生态系统的稳定性与抵抗力
原创10:生态系统的稳定性

2、恢复力稳定性
恢复力稳定性是指生态系统在受ห้องสมุดไป่ตู้外界干扰因素的 破坏后恢复到原状的能力。
增强最初发生变化的那 种成分所发生的变化
注意:
生态系统的自我调节能力不是无限的,当外界干扰因 素的强度超过一定限度时,生态系统的自我调节能力 就会迅速丧失,生态系统就到了难以恢复的程度。
二、抵抗力稳定性和恢复力稳定性
1、抵抗力稳定性
抵抗力稳定性是指生态系统抵抗外界干扰并使自身的 结构与功能保持原状的能力。生态系统的抵抗力稳定 性与生态系统自我调节能力的大小有关。
(3)实验流程
制作生态缸框架 缸底部的铺垫
注入水
放入动植物 密封生态缸
标准:100cmX70cmX50cm
花土在下,一边高,一边低;沙土在上, 沙土层厚5~10cm
注意:从缸内低处注入
水中放浮萍、水草、小乌龟 沙土上移植仙人掌(或仙人球) 花土上移植蕨类植物和杂草 花土上放置蚯蚓、蜗牛
用胶带将生态缸密封
生态系统的稳定性
一、生态系统的自我调节能力
1、生态系统的稳定性
(1)概念: 生态系统所具有的保持或恢复自身结构 和功能相对稳定的能力。
(2)原因: 生态系统具有自我调节能力。 (3)表现: 生态系统的结构稳定性和功能稳定性。
2、生态系统的自我调节能力
不同的生态系统都具有在一定范围内消除外来干扰的 能力,即自我调节能力。 一般来说,生态系统的组成成分越多,营养结构越复 杂,其自我调节能力越强;相反,组成成分越少,营 养结构越简单,其自我调节能力越弱。自我调节能力 的基础是负反馈调节。
反馈调节

一、生态系统中抵抗力稳定性的反馈调节生态系统抵抗力稳定性是指生态系统具有抵抗外界干扰并使得自身的结构和功能保持原状的能力。
这种能力是通过自身的自动调节能力实现的,这种自动调节的能力是通过生态系统内部的反馈机制来实现的,包括负反馈机制和正反馈机制。
例如,在生物生长过程中个体越来越大,在种群持续增长过程中,种群数量不断上升,这都属于正反馈。
正反馈也是有机体生长和存活所必需的。
但是,正反馈不能维持稳态,要使系统维持稳态,只有通过负反馈控制。
1、负反馈负反馈是比较常见的一种反馈,它的作用是能够使生态系统保持相对稳态。
反馈的结果是抑制或减弱最初发生变化的那种成分所发生的变化。
例如,草原上的草食动物因为迁入而增加,植物就会因为受到过度啃食而减少,植物数量减少以后,反过来就会抑制动物的数量。
同样,当草原上的兔子数量增多的时候,植被迅速减少造成兔的食物不足,这时食兔动物(如狐、鹰等)有了丰富的食物来源,数量随之增加。
由于食物不足和天敌数量增加,就会使兔的数量下降,从而减轻了对植物的压力,植物数量得以恢复。
由于生态系统具有负反馈的自我调节机制,所以在通常情况下,生态系统会保持自身的生态平衡。
2、正反馈正反馈是一种比较少见的反馈,其作用正好与负反馈调节相反,即生态系统中某一成分的变化所引起的其他一系列变化,反过来加速最初发生变化的成分所发生的变化,因此正反馈调节的作用往往是使生态系统远离稳态。
在自然生态系统中正反馈的实例不多,常见的例子是一个湖泊受到了污染,鱼类的数量就会因为死亡而减少,鱼体死亡腐烂后又会进一步力加重污染并引起更多的鱼类死亡。
