店过去的销售记录知道, 某种商品每月的销售数可以用参数5=λ的泊松分布来描述, 为了以95%以上的把握保证不脱销, 问商店在月底至少应进某种商品多少件?例10 (讲义例10) 自1875年至1955年中的某63年间, 上海市夏季(5—9月)共发生大暴雨180次, 试建立上海市夏季暴雨发生次数的概率分布模型.课堂练习1.某类灯泡使用时数在1000小时以上的概率是0.2, 求三个灯泡在使用1000小时以后最多只有一个坏了的概率.2.一汽车沿一街道行驶, 需要通过三个均设有红绿信号灯的路口, 每个信号灯为红或绿与其它信号灯为红或绿相互独立, 且红绿两种信号灯显示的时间相等. 以X 表示该汽车首次遇到红灯前已通过的路口的个数, 求X 的概率分布.第三节 随机变量的分布函数当我们要描述一个随机变量时,不仅要说明它能够取哪些值,而且还要指出它取这些值的概率. 只有这样,才能真正完整地刻画一个随机变量, 为此,我们引入随机变量的分布函数的概念.内容要点:一. 随机变量的分布函数定义 设X 是一个随机变量, 称)()()(+∞<<-∞≤=x x X P x F为X 的分布函数.有时记作)(~x F X 或)(x F X .分布函数的性质1. 单调非减. 若21x x <, 则)()(21x F x F ≤;2. ;1)(lim )(,0)(lim )(==+∞==-∞+∞→-∞→x F F x F F x x3. 右连续性. 即).()(lim 00x F x F x x =+→二、离散型随机变量的分布函数设离散型随机变量X 的概率分布为n i n p p p p x x x X 2121则X 的分布函数为∑∑≤≤===≤=xx i xx i i i p x X P x X P x F )()()(.例题选讲:随机变量的分布函数例1(讲义例1)等可能地在数轴上的有界区间],[b a 上投点, 记X 为落点的位置(数轴上的坐标) , 求随机变量X 的分布函数.例2(讲义例2)判别下列函数是否为某随机变量的分布函数?⎪⎩⎪⎨⎧≥<≤+<=⎪⎩⎪⎨⎧≥<≤<=⎪⎩⎪⎨⎧≥<≤--<=.2/1,1,2/10,2/1,0,0)()3(;,1,0,sin ,0,0)()2(;0,1,02,2/1,2,0)()1(x x x x x F x x x x x F x x x x F ππ离散型随机变量的分布函数例3(讲义例3)设,2/16/13/1210i p X 求)(x F .例4 X 具有离散均匀分布, 即,,,2,1,/1)(n i n x X P i ===求X 的分布函数.例5(讲义例4)设随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=.3,1,32,19/15,21,19/9,1,0)(x x x x x F求X 的概率分布.课堂练习1.设随机变量X 的概率分布为4/12/14/1421i p X -,求X 的的分布函数,并求{},2/1≤X P {},2/52/3≤<X P {}.32≤≤X P第四节 连续型随机变量及其概率密度内容要点:一、 连续型随机变量及其概率密度定义 如果对随机变量X 的分布函数)(x F ,存在非负可积函数)(x f ,使得对于任意实数x 有.)(}{)(⎰∞-=≤=xdt t f x X P x F则称X 为连续型随机变量, 称)(x f 为X 的概率密度函数,简称为概率密度或密度函数. 关于概率密度的说明1. 对一个连续型随机变量X ,若已知其密度函数)(x f ,则根据定义,可求得其分布函数)(x F , 同时, 还可求得X 的取值落在任意区间],(b a 上的概率:⎰=-=≤<ba dx x f a Fb F b X a P )()()(}{2. 连续型随机变量X 取任一指定值)(R a a ∈的概率为0.3. 若)(x f 在点x 处连续, 则)()(x f x F =' (1)二、常用连续型分布 均匀分布定义 若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a ab x f 则称X 在区间),(b a 上服从均匀分布, 记为),(~b a U X .