2013年湖北省宜昌市初中毕业生学业考试数学试题(WORD版含答案)

合集下载

2008年湖北省宜昌市数学中考真题(word版含答案)

2008年湖北省宜昌市数学中考真题(word版含答案)
C.样本是15个吸烟的成年人D.本地区约有15%的成年人吸烟
9.如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于().
A.120°B.90°C.60°D.30°
10.如图,房间地面的图案是用大小相同的黑、白正方形镶嵌而成.图中,第1个黑色
(1)通过计算补全图3;
(2)比较B地与C地中,哪一地平均每头牛的年产奶量更高?
(3)如果从B,C两地中选择一处建设一座工厂解决三个基地的牛奶加工问题,当运送一吨牛奶每千米的费用都为1元(即1元/吨·千米时,那么从节省运费的角度考虑,应在何处建设工厂?
A.明天一定会下雨B.明天一定不会下雨
C.明天下雨的可能性比较大D.明天下雨的可能性比较小
6.如图,已知△ABC的顶点B的坐标是(2,1),将△ABC
向左平移两个单位后,点B平移到B1,则B1的坐标是().
A.(4,1)B.(0,1)
C.(-1,1)D.(1,0)
7.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(平方毫米),这个数用科学记数法表示为().
(2)求△OAB的面积.(不计缝合时重叠部分的面积)
20.为积极响应党中央关于支援5·12汶川地震灾区抗震救灾的号召,宜佳工厂日夜连续加班,计划为灾区生产m顶帐篷.生产过程中的剩余生产任务y(顶)与已用生产时间x(时)之间的关系如图所示.
(1)求变量y与x之间的关系式;
(2)求m的值.
得分
评卷人
四、解答题:(本大题共5小题,第21,22题每题8分,第23题
2008年湖北省宜昌市初中毕业生学业考试

广东省2023年初中毕业生学业考试数学试卷(含答案)(WORD版)

广东省2023年初中毕业生学业考试数学试卷(含答案)(WORD版)

广东省2023年初中毕业生学业考试数学试卷(含答案)一、选择题(每题2分,共60分)1.某桌每人有4根铅笔,如图,共有多少根铅笔?题目1图片A. 20B. 22C. 24D. 282.若9a - 3b = 6,且9a + 3b = 36,求a和b的值的和。

A. 4B. 6C. 8D. 10…60.在△ABC中,角A的三倍与角B之和等于120°,角B的三倍与角C之和等于120°,则角C的度数是多少?A. 20°B. 30°C. 40°D. 50°二、填空题(每题2分,共20分)1.已知5x - 3y = 1,若x = 1,则y = \\\\。

2.某学校有300名学生,其中男生占总人数的$\\frac{3}{5}$,则女生人数为\\\\。

…1.解方程组 $\\begin{cases} 2x + 3y = 10 \\\\ 4x - 5y= -2 \\\\ \\end{cases}$ 求 x 和 y 的值。

解答:首先,将第一个方程乘以2,得到4x+6x=20。

然后,将第二个方程乘以4,得到16x−20x=−8。

接着,将第一个方程减去第二个方程,消去x,得到4x=28。

最后,解得x=7。

将y的值代入第一个方程,求得x的值为x=−1。

2.已知矩形的周长为12cm,面积为6cm²,求矩形的长和宽。

解答:设矩形的长为x,宽为y,则可列出方程组:$\\begin{cases} 2(x + y) = 12 \\\\ xy = 6 \\\\\\end{cases}$ 简化得: $\\begin{cases} x + y = 6 \\\\ xy = 6 \\\\ \\end{cases}$ 解得:x = 3,y = 2。

…1…。

2013年湖北省鄂州市数学中考真题(word版含答案)

2013年湖北省鄂州市数学中考真题(word版含答案)

鄂州市2013年初中毕业生学业水平考试数学试题学校:________考生姓名:________注意事项:1.本试卷共6页,满分120分,考试时间120分钟。

2.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在试题卷上无效。

4.非选择题用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。

答在试题卷上无效。

5.考生必须保持答题卡的整洁。

考试结束后,请将本试题卷和答题卡一并上交。

6.考生不准使用计算器。

一、选择题(每小题3分,共30分) 1.2013的相反数是( )A .12013- B .12013 C .3102 D .-20132.下列计算正确的是( )A .4312a a a ? B 3C .20(1)0x +=D .若x 2=x ,则x =13.如图,由几个相同的小正方体搭成的一个几何体,它的左视图为( )(第3题图) A B C D4.一副三角板有两个直角三角形,如图叠放在一起,则 Ð的度数是( ) A .165° B .120° C .150° D .135° (第4题图) 5.下列命题正确的个数是( )有意义,则x 的取值范围为x ≤1且x ≠0.②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个 有效数字用科学计数法表示为3.03×108元.③若反比例函数my x=(m 为常数),当x >0时,y 随x 增大而增大,则一次函数 y =-2 x + m 的图象一定不经过第一象限.④若函数的图象关于y 轴对称,则函数称为偶函数,下列三个函数:y =3,y =2x+1,y = x 2中偶函数的个数为2个. A .1 B .2 C .3 D .46.一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间。

湖北省武汉市部分学校2023-2024学年第一学期七年级期末考试数学试卷(word版含答案)

湖北省武汉市部分学校2023-2024学年第一学期七年级期末考试数学试卷(word版含答案)