因此生态系统稳态的维持,主要是通过负反馈来调节实现的。
由于正反馈机制的存在,提醒我们不能轻易地破坏生态系统的稳态。
二、微生物代谢中酶活性的反馈调节微生物代谢的调节机制主要有两种:酶合成调节机制和酶活性调节机制。
酶活性调节又包括酶活性的激活和抑制两个方面。
酶活性的抑制主要是反馈抑制,它主要表现在某个代谢途径的末端产物(即最终产物)过量时,这个产物会反过来直接抑制该途径中第一个酶的活性,促使整个反应过程减慢或停止,从而避免了末端产物的过多累积。
生态系统的稳定性

生态系统的稳定性生态系统的稳定性【课标要求】生态系统的稳定性。
【考向眺望】生态系统稳定性的类型及互相关系的分析与应用。
【学问梳理】一、生态系统的稳定性〔一〕概念:生态系统所具有的保持或恢复自身结构和功能相对稳定的力量。
〔二〕生态系统稳定性的调整:是一种自我调整,其调整基础是负反馈调整。
〔三〕种类1、反抗力稳定性:生态系统反抗外界干扰并使自身的结构与功能保持原状的力量。
2、恢复力稳定性:生态系统在受到外界干扰因素的破坏后恢复到原状的力量。
〔四〕特点1、不同的生态系统在两种稳定性的表现上有差异:生态系统的组分越多,食物网越冗杂,其自我调整力量就越强,反抗力稳定性就越高。
2、生态系统在受到不同的干扰〔破坏〕后,其恢复速度与恢复时间不同。
〔五〕提高生态系统稳定性的措施1、掌握对生态系统的干扰程度。
2、实施相应的物质、能量投入,保证生态系统内部结构与功能的协调关系。
二、生态系统稳定性的理解和调整〔一〕生态系统的稳定性的理解:生态系统的稳定性是生态系统进展到肯定阶段,它的结构和功能能够保持相对稳定时,表现出来的保持或恢复自身结构和功能相对稳定的力量。
可以从以下几个方面理解:1、结构的相对稳定:生态系统中动、植物种类及数量不是不变的,而是在肯定范围内波动,但不会改变太大。
2、功能的相对稳定:生物群落能量的输入量与输出量保持相对平衡,物质的输入与输出保持相对平衡。
3、生态系统稳定性的关系:一般可表示如右:4、生态系统的稳定是系统内部自我调整的结果,这种自我调整主要是依靠群落内部种间关系及种内斗争来实现的。
〔二〕生态系统的自我调整力量1、负反馈调整〔1〕作用:是生态系统自我调整力量的基础,能使生态系统到达相对平衡。
[来源:学*科*网Z*X*X*K]〔2〕实例:草原上食草动物和植物的数量改变〔3〕结果:抑制和减弱最初发生改变的那种成分改变,从而到达和保持稳态平衡。
生态系统成分食物网自我调整力量越多越冗杂大越少越简洁小2、自我调整力量的大小【思索感悟】反抗力稳定性与恢复力稳定性的关系肯定呈负相关吗?[不肯定。
原创11:5.5 生态系统的稳定性

北极苔原生态系统
(地衣是主要的生产者)
一般来说,生态系统中的组分越多,食物网越复杂, 其自我调节能力就越强,抵抗力稳定性就越高。
森林局部火灾后,森林还能恢复原状吗? 其核心是:遭到破坏,恢复原状。 2、恢复力稳定性:生态系统在受到外界干扰的破坏后恢 复到原状的能力,叫做恢复力稳定性。
热带雨林在遭到严重的砍伐,草原受到极度放牧后, 恢复原状的时间漫长,难度极大!
抵抗力稳定性强,恢复力稳定性弱!反之。
思考:为什么要建造农田防护林?