指数分布定义 若随机变量X 的概率密度为0.,0,0,)(>⎩⎨⎧>=-λλλ其它x e x f x则称X 服从参数为λ的指数分布.简记为).(~λe X正态分布定义 若随机变量X 的概率密度为.,21)(222)(∞<<∞-=--x e x f x σμσπ其中μ和)0(>σσ都是常数, 则称X 服从参数为μ和2σ的正态分布. 记为).,(~2σμN X 注: 正态分布是概率论中最重要的连续型分布, 在十九世纪前叶由高斯加以推广, 故又常称为高斯分布. 一般来说,一个随机变量如果受到许多随机因素的影响,而其中每一个因素都不起主导作用(作用微小),则它服从正态分布. 这是正态分布在实践中得以广泛应用的原因. 例如, 产品的质量指标, 元件的尺寸, 某地区成年男子的身高、体重, 测量误差, 射击目标的水平或垂直偏差, 信号噪声、农作物的产量等等, 都服从或近似服从正态分布.标准正态分布正态分布当1,0==σμ时称为标准正态分布, 此时, 其密度函数和分布函数常用)(x ϕ和)(x Φ表示:,21)(22x e x -=πϕ ⎰∞--=Φxt dt e x 2221)(π标准正态分布的重要性在于, 任何一个一般的正态分布都可以通过线性变换转化为标准正态分布.定理 设),,(~2σμN X 则).1,0(~N X Y σμ-=标准正态分布表的使用:(1)表中给出了0>x 时)(x Φ的数值, 当0<x 时, 利用正态分布的对称性, 易见有);(1)(x x Φ-=-Φ(2) 若),1,0(~N X 则);()(}{a b b X a P Φ-Φ=≤< (3)若),(~2σμN X , 则),1,0(~N X Y σμ-=故X 的分布函数;}{)(⎪⎭⎫⎝⎛-Φ=⎭⎬⎫⎩⎨⎧-≤-=≤=σμσμσμx x X P x X P x F⎭⎬⎫⎩⎨⎧-≤<-=≤<σμσμb Y a P b X a P }{.⎪⎭⎫⎝⎛-Φ-⎪⎭⎫⎝⎛-Φ=σμσμa b例题选讲:连续型随机变量及其概率密度例1 设随机变量X 的密度函数为⎪⎩⎪⎨⎧≤≤--=其它,011,12)(2x x x f π求其分布函数)(x F .例2(讲义例1)设随机变量X 具有概率密度⎪⎪⎩⎪⎪⎨⎧≤≤-<≤=.,0,43,22,30,)(其它x x x kx x f}.2/71{)3();()2(;)1(≤<X P x F X k 求的分布函数求确定常数例3(讲义例2)设随机变量X 的分布函数为⎪⎩⎪⎨⎧<≤<≤=x x x x x F 1,110,0,0)(2求 (1) 概率}7.03.0{<<X P ; (2) X 的密度函数.常用连续型分布 均匀分布例4 (讲义例3)某公共汽车站从上午7时起, 每15分钟来一班车, 即7:00, 7:15, 7:30, 7:45等时刻有汽车到达此站, 如果乘客到达此站时间X 是7:00到7:30之间的均匀随机变量,试求他候车时间少于5分钟的概率. 指数分布例5(讲义例4)某元件的寿命X 服从指数分布, 已知其平均寿命为1000小时,求3个这样的元件使用1000小时, 至少已有一个损坏的概率. 正态分布例6(讲义例5)设)4,1(~N X , 求 .}2|1{|},6.10{),5(≤-≤<X P X P F 例7 设某项竞赛成绩N X ~(65, 100),若按参赛人数的10%发奖,问获奖分数线应 定为多少?例8(讲义例6)将一温度调节器放置在贮存着某种液体的容器内,调节器整定在d ℃,液体的温度X (以℃计)是一个随机变量,且 )5.0,(~2d N X(1) 若 09=d ℃,求X 小于89℃ 的概率;(2) 若要求保持液体的温度至少为80℃的概率不低于0.99,问d 至少为多少?例9(讲义例7)某企业准备通过招聘考试招收300名职工,其中正式工280人, 临时工20人; 报考的人数是1657人, 考试满分是400分. 考试后得知, 考试总平均成绩, 即166=μ分, 360分以上的高分考生31人. 某考生B 得256分, 问他能否被录取? 能否被聘为正式工? 