2023-2024学年度第一学期七年级期末调研考试数 学 试 卷亲爱的同学,在答题前,请认真阅读下面的注意事项:1. 本试卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成,三大题,24小题,全卷共6页,考试时间120分钟,满分120分.2. 试卷选择题及非选择题答案均写在答题卡上,写在试卷上无效.预祝你取得优异成绩!第Ⅰ卷(选择题 共30分)一、选择题(每小题3分,共30分)本题共10小题,每小题均给出A ,B ,C ,D 四个选项,有且只有一个答案是正确的,请将正确答案的代号填在答题卡上,填在试题卷上无效.1.数轴上表示的点在原点的左侧,距离原点( )个单位长度.(A )0(B )1(C )2(D )32.下列立体图形,其中圆柱体是( ).(A ) (B ) (C ) (D )3.下列计算正确的是( ).(A ) (B ) (C )(D )4.如图,学校A 在小红家B 南偏西25°的方向上,点C 表示超市所在的位置,∠ABC =90°,则超市C 在小红家B 的( ).(A )南偏东65°的方向上 (B )南偏东55°的方向上(C )北偏东65°的方向上 (D )北偏东55°的方向上5.若是关于x 的一元一次方程,则k 的值不可能是( ).(A )(B )0 (C )2 (D )6.如图,OB 平分∠AOC ,下列结论错误的是( ).3-532a a -=-32a a a -+=232a a a -=235a b ab+=()210k x -+=1-2-D东(A )∠AOB =∠BOC (B )∠COD +∠AOC =∠BOD (C )∠AOD -∠BOC =∠BOD (D )∠BOC +∠AOD =2∠BOD 7.下列变形正确的是( ).(A )若,则 (B )若,则(C )若,则(D )若,则8.我国古代数学著作《增删算法统宗》中记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托”.其大意为:有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设竿子的长为尺,依题意可列方程为( ).(A ) (B ) (C )(D )9.如图,点C ,D 在线段上AB ,O 为AB 上方一点,∠OAB =90°,连接OC ,OD ,OB ,下列结论:①图中互余的角有3对;②图中共有线段10条;③图中共有8个锐角;④若AC =CD =5,BD =3,P 为线段AB 上一点,则点P 到点A,C ,D ,B 的距离之和最小为18.其中正确的说法有( ).(A )①②④(B )③④ (C )①②③ (D )①③④10.如图,张老师要在足够大的磁性黑板上展示数张形状、大小均相同的长方形作业,将这些作业排成一个长方形(作业不完全重合).现需要在每张作业的四个角落都放上磁性贴,如果作业有角落相邻,那么相邻的角落共享一枚磁性贴(例如,4张作业可用9枚磁性贴固定在磁性黑板上).若有25枚磁性贴可供选用,则最多可以展示( )张作业.(A )12(B )14(C )15(D )1612a b =11a b -=+12a b +-=3a b =+a b =22a c b c -=-a b =11a b c c =--x ()15252x x +=-()1552x x +=-1552x x +=-()1552x x -=+(第9题)OD C BA第Ⅱ卷(非选择题 共90分)二、填空题(每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.冬季某一天的温差是3℃,这天最低气温是-2℃,最高气温是℃.12.如图,正方体纸盒上相对两个面上的数互为相反数,则正方体纸盒六个面上的数中,最小的是.13.已知m ,n 为正整数,若多项式合并同类项后只有两项,则的值为.14.数轴上点A 表示的数为,点B ,C 表示的数分别为,,若点B 为线段AC的中点,则的值为.15.如图,P的边BC 上一点,将∠ABP ,∠DCP 分别沿AP ,DP 向上折叠,点B 落在点处,点C 恰好落在AD 边上的处,.下列说法:①∠BPD=135°;②;③若平分,则;④若,则.其中一定正确的结论有(填序号即可).16.从如图1(边长为a )的正方形纸片上剪去两个相同的小长方形,得到如图2的图案(横向、纵向的宽度均为b ),再将剪下的两个小长方形拼成一个新长方形(如图3),若,则图3中新长方形的周长为.三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题8分)计算:(1); (2).232123m n a b a b a b --+m n +1-35m -1m +m B 'C 'B PD α'∠=22.52APC α'∠=︒+PC 'APB '∠15α=︒108APD B PC ''∠+∠=︒9α=︒23a b -=902832'︒-︒()()321113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭(第15题)P C /B /DBCA18.(本题8分)解方程:(1);(2).19.(本题8分)先化简,再求值.已知,其中,,.20.(本题8分)根据图中的信息解答下面的问题(单位:cm ).(1)放入一个大球水面升高_____cm ,放入一个小球水面升高_____cm ;(2)若放入大球、小球共8个后水面高度为27 cm ,大球、小球各放入多少个?21.(本题8分)对于有理数a ,b 满足,我们称使等式成立的一对有理数a ,b为“相伴有理数对”,记为(a ,b ).如(,2)满足:;(2,)满足:;所以数对(,2),(2,)都是“相伴有理数对”.(1)数对(,1),(1,0)中,是“相伴有理数对”是________;(2)若(,3)是“相伴有理数对”,求x 的值;(3)若(,)是“相伴有理数对”,则的值为 .的312x x -=+121132x x +--=()()22222322a b ab a b ab a b ab ⎡⎤-+---⎣⎦1a =2b =-1a b ab -=+3-32321--=-⨯+131122133-=⨯+3-131-21x -m n ()1372n mn mn m n ⎡⎤-+-+⎣⎦的3放入体积相同的22.(本题10分)某校组织趣味数学知识竞赛,共设20道选择题,各题分值相同.下表记录了4位参赛者的答题及得分情况.参赛者答题总数答对题数答错题数总得分A 20200100B 2019193C 1714364D1311251(1)从上表可以看出:答对1题得 分,答错1题得 分,未作答1题得 分;(2)参赛者E 完成18道答题得69分,他答对了多少道题?(3)参赛者F 得了67分,请直接写出他答对题;答错题;未作答题.23.(本题10分)如图,已知∠COD =∠AOB=,射线OM 平分∠COD ,ON 平分∠AOD .(1)如图1,若OC 与OB 重合,,请补全图形并直接写出∠MON 的度数为 °;(2)如图2,若∠MON=55°,求∠AOC 的度数;(3)若,将∠COD 从图1的位置以每秒5°的速度绕点O 逆时针方向旋转一周,经过秒能使∠MON=45°(直接写出结果).12α20α=︒25α=︒图1ODB (C )A图2NBM AODC备用图ABO24.(本题12分)数轴上A ,B 三个点表示的数分别是a ,b ,且满足,动点P 从点A 出发,以每秒3个单位长度的速度向右移动秒.(1)直接写出a = ,b = ;(2)如图1,若M 为PA 的中点,N 为PB 的中点,试判断在P 点运动的过程中,线段MN的长度是否发生变化,请说明理由;(3)对于数轴上的点P ,Q ,给出如下定义:记点P 到点A 的距离为m ,点Q 到P的距离为n ,如果,那么称点Q 是点P 的“关联点”.①若m =1,直接写出点P 的“关联点”Q 在数轴上对应的数为 ;②若,试求的值.数学参考答案一、选择题:题号12345678910答案DCBACDCBAD二、填空题:11.1; 12.; 13.6或4; 14.2;15.①②③④;16.12.(说明:13题对一空2分,15题1~2个正确都给1分,3个正确2分)第10题提示:①若所有作业展示成一排,则:……1,最多11张作业;()2620a b ++-=t 2n m -==2BQ BP t 3-()252211-÷=图1备用图②若所有作业展示成两排,则:……1,最多张作业;③若所有作业展示成三排,则:……1,最多张作业;④若所有作业展示成四排,则:……1,最多张作业; ⑤若所有作业展示成五排,则:……1,最多张作业…… 故最多可展示16张作业.第15题提示:依题意,∠BPC=45°,即∠BPD=135°;②因为,,所以;③依题意,,则;④由,又∠BPC=45°,,即∠BPC++45°=108°,所以.第16题提示:新长方形长为:,宽为:,因为,所以新长方形长为:.三、解答题:17.(1)原式=, ……3分= ;……4分(2)原式, ……6分……7分. ……8分18.(1),……3分解得; ……4分(2)去分母,得 ……6分()25337-÷=7214⨯=()25445-÷=5315⨯=()25554-÷=4416⨯=()25663-÷=3515⨯=B PD α'∠=()113567.522APB B PD α'∠=︒-∠=︒-22.52APC α'∠=︒+22.5452APC B PC αα'''∠=∠=︒+=︒-15α=︒108APD B PC ''∠+∠=︒67.5APB α∠=︒-67.52APB α∠=︒-9α=︒a b -3a b -23a b -=()()23424312a b a b a b -+-=-=⨯=89602832''︒-︒6128'︒()111723=--⨯⨯-716=-+16=23x =32x =22636x x +-+=……7分解得 . ……8分19.化简得,……3分=, ……5分=……6分……8分20.(1)2.5,1.5; ……4分(2)设放入大球个,依题意列方程,, ……6分解得;8-5=5. 答:放入大球3个,小球5个.……8分21.(1)(1,0);……3分(2)依题意列方程得,……5分解得; ……6分(3). ……8分22.(1)5,,0;……3分(2)依题意,设参赛者E 答对了道题,依题意列方程得:,……5分解得,,……6分答:设参赛者E 答对了15道题;……7分(3)15,4,1. ……10分23.(1)20°;(正确画图1分)……4分(2)∵OM 平分∠COD ,ON 平分∠AOD ,∠COD =∠AOB=,41x -=14x =-222223222a b ab a b ab a b ab ⎡⎤-+--+⎣⎦2222a b ab a b ⎡⎤-+⎣⎦22ab -()22128-⨯⨯-=-x ()2.5 1.582712x x +-=-3x =()2133211x x --=-+12x =-12-2-x ()521869x x ⨯--=15x =12α∴∠COM =∠DOM =,∠AON =∠DON , ……5分又∠MON=55°,∴∠CON =∠MON -∠COM =, ……6分∴∠AON =∠DON =,……7分∴∠AOC =∠AON+∠CON=+=;……8分(3)8或44……10分依题意∠AON =∠DON ,∠COM =∠DOM =,又∠MON=45°,①如图1,∠CON =∠MON -∠COM =32.5°,∴∠AON =∠DON =45°+12.5°=57.5°,∴∠BON =57.5°-50°=7.5°,∴旋转过的角度∠BOC =∠BON+∠CON =32.5°+7.5°=40°,(秒);②如图2,∴∠AON =∠DON=∠MON -∠DOM =45°-12.5°=32.5°,∴∠BOC =∠COD+∠DON +∠AON+∠AOB =140°,∴旋转过的角度为:360°-140°=220°,(秒).24.(1),2;……2分(2)依题意,AB=8,AP=3t ,,∵M 为PA 的中点,N 为PB 的中点,2α552α︒-552α︒+552α︒+552α︒-110︒12.5︒4058÷=220544÷=6-()23683BP t t =--=-DOM CNBA图1COA BNMD图2,,①如图1,当点P 在AB 之间时,,; ……4分②如图2,当点P 在AB 延长线上时,,;综上所述,线段MN 的长度保持不变. ……6分(说明:学生用绝对值方程分类讨论相应给分)(3)①或;……8分②依题意,,点P 表示的数为,又,即点Q 到P 的距离为,Ⅰ当点Q 在P 的左侧时,点Q 表示的数为; ……9分,,由得,,解得或; ……10分Ⅱ当点Q 在P 的右侧时,点Q 表示的数为;……11分,,由得,, 解得;1322t MP AM AP ===118322PN BN BP t ===-83BP t =-()3183422t MN MP BN t =+=+-=38BP t =-()3138422t MN MP NP t =-=--=2-8-3m t =36t -2n m -=232n m t =+=+()36328t t --+=-10BQ =()23683BP t t =--=-=2BQ BP 28310t -=1t =133t =()363264t t t -++=-()26466BQ t t =--=-()23683BP t t =--=-=2BQ BP 66283t t -=-116t =图1图2七年级数学试卷第11页 (共6页)综上所述,、或. ……12分1t =133t =116t =。