(二)提高生态系统的稳定性 1、控制对生态系统干扰的程度,对生态系统的利用 应该适度,不应超过生态系统的自我调节能力。
2、对人类利用强度较大的生态系统,应实施相应的 物质能量投入,保证生态系统内部结构与功能的协调。
三、设计生态缸并观察其稳定性
19
(5)生态缸的采光用散射光 防止水温过高导致水生生物死亡
(6)选择生命力强的生物,动物不宜太多,个体不宜太大 容易适应新生态环境,减少对O2的消耗,防止O2的产生量小 于消耗量
20
课堂小结
课堂练习
1.下列关于生态系统稳定性的叙述,正确的是( B ) A.“野火烧不尽,春风吹又生”说明生态系统具有抵抗力稳定 性 B.增加该生态系统内各营养级生物的种类可提高该区域生态 系统的自我调节能力 C.抵抗力稳定性越低的生态系统,其恢复力稳定性就越高 D.生态系统的成分越复杂,自我调节的能力就越弱
二、抵抗力稳定性和恢复力稳定性
生态系统的自我调节能力有一定限度超过限度,难以恢复。
资料:当草原遭受蝗虫的采食后,草原植物就会增强其 再生能力,尽可能减缓种群数量的下降;
当森林遭遇持续的干旱气候时,树木往往扩展根系 的分布空间,以保证获得足够的水分,维持生态系统正 常的功能。
生态系统的稳定性

生态系统的稳定性生态系统稳定性的概念生态系统中的生物有出生和死亡,迁入和迁出;无机环境也在不断变化,因此,生态系统总是在发展变化的。
生态系统发展到一定阶段,它的结构和功能能够保持相对稳定。
生态系统所具有的保持或恢复自身结构和功能相对稳定的能力,叫做生态系统的稳定性。
例如,当气候干旱时,森林中的动植物种类和数量一般不会有太大的变化,这说明森林生态系统具有抵抗气候变化、保持自身相对稳定的能力。
生态系统的稳定性包括抵抗力稳定性和恢复力稳定性等方面。
抵抗力稳定性抵抗力稳定性是指生态系统抵抗外界干扰并使自身的结构和功能保持原状的能力。
比如前面讲到的森林生态系统对气候变化的抵抗能力,就属于抵抗力稳定性。
生态系统之所以具有抵抗力稳定性,是因为生态系统内部具有一定的自动调节能力。
例如,河流受到轻微的污染时,能通过物理沉降、化学分解和微生物的分解,很快消除污染,河流中生物的种类和数量不会受到明显的影响。
再比如在森林中,当害虫数量增加时,食虫鸟类由于食物丰富,数量也会增多,这样害虫种群的增长就会受到抑制。
这些只是用来说明生态系统具有自动调节能力的简化的例子,自然界的实际情况要比这复杂得多。
生态系统的自动调节能力有大有小,因此,抵抗力稳定性有高有低。
一般地说,生态系统的成分越单纯,营养结构越简单,自动调节能力就越小,抵抗力稳定性就越低。
例如,在北极苔原生态系统中(如图),动植物种类稀少,营养结构简单,其中生产者主要是地衣,其他生物大都直接或间接地依靠地衣来维持生活。
假如地衣受到大面积损伤,整个生态系统就会崩溃。
相反,生态系统中各个营养级的生物种类越多,营养结构越复杂,自动调节能力就越大,抵抗力稳定性就越高。
例如,在热带雨林生态系统中(如图),动植物种类繁多,营养结构非常复杂,假如其中的某种植食性动物大量减少,它在食物网中的位置还可以由这个营养级的多种生物来代替,整个生态系统的结构和功能仍然能够维持在相对稳定的状态。
但是,一个生态系统的自动调节能力无论多么强,也总有一定的限度,如果外来干扰超过了这个限度,生态系统的相对稳定状态就会遭到破坏。
生态系统的稳定性

生态系统的自我调节能力
调节能力大小:一般来说,生态系 统的组成成分越多样,能量流动和物质 循环的途径越复杂,其调节能力越强。 相反,成分越单纯,其营养结构越简单, 其调节能力也越小。