例10(讲义例8)在电源电压不超过200伏,在200~240伏和超过240伏三种情形下,某种电子元件损坏的概率分别为0.1,0.001和0.2. 假设电源电压X 服从正态分布N (220,252),试求:(1) 该电子元件损坏的概率α;(2) 该电子元件损坏时,电源电压在200~240伏的概率β.课堂练习1.已知)5.0,8(~2N X ,求 (1) );7(),9(F F (2) }105.7{≤≤X P ;(3) };1|8{|≤-X P(4) }.5.0|9{|<-X P2.某种型号电池的寿命X 近似服从正态分布),(2σμN , 已知其寿命在250小时以上的概率和寿命不超过350小时的概率均为92.36%, 为使其寿命在x -μ和x +μ之间的概率不小于0.9, x 至少为多少?第五节 随机变量函数的分布讲解注意:一、 随机变量的函数定义 如果存在一个函数)(X g , 使得随机变量Y X ,满足:)(X g Y =,则称随机变量Y 是随机变量X 的函数.注: 在微积分中,我们讨论变量间的函数关系时, 主要研究函数关系的确定性特征, 例如:导数、积分等.而在概率论中, 我们主要研究是随机变量函数的随机性特征, 即由自变量X 的统计规律性出发研究因变量Y 的统计性规律.一般地, 对任意区间I , 令})(|{I x g x C ∈=, 则},{})({}{C X I x g I Y ∈=∈=∈ }.{})({}{C X P I x g P I Y P ∈=∈=∈注: 随机变量Y 与X 的函数关系确定,为从X 的分布出发导出Y 的分布提供了可能.二、离散型随机变量函数的分布 设离散型随机变量X 的概率分布为,2,1,}{===i p x X P i i易见, X 的函数)(X g Y =显然还是离散型随机变量.如何由X 的概率分布出发导出Y 的概率分布? 其一般方法是:先根据自变量X 的可能取值确定因变量Y 的所有可能取值, 然后对Y 的每一个可能取值,,2,1, =i y i 确定相应的},)(|{i j j i y x g x C ==于是},{})({}{i i i i C X y x g y Y ∈==== .}{}{}{∑∈==∈==ij C x ji i x X P C X P y Y P从而求得Y 的概率分布.三、 连续型随机变量函数的分布一般地, 连续型随机变量的函数不一定是连续型随机变量, 但我们主要讨论连续型随机变量的函数还是连续型随机变量的情形, 此时我们不仅希望求出随机变量函数的分布函数, 而且还希望求出其概率密度函数.设已知X 的分布函数)(x F X 或概率密度函数)(x f X , 则随机变量函数)(X g Y =的分布函数可按如下方法求得:}.{})({}{)(y Y C X P y X g P y Y P y F ∈=≤=≤=其中}.)(|{y x g x C y ≤=而}{y C X P ∈常常可由X 的分布函数)(x F X 来表达或用其概率密度函数)(x f X 的积分来表达:⎰=∈yC X y dx x f C X P )(}{进而可通过Y 的分布函数)(x F Y , 求出Y 的密度函数.定理1 设随机变量X 具有概率密度),(),(+∞-∞∈x x f X ,又设)(x g y =处处可导且恒有0)(>'x g (或恒有0)(<'x g ), 则)(X g Y =是一个连续型随机变量,其概率密度为⎩⎨⎧<<'=其它,0|,)(|)([)(βαy y h y h f y f Y其中)(y h x =是)(x g y =的反函数, 且)).(),(max()),(),(min(+∞-∞=+∞-∞=g g g g βα例题选讲:离散型随机变量函数的分布例1(讲义例1)设随机变量X 具有以下的分布律, 试求2)1(-=X Y 的分布律.4.01.03.02.02101i p X -连续型随机变量函数的分布例2(讲义例2)对一圆片直径进行测量, 其值在[5, 6]上均匀分布, 求圆片面积的概率分布密度.例3(讲义例3)设⎩⎨⎧<<=其它,040,8/)(~x x x f X X , 求82+=X Y 的概率密度.