湖北省宜昌市2013年中考数学真题试题(解析版)

湖北省宜昌市2013年中考数学真题试题(解析版)

与△A B C 不相似,故本选项符; C 、当点E 为〔6,5〕时,∠CDE=9°0,CD=2,DE=4,那么AB :BC=DE :CD ,△EDC ∽△ABC , 故本选项不符; D 、当点E 为〔4,2〕时,∠ECD=9°0,CD=2,CE=1,那么AB :BC=CD :CE ,△DCE ∽△ABC , 故本选项不符; 应选B . 点评:此题考察了相似三角形的判定,难度中等.牢记判定定理是解 二、解答题〔将解答过程写在答题卡上指定的位置7小题,计75分〕 16.〔6分〕〔2021?XX 〕计算:〔﹣20〕×〔﹣〕+. 考点:实数的运算. 分析:分别进展有理数的乘法、二次根式的化简等运算,然后合并即可. 解答:解:原式=10+3+2000 =2021. 点评:此题考察了实数的运算,涉及了有理数的乘法、二次根式的化简等运算,属于根底题. 17.〔5分〕〔2021?XX 〕化简:〔a ﹣b 〕 2+a 〔2b ﹣a 〕 考点:整式的混合运算. :计算题. 分析:原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法那么计算,去括号合 并即可得到结果. 解答:解:原式=a 2﹣2ab+b 2+2ab ﹣a 2=b 2. 点评:此题考察了整式的混合运算,涉及的知识有:完全平方公式,单项式乘多项式,去括 号法那么,以及合并同类项法那么,熟练掌握公式及法那么是解此 18.〔7分〕〔2021?XX 〕如图,点E ,F 分别是锐角∠A 两边上的点,AE=AF ,分别以点E , F为圆心,以A E 的长为半径画弧,两弧相交于点D DE ,DF . 〔1〕请你判断所画四边形的性状,并说明理由; 〔2E F ,假设A E =8厘米,∠A =60°,EF 的长.考点:菱形的判定与性质;等边三角形的判定与性质. 分析:〔1〕由AE=AF=ED=D ,F 根据四条边都相等的四边形是菱形,即可证得:四边形AEDF 是菱形; 〔2〕首EF ,由AE=AF ,∠A=60°,可证得△EAF 是等边三角形,那么可求得线段 EF 的长. 解答:解:〔1〕菱形. 7∴四边形AEDF是菱形;〔2〕连接EF,∵AE=AF,∠A=60°,∴△EAF是等边三角形,∴EF=AE=8厘米.点评:此题考察了菱形的判定与性质以及等边三角形的判定与性质.此题比拟简单,注意掌握辅助线的作法,注意数形结合思想的应用.19.〔7分〕〔2021?XX〕读书决定一个人的休养和品位,在“文明XX.美丽XX〞读书活动中,某学习小组开展综合实践活动,随机调查了该校局部学生的课外阅读情况,绘制了平均每人每天课外阅读时间统计图.〔1〕补全扇形统计图中横线上缺失的数据;〔2〕被调查学生中,每天课外阅读时间为60分钟左右的有20人,求被调查的学生总人数;〔3〕请你通过计算估计该校学生平均每人每天课外阅读的时间.考点:扇形统计图;用样本估计总体.分析:〔1〕将总体看作单位1,减去其他所占的百分比即可;〔2〕用每天课外阅读时间为60分钟左右的除以其所占的百分比即可;〔3〕用加权平均数计算即可.解答:解:〔1〕没有阅读习惯或根本不阅读的占:1﹣10%﹣30%﹣55%=15%;〔2〕∵每天课外阅读时间为60分钟左右的有20人,占总数的10%,∴被调查的总人数有20÷10%=200人;〔3〕该校学生平均每人每天课外阅读的时间为:60×10%+40×30%+20×55%=6+12+11=29分∴估计该校学生平均每人每天课外阅读的时间为29分钟;点评:此题考察了扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出有∴四边形AEDF是菱形;〔2〕连接EF,∵AE=AF,∠A=60°,∴△EAF是等边三角形,∴EF=AE=8厘米.点评:此题考察了菱形的判定与性质以及等边三角形的判定与性质.此题比拟简单,注意掌握辅助线的作法,注意数形结合思想的应用.19.〔7分〕〔2021?XX〕读书决定一个人的休养和品位,在“文明XX.美丽XX〞读书活动中,某学习小组开展综合实践活动,随机调查了该校局部学生的课外阅读情况,绘制了平均每人每天课外阅读时间统计图.〔1〕补全扇形统计图中横线上缺失的数据;〔2〕被调查学生中,每天课外阅读时间为60分钟左右的有20人,求被调查的学生总人数;〔3〕请你通过计算估计该校学生平均每人每天课外阅读的时间.考点:扇形统计图;用样本估计总体.分析:〔1〕将总体看作单位1,减去其他所占的百分比即可;〔2〕用每天课外阅读时间为60分钟左右的除以其所占的百分比即可;〔3〕用加权平均数计算即可.解答:解:〔1〕没有阅读习惯或根本不阅读的占:1﹣10%﹣30%﹣55%=15%;〔2〕∵每天课外阅读时间为60分钟左右的有20人,占总数的10%,∴被调查的总人数有20÷10%=200人;〔3〕该校学生平均每人每天课外阅读的时间为:60×10%+40×30%+20×55%=6+12+11=29分∴估计该校学生平均每人每天课外阅读的时间为29分钟;点评:此题考察了扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出有∴四边形AEDF是菱形;〔2〕连接EF,∵AE=AF,∠A=60°,∴△EAF是等边三角形,∴EF=AE=8厘米.点评:此题考察了菱形的判定与性质以及等边三角形的判定与性质.此题比拟简单,注意掌握辅助线的作法,注意数形结合思想的应用.19.〔7分〕〔2021?XX〕读书决定一个人的休养和品位,在“文明XX.美丽XX〞读书活动中,某学习小组开展综合实践活动,随机调查了该校局部学生的课外阅读情况,绘制了平均每人每天课外阅读时间统计图.〔1〕补全扇形统计图中横线上缺失的数据;〔2〕被调查学生中,每天课外阅读时间为60分钟左右的有20人,求被调查的学生总人数;〔3〕请你通过计算估计该校学生平均每人每天课外阅读的时间.考点:扇形统计图;用样本估计总体.分析:〔1〕将总体看作单位1,减去其他所占的百分比即可;〔2〕用每天课外阅读时间为60分钟左右的除以其所占的百分比即可;〔3〕用加权平均数计算即可.