四 稳定性的两个方面
抵抗力稳定性
稳定性
恢复力稳定性
抵抗力稳定性
(1)概念:生态系统抵抗外界干扰使自 身结构功能维持原状的能力。 (2)核心:抵抗干扰 保持原状 (3)来源: ①生物的种类、数量多,一定外来干扰造 成的变化占总量的比例小。 ②能量流动与物质循环的途径多,一条途 径中断 后还有其他途径来代替。 ③生物代谢旺盛,能通过代谢消除各种干 扰造成的不利影响。
遭到破坏 恢复原状
稳 定 性
抵抗力 稳定性
恢复力 稳定性 生物量、生态系统复杂程度等
物种丰富的热带雨林Ⅰ
物种丰富的热带雨林Ⅱ
营养结构复杂,抵抗力稳定性强
② 生态系统在受到不同的干扰之后,其恢复 速度和恢复时间是不一样的,与受干扰的 程度、环境条件和生态系统本身的特性有 外界干扰 关。
稳定性
正常作 用范围
恢复力强
恢复力弱
3 抵抗力稳定性和恢复力稳定性的比较
抵抗力稳定性 实质 保持自身结构功能相对稳定 恢复力稳定性
恢复自身结构功能相对稳定
核心 抵抗干扰 保持原状
1. 相反关系 联系 2. 同时存在于同一系统中的 两种截然不同的作用力, 它们相互作用,共同维持 生态系统的稳定。 3. 二者之间与营养结指标 恢复力作 用指标
总稳定性指标
时间
(1)造成生态系统稳定性遭到破坏的原因: 自然因素:主要指自然界发生的异常变化,如火山 爆发
地震等使生态系统遭到破坏,甚至毁灭。
人为因素: ①破坏植被导致生态系统稳定性被破坏 ②食物链破坏导致生态系统稳定性破坏 ③环境污染破坏生态系统
高二上学期生物知识点整理

高二上学期生物知识点整理(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高二上学期生物知识点整理本店铺为各位同学整理了《高二上学期生物知识点整理》,希望对你的学习有所帮助!1.高二上学期生物知识点整理篇一生态系统的稳定性(1)生态系统所具有的保持或恢复自身结构和功能相对稳定的能力,叫做生态系统的稳定性。
高中生物生态系统的稳定性人教版必修三

生态系统的稳定性一、生物系统的稳定性:由于生态系统中生物的迁入、迁出及其它变化使生态系统总是在发展变化的,当生态系统发展到一定阶段时,它的结构和功能能够保持相对稳定,我们就把:生态系统所具有保持或恢复自身结构和功能相对稳定的能力,称为生态系统的稳定性。
二、生态系统的自我调节能力生态系统稳态〔稳定性〕的维持存在着反馈。
当生态系统中的某一成分发生变化的时候,它必然会引起其它成分发生一系列的变化,这些变化反过来又会影响最初发生变化的那种成分,这个过程就称为反馈。
反馈分为正反馈和负反馈两种〔如下图〕。
生态系统稳定性是生态系统发展到一定阶段的产物,或者说是生态系统发展到成熟稳定状态时而具有的一种“自稳〞能力。
任何一个生态系统不仅具有一定的结构,而且执行一定的功能。
其中,生态系统的营养结构是能量流动和物质循环的渠道,完善的营养结构是保障能量流动和物质循环畅通运行的结构基础;而能量流动和物质循环又能使生态系统的四种成分紧密地联系在一起,有利于形成典型的食物链关系,推动生态系统的生存与发展。
当生态系统发展到一定阶段时,它的结构与功能能够保持相对稳定。
系统内各种生物的种类和数量虽有波动,但总是大体相同的,表现为生物的种类组成、数量比例保持相对稳定。
三、抵抗力稳定性和恢复力稳定性的关系1、抵抗力稳定性:在生物学上就把生态系统抵抗外界干扰并使自身的结构和功能保持原状的能力,称之为抵抗力稳定性。
2、恢复力稳定性:生态系统在遭到外界干扰因素的破坏以后恢复到原状的能力,叫做恢复力稳定性。