例4 设)1,0(~N X , 求2X Y =的密度函数.例5(讲义例4)已知随机变量X 的分布函数)(x F 是严格单调的连续函数, 证明)(X F Y =服从]1,0[上的均匀分布.例6(讲义例5)的线性函数试证明设随机变量X N X ).,(~2σμb aX Y +=)0(≠a 也服从正态分布.例7 (讲义例6) 设随机变量X 在)1,0(上服从均匀分布, 求X Y ln 2-=的概率密度.例8 (讲义例8) (对数正态分布) 随机变量X 称为服从参数为2,σμ的对数正态分布, 如果X Y ln =服从正态分布),(2σμN . 试求对数正态分布的密度函数.注: 在实际中, 通常用对数正态分布来描述价格的分布, 特别是在金融市场的理论研究中, 如著名的期权定价公式(Black —Scholes 公式), 以及许多实证研究都用对数正态分布来描述金融资产的价格. 设某种资产当前价格为0P , 考虑单期投资问题, 到期时该资产的价格为一个随机变量, 记作1P , 设投资于该资产的连续复合收益率为r , 则有re P P 01=从而0101ln ln lnP P P P r -== 注意到0P 为当前价格, 是已知常数,因而假设价格1P 服从对数正态分布实际上等价于假设连续复合收益率r 服从正态分布.例9(讲义例7)设随机变量X 服从参数为λ的指数分布, 求}2,min{X Y =的分布函数.课堂练习1. 设X 的分布列为10/310/110/110/15/12/52101i p X -试求: (1) 2X 的分布列; (2) 2X 的分布列.2. 设随机变量X 的概率密度为⎩⎨⎧<<=.,0,0,/2)(2其它ππx x x f求X Y sin =的概率密度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论与数理统计》教案东北农业大学信息与计算科学系第一次课(2 学时)教学内容:教材1-6页,主要内容有引言、概率论的基本概念、事件之间的关系及运算、事件之间的运算规律。
教学目的:(1)了解概率论这门学科的研究对象,主要任务和应用领域;(2)深刻理解随机试验、基本事件、样本空间、随机事件的概念;掌握一个随机试验的样本空间、基本事件和有关事件的表示方法。
(3)深刻理解事件的包含关系、和事件、积事件、互斥事件、互逆事件和差事件的意义;掌握事件之间的各种运算,熟练掌握用已知事件的运算表示随机事件;(4)掌握事件之间的运算规律,理解对偶律的意义。
教学的过程和要求:(1)概率论的研究对象及主要任务(10分钟)举例说明概率论的研究对象和任务,与高等数学和其它数学学科的不同之处,简单介绍概率论发展的历史和应用;(i)概率论的研究对象:确定性现象或必然现象:在相同的条件下,每次观察(试验)得到的结果是完全相同的现象。
例:向空中抛掷一物体,此物体上升到一定高度后必然下落;例:在一个标准大气压下把水加热到100℃必然会沸腾等现象。
随机现象或偶然现象:在相同的条件下,每次观察(试验)可能出现不同结果的现象。
例:在相同的条件下抛一枚均匀的硬币,其结果可能是正面(分值面)向上,也可能是反面向上,重复投掷,每次的结果在出现之前都不能确定;例:从同一生产线上生产的灯泡的寿命等现象。
(ii)概率论的研究任务:概率论与数理统计就是研究和揭示随机现象的统计规律性的一门数学学科。
(iii)概率论发展的历史:概率论起源于赌博问题。
大约在17世纪中叶,法国数学家帕斯卡(B •Pascal)、费马(fermat)及荷兰数学家惠更斯(C•Hugeness)用排列组合的方法,研究了赌博中一些较复杂的问题。
随着18、19世纪科学的迅速发展,起源于赌博的概率论逐渐被应用于生物、物理等研究领域,同时也推动了概率理论研究的发展. 概率论作为一门数学分支日趋完善,形成了严格的数学体系。
(iv)概率论发展的应用:概率论的理论和方法应用十分广泛,几乎遍及所有的科学领域以及工、农业生产和国民经济各部门. 如应用概率统计方法可以进行气象预报,水文预报和市场预测、股市分析等;在工业中,可用概率统计方法进行产品寿命估计和可靠性分析等。