解答:解:〔1〕没有阅读习惯或根本不阅读的占:1﹣10%﹣30%﹣55%=15%;〔2〕∵每天课外阅读时间为60分钟左右的有20人,占总数的10%,∴被调查的总人数有20÷10%=200人;〔3〕该校学生平均每人每天课外阅读的时间为:60×10%+40×30%+20×55%=6+12+11=29分∴估计该校学生平均每人每天课外阅读的时间为29分钟;点评:此题考察了扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出有∴四边形AEDF是菱形;〔2〕连接EF,∵AE=AF,∠A=60°,∴△EAF是等边三角形,∴EF=AE=8厘米.点评:此题考察了菱形的判定与性质以及等边三角形的判定与性质.此题比拟简单,注意掌握辅助线的作法,注意数形结合思想的应用.19.〔7分〕〔2021?XX〕读书决定一个人的休养和品位,在“文明XX.美丽XX〞读书活动中,某学习小组开展综合实践活动,随机调查了该校局部学生的课外阅读情况,绘制了平均每人每天课外阅读时间统计图.〔1〕补全扇形统计图中横线上缺失的数据;〔2〕被调查学生中,每天课外阅读时间为60分钟左右的有20人,求被调查的学生总人数;〔3〕请你通过计算估计该校学生平均每人每天课外阅读的时间.考点:扇形统计图;用样本估计总体.分析:〔1〕将总体看作单位1,减去其他所占的百分比即可;〔2〕用每天课外阅读时间为60分钟左右的除以其所占的百分比即可;〔3〕用加权平均数计算即可.解答:解:〔1〕没有阅读习惯或根本不阅读的占:1﹣10%﹣30%﹣55%=15%;〔2〕∵每天课外阅读时间为60分钟左右的有20人,占总数的10%,∴被调查的总人数有20÷10%=200人;〔3〕该校学生平均每人每天课外阅读的时间为:60×10%+40×30%+20×55%=6+12+11=29分∴估计该校学生平均每人每天课外阅读的时间为29分钟;点评:此题考察了扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出有∴四边形AEDF是菱形;〔2〕连接EF,∵AE=AF,∠A=60°,∴△EAF是等边三角形,∴EF=AE=8厘米.点评:此题考察了菱形的判定与性质以及等边三角形的判定与性质.此题比拟简单,注意掌握辅助线的作法,注意数形结合思想的应用.19.〔7分〕〔2021?XX〕读书决定一个人的休养和品位,在“文明XX.美丽XX〞读书活动中,某学习小组开展综合实践活动,随机调查了该校局部学生的课外阅读情况,绘制了平均每人每天课外阅读时间统计图.〔1〕补全扇形统计图中横线上缺失的数据;〔2〕被调查学生中,每天课外阅读时间为60分钟左右的有20人,求被调查的学生总人数;〔3〕请你通过计算估计该校学生平均每人每天课外阅读的时间.考点:扇形统计图;用样本估计总体.分析:〔1〕将总体看作单位1,减去其他所占的百分比即可;〔2〕用每天课外阅读时间为60分钟左右的除以其所占的百分比即可;〔3〕用加权平均数计算即可.解答:解:〔1〕没有阅读习惯或根本不阅读的占:1﹣10%﹣30%﹣55%=15%;〔2〕∵每天课外阅读时间为60分钟左右的有20人,占总数的10%,∴被调查的总人数有20÷10%=200人;〔3〕该校学生平均每人每天课外阅读的时间为:60×10%+40×30%+20×55%=6+12+11=29分∴估计该校学生平均每人每天课外阅读的时间为29分钟;点评:此题考察了扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出有∴四边形AEDF是菱形;〔2〕连接EF,∵AE=AF,∠A=60°,∴△EAF是等边三角形,∴EF=AE=8厘米.点评:此题考察了菱形的判定与性质以及等边三角形的判定与性质.此题比拟简单,注意掌握辅助线的作法,注意数形结合思想的应用.19.〔7分〕〔2021?XX〕读书决定一个人的休养和品位,在“文明XX.美丽XX〞读书活动中,某学习小组开展综合实践活动,随机调查了该校局部学生的课外阅读情况,绘制了平均每人每天课外阅读时间统计图.〔1〕补全扇形统计图中横线上缺失的数据;〔2〕被调查学生中,每天课外阅读时间为60分钟左右的有20人,求被调查的学生总人数;〔3〕请你通过计算估计该校学生平均每人每天课外阅读的时间.考点:扇形统计图;用样本估计总体.分析:〔1〕将总体看作单位1,减去其他所占的百分比即可;〔2〕用每天课外阅读时间为60分钟左右的除以其所占的百分比即可;〔3〕用加权平均数计算即可.解答:解:〔1〕没有阅读习惯或根本不阅读的占:1﹣10%﹣30%﹣55%=15%;〔2〕∵每天课外阅读时间为60分钟左右的有20人,占总数的10%,∴被调查的总人数有20÷10%=200人;〔3〕该校学生平均每人每天课外阅读的时间为:60×10%+40×30%+20×55%=6+12+11=29分∴估计该校学生平均每人每天课外阅读的时间为29分钟;点评:此题考察了扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出有∴四边形AEDF是菱形;〔2〕连接EF,∵AE=AF,∠A=60°,∴△EAF是等边三角形,∴EF=AE=8厘米.点评:此题考察了菱形的判定与性质以及等边三角形的判定与性质.此题比拟简单,注意掌握辅助线的作法,注意数形结合思想的应用.19.〔7分〕〔2021?XX〕读书决定一个人的休养和品位,在“文明XX.美丽XX〞读书活动中,某学习小组开展综合实践活动,随机调查了该校局部学生的课外阅读情况,绘制了平均每人每天课外阅读时间统计图.〔1〕补全扇形统计图中横线上缺失的数据;〔2〕被调查学生中,每天课外阅读时间为60分钟左右的有20人,求被调查的学生总人数;〔3〕请你通过计算估计该校学生平均每人每天课外阅读的时间.考点:扇形统计图;用样本估计总体.分析:〔1〕将总体看作单位1,减去其他所占的百分比即可;〔2〕用每天课外阅读时间为60分钟左右的除以其所占的百分比即可;〔3〕用加权平均数计算即可.解答:解:〔1〕没有阅读习惯或根本不阅读的占:1﹣10%﹣30%﹣55%=15%;〔2〕∵每天课外阅读时间为60分钟左右的有20人,占总数的10%,∴被调查的总人数有20÷10%=200人;〔3〕该校学生平均每人每天课外阅读的时间为:60×10%+40×30%+20×55%=6+12+11=29分∴估计该校学生平均每人每天课外阅读的时间为29分钟;点评:此题考察了扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出有。