3、抵抗力稳定性与恢复力稳定性的区别:干扰因素强度小大生态系统的稳定状态抵抗力稳定性没有改变遭到破坏生态系统稳定性表现保持恢复力稳定性恢复与营养结构复杂程度的关系正相关反相关4、抵抗力稳定性与恢复力稳定性的联系:生态系统的稳定性包括抵抗力稳定性和恢复力稳定性。
一般情况下,二者的关系是相反的,即抵抗力稳定性大,那么恢复力稳定性就小,反之亦是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生态系统的稳定性与抵抗力
生态系统是由生物体、环境和其相互作用所构成的复杂生命体系。
生态系统的稳定性与抵抗力是评估其健康状况和可持续发展能力的重
要指标。
稳定性指的是系统保持相对恒定状态的能力,而抵抗力则是
指系统对外界干扰的响应能力。
一、生态系统的稳定性
生态系统的稳定性是指在环境变化以及内外干扰下,系统能够保持
其结构、功能和生物多样性等方面相对恒定的能力。
生态系统稳定性
的研究源于对自然界生物多样性和生态系统功能丧失的关注,旨在找
到维持系统正常运转的因素和机制。
1.多样性的作用
生态系统多样性是维持其稳定性的关键因素之一。
多样性可以分为
物种多样性、遗传多样性和生态系统多样性。
物种多样性的增加会提
高生态系统的稳定性,因为不同物种在功能和适应性上的差异可以增
加系统的弹性。
遗传多样性可以增加物种的抗逆性,从而提高生态系
统的稳定性。
生态系统多样性则体现了系统内物种和生境的复杂关系,使得其更具抵抗力。
2.关键物种的重要性
某些物种在生态系统的结构和功能中起着至关重要的作用,它们被
称为关键物种。
关键物种的存在可以维持生态系统的稳定性。
当关键
物种遭受干扰或灭绝时,生态系统的结构和功能可能会受到严重破坏,导致整个系统的崩溃。
3.生态网络的稳定性
生态系统由复杂的生物网络组成,不同生物种群之间通过食物链、
生境等相互依赖。
这种相互关系构成了生态系统的稳定性基础。
当某
个物种数量发生变化时,整个网络可能会受到影响,从而对生态系统
的稳定性产生影响。
此外,在网络中存在一些反馈机制,这些机制能
够保持生态系统内部的稳定状态并抵抗外界干扰。
二、生态系统的抵抗力
生态系统的抵抗力是指系统对外界环境干扰的响应能力。
抵抗力越强,系统对干扰的影响越小,恢复能力也越强。
生态系统的抵抗力研
究旨在寻找提高系统的恢复能力和适应能力的方法。
1.多样性对抵抗力的影响
多样性可以增强生态系统的抵抗力。
物种多样性的增加可以提高系
统对干扰的容忍和恢复能力。
因为不同物种在生态位和适应策略上的
差异,使得系统能够通过物种的替代达到恢复的目的。
2.生态系统的弹性
生态系统的弹性指的是系统在遭受干扰后,能够保持自身结构和功
能恢复到原有状态的能力。
生态系统的弹性是维持其抵抗力和恢复能
力的重要条件之一。
一个具有较高弹性的生态系统,可以更好地适应
环境变化和干扰,保持其稳定状态。
3.适应性管理的重要性
为了增强生态系统的抵抗力,需要进行适应性管理。
适应性管理是一种基于变化的监测和管理方法,旨在提高生态系统的适应能力和抵抗能力。
通过对环境变化的监测和评估,可以及时采取相应的管理措施,以保护生态系统的稳定性。
总结:
生态系统的稳定性与抵抗力是维持自然界生物多样性和生态系统功能的重要因素。
多样性的存在、关键物种的角色以及生态网络的相互关系都对生态系统的稳定性产生影响。
同时,多样性也是增强生态系统抵抗力和恢复能力的关键条件。
适应性管理的实施可以提高生态系统的抵抗力和稳定性。
为了保护生态系统的健康和可持续发展,我们需要重视生态系统的稳定性和抵抗力问题,并采取相应的管理措施。