(2)随机事件与样本空间;(25分钟)(重点)重点讲清随机试验的目的、随机试验要求具备的条件、概率论中随机试验可以是主动做试验,也可能是被动观察某一随机现象;讲清楚随机试验的基本事件、样本空间的定义,对于每个概念要举例说明,可用书中例1、例2、例3、例4或其它,例子中应该包括有限的、无限可数,连续的等类型。
应该使学生了解样本空间可以是有限的也可以是无限的,可以是离散的也可以是连续的。
随机事件的概念,基本事件与一般随机事件关系、区别,在上述例子中继续给出事件的例子。
着重说明事件发生和不发生的含义,引进必然事件和不可能事件的意义。
(i)随机试验的目的:要研究随机现象的规律需要进行大量的观察和试验。
(ii)随机试验要求具备的条件:试验可以在相同的条件下重复进行;试验所有可能的结果是明确知道的,并且不止一个;每次试验必然出现这些可能结果中的一个,但试验前不能预知出现哪一个结果;这样的试验称为随机试验,简称试验,用字母E 表示.例:掷一枚均匀硬币观察正面和反面出现的情况;例:某日电话总机所接到的呼叫次数;例:在一批灯泡中任意抽取一个,测试其寿命等等都是随机试验。
(iii)基本概念:基本事件(样本点):每一个可能的基本结果(不可分解)称为E 的基本事件,通常用ω表示.基本事件空间(样本空间):E 的所有基本事件组成的集合称为E 的基本事件空间,常用}{ω=Ω表示。
例1 (1)抛一枚均匀的硬币,其可能出现的结果只有两种:正面、反面. 若令1ω=正面,2ω=反面,则 21,ωω为该随机试验的两个基本事件,{}21ωω,=Ω为样本空间.(2) 投掷一颗骰子,观察出现的点数. 其可能出现的点数为:1、2、3、4、5、6,若令i ω=i ,i =1,2,3,4,5,6,则i ω为随机试验的基本事件,样本空间21,{ωω=Ω}654321{},,,,6543,,,,,=ωωωω.(3) 观察单位时间内到达某公交车站候车的人数,令i ω=单位时间内有i 人到达车站候车, ,,,210=i ,则基本事件为i ω,样本空间},2,1,0{},,,{210 ==Ωωωω.(4) 从一批灯泡中任取一只,以小时为单位,测试这只灯泡的寿命,令t 表示灯泡的寿命,则大于等于零的任意一个实数都是该试验的一个样本点,{}0≥=Ωt t .随机事件:在随机试验中可能发生、也可能不发生的事情称为随机事件,通常用大写字母C B A 、、等表示.例:投掷一颗骰子出现的点数为偶数可以用事件A 表示,A ={出现的点数为偶数}={2,4,6},而B ={出现的点数大于4}={5,6}、C ={出现的点数为2}等等都是随机试验的事件.事件发生:若一次试验结果出现了事件A 中的样本点,即当试验结果为1ω且A ∈1ω时,则称事件A 发生,否则称A 不发生.必然事件:称Ω为必然事件.不可能事件:不包含任何基本事件的事件称为不可能事件,记作φ.(3)事件之间的运算关系;(30分钟)重点对于每一种关系应该举例、画维恩图说明其含义,积事件和和事件要着重说明并推广到多个事件,说明对立事件与互斥事件的相同点与不同点及其应用,差事件的意义及几种表示方法及运算关系;事件之间的运算关系:1)事件的包含关系:设在同一个试验E 中有两个事件A 与B ,若A 发生必然导致B 发生(即A 中任意一个基本事件都在B 中),则称事件B 包含事件A ,记作A B ⊃(或B A ⊂).例:如投掷一颗骰子的试验,A ={出现4点},B ={出现偶数点},则A 发生必导致B 发生,故B A ⊂。
2)事件相等:若B A ⊂且A B ⊂,则称事件B A =.例:如掷骰子试验中,记A ={掷出3点或6点},B ={掷出3的倍数点},这两个事件所包含样本点相同,因而B A =。
3)和事件:称事件A 和B 至少有一个发生所构成的事件为A 与B 的和事件,记作B A .例:如掷一颗骰子观察所得的点数,设A ={1,3,5},B ={1,2,3},则B A ={1,2,3,5}。
例2:测试灯泡寿命的试验中,令{}1000≤=t t B (寿命不超过1000小时),{}500≤=t t A (寿命不超过500小时),则{}1000≤==t t B B A (寿命不超过1000小时)。