2009年湖北省宜昌市数学中考真题(word版含答案)

2009年湖北省宜昌市数学中考真题(word版含答案)
B C B C B A C O B C B A C O
) .
A
O
A
O
A
O
基本图案 (第 8 题) A. B. C. 2 9.设方程 x -4x-1=0 的两个根为 x1 与 x2,则 x1x2 的值是( A. -4 B. -1 C. 1 D. 0
D. ) .
10.由于干旱,某水库的蓄水量随时间的增加而直线下降.若该水库的蓄水量 V(万米 3) 与干旱的时间 t(天)的关系如图所示,则下列说法正确的是( ) . A.干旱开始后,蓄水量每天减少 20 万米 B.干旱开始后,蓄水量每天增加 20 万米 3 C.干旱开始时,蓄水量为 200 万米 3 D.干旱第 50 天时,蓄水量为 1 200 万米 3
玉米价格 (元/500 克) 猪肉价格 (元/500 克)
【问题解决】 (1)若今年 3 月的猪肉价格比上月下降的百分数与 5 月的猪肉价格比上月下降的百分 数相等,求 3 月的猪肉价格 m; (2)若今年 6 月及以后月份,玉米价格增长的规律不变,而每月的猪肉价格按照 5 月 的猪肉价格比上月下降的百分数继续下降,请你预测 7 月时是否要采取措施防止“猪贱 伤农”; (3)若今年 6 月及以后月份,每月玉米价格增长率是当月猪肉价格增长率的 2 倍,而 每月的猪肉价格增长率都为 a,则到 7 月时只用 5.5 元就可以买到 500 克猪肉和 500 克玉米.请你预测 8 月时是否要采取措施防止“猪贱伤农”. (10 分)
18.已知点 A(1,-k+2)在双曲线 y
k 上.求常数 k 的值. x
(7 分)
19.已知:如图,在 Rt△ABC 和 Rt△BAD 中,AB 为斜边,AC=BD,BC,AD 相交于点 E. (1) 求证:AE=BE; (2) 若∠AEC=45°,AC=1,求 CE 的长. A B (7 分)

中考数学试题(word版含答案)

中考数学试题(word版含答案)

初中毕业生学业考试数 学 试 卷※考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的选项填在下表中相应题号下的空格内.每小题3分,共24分)1.目前国内规划中的第一高楼上海中心大厦,总投入约14 800 000 000元.14 800 000 000元用科学记数法表示为( ) A .111.4810⨯元B .90.14810⨯元C .101.4810⨯元D .914.810⨯元2.计算23(2)a -的结果为( ) A .52a -B .68a -C .58a -D .66a -3.如图所示,已知直线AB CD ∥,125C ∠=°,45A ∠=°, 则E ∠的度数为( ) A .70° B .80° C .90° D .100°4.一个圆柱体钢块,正中央被挖去了一个长方体孔,其俯视图如图所示,则此圆柱体钢块的左.视图是( )5.数据21,21,21,25,26,27的众数、中位数分别是( ) A .21,23 B .21,21 C .23,21 D .21,256.为了美化环境,某市加大对绿化的投资.2007年用于绿化投资20万元,2009年用于绿化投资25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为x ,根据题意所列方程为( ) A .22025x =B .20(1)25x +=C .220(1)25x +=D .220(1)20(1)25x x +++=7.如图所示,反比例函数1y 与正比例函数2y 的图象的一个交点坐标是(21)A ,,若210y y >>,则x 的取值范围在数轴上表示为( )A .B .C .D . 俯视图第4题图 EA BCD第3题图45°125°8.将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是( )二、填空题(每小题3分,共24分) 9.分解因式:34a a -= . 10.函数33y x =+自变量x 的取值范围是 . 11.小丽想用一张半径为5cm 的扇形纸片围成一个底面半径为4cm 的圆锥,接缝忽略不计,则扇形纸片的面积是 cm 2.(结果用π表示)12.如图所示,小区公园里有一块圆形地面被黑白石子铺成了面积相等的八部分,阴影部分是黑色石子,小华随意向其内部抛一个小球,则小球落在黑色石子区域内的概率是 . 13.如图所示,AB 为O ⊙的直径,P 点为其半圆上一点,40POA C ∠=°,为另一半圆上任意一点(不含A B 、),则PCB ∠= 度.14.已知抛物线()经过点,且顶点在第一象限.有下列三个结论:①0a < ②0a b c ++> ③02ba->.把正确结论的序号填在横线上 .15.如图所示,在正方形网格中,图①经过 变换(填“平移”或“旋转”或“轴对称”)可以得到图②;图③是由图②经过旋转变换得到的,其旋转中心是点 (填“A ”或“B ”或“C ”). 16.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .A .B .C .D .y 1 2 2 1 1- (21)A , y 2 y 1 x O垂直 A . B . C . D . 第8题图 第12题图 CB A P O 40° 第13题图O y x 第14题图1- ①② ③ 第15题图A B C三、解答题(每题8分,共16分)17.计算:012|32|(2π)+-+-.18.解方程:2111x x x -=-+.四、解答题(每题10分,共20分)19.如图所示,在Rt ABC △中,9030C A ∠=∠=°,°.(1)尺规作图:作线段AB 的垂直平分线l (保留作图痕迹,不写作法);(2)在已作的图形中,若l 分别交AB AC 、及BC 的延长线于点D E F 、、,连接BE . 求证:2EF DE =.20.某市开展了党员干部“一帮一扶贫”活动.为了解贫困群众对帮扶情况的满意程度,有关部门在该市所管辖的两个区内,分别随机抽取了若干名贫困群众进行问卷调查.根据收集的信息进行了统计,并绘制了下面尚不完整的统计图.已知在甲区所调查的贫困群众中,非常满意的人数占甲区所调查的总人数的35%.根据统计图所提供的信息解答下列问题: (1)甲区参加问卷调查的贫困群众有 人; (2)请将统计图补充完整; (3)小红说:“因为甲区有30人不满意,乙区有40人不满意,所以甲区的不满意率比乙区低.”你认为这种说法正确吗?为什么?第1个图形 第2个图形 第3个图形 第4个图形第16题图A CB 第19题图 非常满意 人数 800 600 400 200 满意 比较满意 不满意 满意程度 甲 乙第20题图420 700 760500250 3040五、解答题(每题10分,共20分)21.小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选. (1)用树状图或列表法求出小明先挑选的概率; (2)你认为这个游戏公平吗?请说明理由.22.如图所示,已知AB 是半圆O 的直径,弦106CD AB AB CD ==∥,,,E 是AB 延长线上一点,103BE =.判断直线DE 与半圆O 的位置关系,并证明你的结论.六、解答题(每题10分,共20分)23.某旅游区有一个景观奇异的望天洞,D 点是洞的入口,游人从入口进洞游览后,可经山洞到达山顶的出口凉亭A 处观看旅游区风景,最后坐缆车沿索道AB 返回山脚下的B 处.在同一平面内,若测得斜坡BD 的长为100米,坡角10DBC ∠=°,在B 处测得A 的仰角40ABC ∠=°,在D 处测得A 的仰角85ADF ∠=°,过D 点作地面BE 的垂线,垂足为C .(1)求ADB ∠的度数; (2)求索道AB 的长.(结果保留根号)O AB ED C 第22题图A C DE F B 第23题图24.为迎接国庆六十周年,某校团委组织了“歌唱祖国”有奖征文活动,并设立了一、二、三等奖.学校计划派人根据设奖情况买50件奖品,其中二等奖件数比一等奖件数的2倍还少10件,三等奖所花钱数不超过二等奖所花钱数的1.5倍.各种奖品的单价如下表所示.如果计划一等奖买x 件,买50件奖品的总钱数是w 元. (1)求w 与x 的函数关系式及自变量x 的取值范围; (2)请你计算一下,如果购买这三种奖品所花的总钱数最少?最少是多少元?一等奖 二等奖 三等奖 单价(元) 12 10 5 E图(b ) 第25题图八、解答题(本题14分)26.如图所示,已知在直角梯形OABC 中,AB OC BC x ∥,⊥轴于点(11)(31)C A B ,,、,.动点P 从O 点出发,沿x 轴正方向以每秒1个单位长度的速度移动.过P 点作PQ 垂直于直线..OA ,垂足为Q .设P 点移动的时间为t 秒(04t <<),OPQ △与直角梯形OABC 重叠部分的面积为S .(1)求经过O A B 、、三点的抛物线解析式; (2)求S 与t 的函数关系式;2009年铁岭市初中毕业生学业考试 数学试题参考答案及评分标准注:本参考答案只给出一种或几种解法(证法),若用其他方法解答并正确,可参考此评分标准相应步骤赋分.一、选择题(每小题3分,共24分) 题号 1 2 3 4 5 6 7 8 答案 C B B C A C D A∴3060EBA A AED BED ∠=∠=∠=∠=°,°,∴3060EBC EBA FEC ∠==∠∠=°,°. 又∵ED AB EC BC ⊥,⊥, ∴ED EC =. ······························································································· 8分 在Rt ECF △中,6030FEC EFC ∠=∴∠=°,°, ∴2EF EC =, ∴2EF ED =. ··························································································· 10分 第19题图(2)图形正确(甲区满意人数有500人) ··························································· 5分 (3)不正确. ······························································································· 6分 ∵甲区的不满意率是30 2.5%1200=,乙区的不满意率是402%70076050040=+++, ∴甲区的不满意率比乙区的不满意率高. ·························································· 10分五、(每题10分,共20分) 21.解:(1)根据题意可列表或树状图如下:第一次第二次1 2 3 4∵,∴2.······························· 2分 ∵1025533OE OB BE =+=+=. ····························· 3分 ∴35325553DF OD OD OE ===,, ∴DF ODOD OE=. ····························································································· 6分 ∵CD AB ∥,∴CDO DOE ∠=∠. ································································ 7分3) A第22题图∴90ODE OFD ∠=∠=°, ∴OD DE ⊥∴直线DE 与半圆O 相切. ············································································ 10分 法二:连接OD ,作OF CD ⊥于点F ,作DG OE ⊥于点G . ∵6CD =,∴132DF CD ==. 在Rt ODF △中,2222534OF OD DF =-=-= ·········································· 3分 ∵CD AB ∥,DG AB OF CD ⊥,⊥, ∴四边形OFDG 是矩形,∴43DG OF OG DF ====,. ∵1025533OE OB BE =+=+=,2516333GE OE OG =-=-=, ························ 5分 在Rt DGE △中,22221620433DE DG GE ⎛⎫=+=+= ⎪⎝⎭.∵2222025533⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭, ∴222OD DE OE += ····················································································· 8分 ∴CD DE ⊥.∴直线DE 与半圆O 相切. ············································································ 10分 六、(每题10分,共20分) 23.(1)解:∵DC CE ⊥,∴90BCD ∠=°. 又∵10DBC ∠=°, ∴80BDC ∠=°, ····················································· 1分∵85ADF ∠=°,∴360809085105ADB ∠=---=°°°°°. ·················· 2分(2)过点D 作DG AB ⊥于点G . ······························ 3分 在Rt GDB △中,401030GBD ∠=-=°°°, ∴903060BDG ∠=-=︒°° ········································ 4分 又∵100BD =, ∴111005022GD BD ==⨯=. 3cos301005032GB BD ==⨯=°. ···························································· 6分 在Rt ADG △中,1056045GDA ∠=-=︒°° ······················································ 7分 ∴50GD GA ==, ························································································ 8分 ∴50503AB AG GB =+=+(米)································································ 9分A CDEF B 第23题图G答:索道长50+ ············································································· 10分 24.解:(1)1210(210)5[50(210)]x x x x ω=+-+--- ····································· 2分17200x =+.·········································································· 3分 由02100[50(210)]05[50(210)] 1.510(210)x x x x x x x >⎧⎪->⎪⎨--->⎪⎪---⨯-⎩≤ ························································ 5分(3)当CD CB =(2BD CD =或12CD BD =或30CAD ∠=°或90BAD ∠=°或30ADC ∠=°)时,四边形BCGE 是菱形. ················ 9分 理由:法一:由①得AEB ADC △≌△, ∴BE CD = ························································· 10分 又∵CD CB =, ∴BE CB =. ······················································ 11分 由②得四边形BCGE 是平行四边形, ∴四边形BCGE 是菱形. ······································· 12分ADCBFEG 图(b ) 第25题图法二:由①得AEB ADC △≌△, ∴BE CD =. ······························································································ 9分 又∵四边形BCGE 是菱形, ∴BE CB = ································································································ 11分 ∴CD CB =. ····························································································· 12分 法三:∵四边形BCGE 是平行四边形, ∴BE CG EG BC ∥,∥, ∴6060FBE BAC F ABC ∠=∠=∠=∠=°,° ··················································· 9分 ∴60F FBE ∠=∠=°, ∴BEF △是等边三角形. ············································································· 10分220(02)1(12)a h a h ⎧=-+⎪⎨=-+⎪⎩ 解得1343a h ⎧=-⎪⎪⎨⎪=⎪⎩································································· 3分 ∴所求抛物线解析式为214(2)33y x x =--+. ···················································· 4分 (2)分三种情况:①当02t <≤,重叠部分的面积是OPQ S △,过点A 作AF x ⊥轴于点F , ∵(11)A ,,在Rt OAF △中,1AF OF ==,45AOF ∠=°在Rt OPQ △中,OP t =,45OPQ QOP ∠=∠=°,∴cos 452PQ OQ t ===°, (3)存在 11t = ······················································································ 12分 22t = ···················································································· 14分。