4)积事件:称事件A 与B 同时发生所构成的事件为A 与B 的积事件,记作B A 或AB .例:如在掷骰子的试验中}5,4,3{},6,4,2{==B A ,则AB ={4},即只有随机试验出现4点时,A 与B 同时发生。
5)互斥事件:若事件B A 、不能同时发生,即φ=AB ,则称事件A 与B 是互斥事件或互不相容事件。
例3:掷一颗骰子,令A ={出现奇数点},B ={出现4点},则有φ=AB ,即A 与B 互斥,{}5431,,,=+=B A B A 。
6)互逆事件:若事件A 与事件B 在一次试验中必有且只有一个发生,则称事件A 与B 为互逆事件或对立事件。
例4:掷一颗骰子,令C ={出现偶数点},则φ=AC ,且C A {}Ω==654321,,,,,,所以A C =,即C 与A 是互逆事件;但由于φ=AB ,而}5431{,,,=B A Ω≠,所以B A 、不是互逆事件.7)差事件:称事件A 发生而B 不发生所构成的事件为A 与B 的差事件,记作B A -.例5:掷骰子试验中,令C ={2,4,6}, D ={1,2,3},则 D C D C =-{}64,=,}31{,==-C D C D .(4)事件之间的运算规律(5分钟)事件之间的交换律、结合律、分配律只需简单说明,举例说明对偶律的意义和应用。
事件之间的运算律:1)交换律:BA AB A B B A ==,2)结合律:)()()(BC A C AB C B A C B A ==;)(3)分配律:))(()(C B C A C AB BC AC C B A ==;)(4)德摩根定律(对偶律): B A B A B A B A ==,(可以推广到任意多个事件的情形)。
(5)以例6和例7为主。
学生练习2,128A P (10分钟)例6:设C B A 、、是样本空间Ω中的三个随机事件,试用C B A 、、的运算表达式表示下列随机事件.(1)A 与B 发生但C 不发生;(2)事件C B A 、、中至少有一个发生;(3)事件C B A 、、中至少有两个发生;(4)事件C B A 、、中恰好有两个发生;(5)事件C B A 、、中不多于一个事件发生.解:(1)C AB ;(2)C B A ;(3)AC BC AB ;(4)BC A C B A C AB BC A C B A C AB ++= ;(5)C B A C B A C B A C B A +++或AC BC AB 。
练习2,128A P (10分钟)。
第二次课(2学时)教学内容:教材7-13页,主要内容:概率的古典定义、统计定义、几何定义,概率的公理化体系及概率的性质。
教学目的:(1)理解概率的古典定义的条件,掌握计算的一般方法,理解古典概率具备的三条性质;(2)粗知概率的统计定义和几何定义,归纳其性质;(3)深刻理解概率的公理化定义的意义,掌握概率的性质在概率计算中的应用。
教学的过程和要求:(1)举例简单说明什么是概率;(5 分钟)阐述概率是随机事件发生的可能性的大小。
举例说明: 例:抛一枚均匀的硬币,因为已知出现正、反面的可能性相同,各为21,足球裁判就用抛硬币的方法让双方队长选择场地,以示机会均等.例:某厂研制出一种新药,要考虑新药在未来市场的占有率将是多少. 市场占有率高,就应多生产,获取更多利润;市场占有率低,就不能多生产,否则会造成产品积压.上述问题中的机会、市场占有率以及彩票的中奖率、产品的次品率,射击的命中率等都是用来度量随机事件发生的可能性大小的.都可以用0到1之间的一个数值(也称为比率)来作为随机事件A 发生的可能性大小的度量,即事件A 发生的概率,记作)(A p .把随机事件出现的可能性大小的度量值称为该随机事件的概率.(2)概率的古典定义和计算(30分钟):由简单的例子说明古典概率应具备的条件,即有限性和等可能性,重点讲解古典概型的条件和计算,定义中强调事件和样本空间所含样本点数,而不需知道是什么样本点;讲解书中例1和例2,并通过简单的例子(如掷骰子)归纳古典概率的三个性质。