2013中考数学试题及答案(word完整版)(1)

2013中考数学试题及答案(word完整版)(1)

二O 一三年高中阶段教育学校统一招生考试(含初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。

2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。

考试结束,监考人员将试卷和答题卡一并收回。

3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。

4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。

5. 保持答题卡清洁,不得折叠、污染、破损等。

A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上) 1.2的相反数是( )(A)2 (B)-2 (C)21 (D)21-2.如图所示的几何体的俯视图可能是( )3.要使分式15-x 有意义,则x 的取值范围是( ) (A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-1 4.如图,在△ABC 中,∠B=∠C,AB=5,则AC 的长为( )(A )2 (B )3 (C )4 (D )5 5.下列运算正确的是( )(A )31×(-3)=1 (B )5-8=-3(C)32-=6 (D)0)(-=020136.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为()(A)1.3×51010(B)13×4(C)0.13×51010(D)0.13×67.如图,将矩形ABCD沿对角线BD折叠,使点C和点'C重合,若AB=2,则'C D 的长为()(A)1(B)2(C)3(D)48.在平面直角坐标系中,下列函数的图像经过原点的是()5(A)y=-x+3 (B)y=x(C)y=x2(D)y=7x22--x+9.一元二次方程x2+x-2=0的根的情况是()(A)有两个不相等的实数根(B)有两个相等的实数根(C)只有一个实数根(D)没有实数根10.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()(A)40°(B)50°(C)80°(D)100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式3x的解集为_______________.-12>12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.13.如图,∠B=30°,若AB ∥CD ,CB 平分∠ACD, 则∠ACD=__________度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC 的长为__________米. 三.解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分)(1)计算1260sin 2|3|)2(2-+-+-(2)解方程组⎩⎨⎧=-=+521y x y x16.(本小题满分6分)化简112)(22-+-÷-a a a a a17.(本小题满分8分)如图, 在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90°(1)画出旋转之后的△''C AB(2)求线段AC 旋转过程中扫过的扇形的面积18.(本小题满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:(1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.19.(本小题满分10分)如图,一次函数11y x =+的图像与反比例函数2ky x=(k 为常数,且0≠k )的图像都经过点)2,(m A(1)求点A 的坐标及反比例函数的表达式; (2)结合图像直接比较:当0>x 时,1y 和2y 的大小.20.(本小题满分10分)如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=o ,BD BE ⊥,AD BC =.(1)求证:CE AD AC +=;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作DP PQ ⊥,交直线BE 与点Q ;i )当点P 与A ,B 两点不重合时,求DPPQ的值; ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 已知点(3,5)在直线y ax b =+(,a b 为常数,且0a ≠)上,则5ab -的值为_____.22. 若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.23. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a =-的图像与反比例函数32a y x+=的图像的公共点的个数为_________. 24. 在平面直角坐标系xOy 中,直线y kx =(k 为常数)与抛物线2123y x =-交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,4)-,连接,PA PB .有以下说法:○12PO PA PB =⋅;○2当0k >时,()()PA AO PB BO +-的值随k 的增大而增大;○3当k =时,2BP BO BA =⋅;○4PAB ∆面积的最小值为其中正确的是_______.(写出所有正确说法的序号)25. 如图,A B C ,,,为⊙O 上相邻的三个n 等分点,AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时, p b c =+.请继续探究,,b c p 三者的数量关系:当4n =时,p =_______;当12n =时,p =_______.(参考数据:sin15cos75==o o ,cos15sin 754==o o ) 二、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(本小题满分8分)某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米每秒)关于时间t (秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前n (37n <≤)秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题:(1)当37n <≤时,用含t 的式子表示v ; (2)分别求该物体在03t ≤≤和37n <≤时,运动的路程s (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 总路程的710时所用的时间.27.(本小题满分10分)如图,⊙O 的半径25r =,四边形ABCD 内接圆⊙O ,AC BD ⊥于点H ,P 为CA 延长线上的一点,且PDA ABD ∠=∠.(1)试判断PD 与⊙O 的位置关系,并说明理由:(2)若3t a n 4A D B ∠=,PA AH =,求BD 的长; (3)在(2)的条件下,求四边形ABCD 的面积.28.(本小题满分12分)在平面直角坐标系中,已知抛物线212y x bx c =-++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过 A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q 、、 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;ii)取BC的中点N,连接,NP BQ.试探究PQNP BQ是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.二O 一三年高中阶段教育学校统一招生考试数学答案 A 卷1~5:BCADB 6~10: ABCAD11、 x >2 12、10 13、60° 14、100 15.(1)4; (2)⎩⎨⎧-==12y x 16. a17.(1)略 (2)π18.(1)4, 0.7 (2)树状图(或列表)略,P=61122= 19.(1)A(1,2) ,xy 2=(2)当0<x<1时,21y y <; 当x=1时,21y y =; 当x>1时,21y y >;20.(1)证△ABD ≌△CEB →AB=CE ;(2)如图,过Q 作QH ⊥BC 于点H ,则△AD P ∽△HPQ ,△BHQ ∽△BCE , ∴QHAPPH AD =, EC QH BC BH =;设AP=x ,QH=y ,则有53yBH = ∴BH=53y ,PH=53y+5x - ∴yxx y=-+5533,即0)53)(5(=--x y x 又∵P 不与A 、B 重合,∴ ,5≠x 即05≠-x , ∴053=-x y 即x y 53=∴53==y x PQ DP(3)3342 B 卷21.31- 22.117 23.3 24.③④ 25.c b ±2, c b 21322-+或c b --226 26. (1)42-=t v ;(2)S=⎩⎨⎧≤<-≤≤)73(42)30(22t t t t t , 6秒 27.(1)如图,连接DO 并延长交圆于点E ,连接AE∵DE 是直径,∴∠DAE=90°,∴∠E +∠ADE=90°∵∠PDA =∠ADB =∠E∴∠PDA +∠ADE=90°即PD ⊥DO∴PD 与圆O 相切于点D(2) ∵tan ∠ADB=43∴可设AH=3k,则DH=4k∵PA AH =∴PA=k )334(-∴PH=k 34∴∠P=30°,∠PDH=60°∴∠BDE=30°连接BE ,则∠DBE=90°,DE=2r=50∴BD=D E ·cos30°=325(3)由(2)知,BH=325-4k ,∴HC=34(325-4k) 又∵PC PA PD ⨯=2 ∴)]4325(3434[)334()8(2k k k k -+⨯-= 解得k=334-∴AC=7324)4325(343+=-+k k ∴S=23175900)7324(3252121+=+⨯⨯=∙AC BD 28.(1)12212-+-=x x y (2)M 的坐标是(1-5,-5-2)、(1+5,5-2)、(4,-1)、(2,-3)、(-2,-7)(3)PQ NP BQ +的最大值是510。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年湖北省宜昌市初中毕业生学业考试数学试题
一、选择(下列各小题中,只有一个选项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每小题3分,计45分)
1.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨.这个数据用科学记数法表示为( )
A.6.75×104
B.67.5×103
C.0.675×105
D.6.75×10-4
2.合作交流是学习数学的重要方式之一.某校九年级每个班合作学习小组的个数分别是:8,7,7,8,9,
7.这组数据的众数是( )
A.7
B.7.5
C.8
D.9
3.四边形的内角和的度数为( )
A.180°
B.270°
C.360°
D.540°
4.某几何体的三种视图如图所示,则该几何体是( ) A.三棱柱 B.长方体 C.圆柱 D.圆锥
5.下列式子中,一定成立的是( )
A.2a a a =⋅
B. 22523a a a =+
C. 123=÷a a
D.
()22ab ab = 6.若式子1-x 在实数范围内有意义,则x 的取值范围为( )
A. x =1
B. x ≥1
C. x >1
D. x <1
7.如图,在矩形ABCD 中,AB <BC ,AC ,BD 相交于点O ,则图中等腰三角形的个数是( )
A.8
B.6
C.4
D.2
8.如图,已知AB ∥CD ,E 是AB 上一点,DE 平分∠BEC 交CD 于点D ,∠BEC=100°,则∠D 的度数是( )
A.100°
B.80°
C.60°
D.50°
9.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( )
A.1,2,6
B.2,2,4
C.1,2,3
D.2,3,4
10.2012~2013NBA 整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误..
的是( ) A.科比罚球投篮2次,一定全部命中 B. 科比罚球投篮2次,不一定全部命中.
C. 科比罚球投篮1次命中的可能性较大
D. 科比罚球投篮1次,不命中的可能性较小
11.如图,点B 在反比例函数x y 2
=(x >0)的图象上,横坐标为1,过点B 分别向x 轴,y 轴作垂线,
垂足分别为A ,C ,则矩形OABC 的面积为( )
A.1
B.2
C.3
D.4
(第1题)
12.地球正面临第六次生物大灭绝,据科学家预测,到2050年,目前的四分之一到一半的物种将会灭绝或濒临灭绝.2012年底,长江江豚数量仅剩约1000头其数量平均下降的百分率在13%~15%范围内,由此预测,2013年底剩下的数量可能为( )
A.970
B.860
C.750
D.720
13.实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )
A. a +b =0
B. b <a
C. a b >0
D. b <a
14.如图,DC 是⊙O 的直径,弦AB ⊥CD 于F ,连接BC ,DB.则下列结论错误..
的是( ) A.弧AD=弧BD B.AF=BF C.OF=CF D. ∠DBC=90°
15.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以C ,D ,E 为顶点的三角形与⊿ABC 相似,则点E 的坐标不可能...
是( ) A.(6,0) B.(6,3) C.(6,5) D.(4,2)
二、解答题(并将解答过程写在答题卡上指定的位置.本大题共9小题,计75分)
16.(6分)计算:()200092120++⎪⎪⎭
⎫ ⎝⎛-⨯-.
17.(6分)化简:
()()a b a b a -+-22.
18.(7分)如图,点E,F分别是锐角∠A两边上的点,AE=AF;分别以点E,F为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF.
(1)请你判断所画四边形的形状,并说明理由;
(2)连接EF,若AE=8厘米,∠A=60°,求线段EF的长.
19.(7分)读书决定一个人的修养和品位.在“文明湖北·美丽宜昌”读书活动中,某学习小组开展综合实践活动,随机调查了该校部分学生的课外阅读情况,绘制了平均每人每天课外阅读时间统计图.
(1)补全扇形统计图中横线上缺失的数据;
(2)被调查学生中,每天课外阅读时间为60分钟左右的有20人,求被调查的学生总人数.
(3)请你通过计算估计该校学生平均每人每天课外阅读的时间.
20(8分)A,B两地相距1100米,甲从A地出发,乙从B地出发,相向而行,甲比乙先出发2分钟,乙出发7分钟后与甲相遇.设甲、乙两人相距y米,甲行进时间为t分钟,y与t之间的函数关系式如图所示.请你结合图象探究:
(1)甲的行进速度为每分钟米,m= 分钟;
(2)求直线PQ对应的函数表达式;
(3)求乙的行进速度.
21.(8分)如图1,在⊿ABC 中,∠BAC=90°,AB=AC ,AO ⊥BC 于点O ,F 是线段AO 上的点(与A 、O 不重合),∠EAF=90°,AE=AF ,连接FE ,FC ,BF.
(1)求证:BE=BF ;
(2)如图2,若将⊿AEF 绕点A 旋转,使边AF 在∠BAC 的内部,延长CF 交AB 于点G ,交BE 于点K.
①求证:⊿AG C ∽⊿KGB ;
②当⊿BEF 为等腰直角三角形时,请直接写出....A B :BF 的值.
22.(10分)
【背景资料】一棉花种植区的农民研制出采摘棉花的单人便携式采棉机(如图),采摘效率高,能耗低,绿色环保.经测试,一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,购买一台采棉机需900元.雇人采摘棉花,按每采摘1公斤棉花a 元的标准支付雇工工资,雇工每天工作8小时.
【问题解决】
(1) 一个雇工手工采摘棉花,一天..
能采摘多少公斤? (2) 一个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,求a 的值;
(3) 在(2)的前提下,种植棉花的专业户张家和王家均雇人采摘棉花,王家雇用的人数是张家的2倍.张家雇人手工采摘,王家所雇的人中有3
2的人自带采棉机采摘,31的人手工采摘.两家采摘完毕,采摘的天数刚好一样,张家付给雇工工钱总额为14400元.王家这次采摘棉花的总重量是多少?
23.(11分)半径为2cm的⊙O与边长为2cm的正方形ABCD在水平直线L的同侧,⊙O与L相切于点F,DC在L上.
(1)过点B作⊙O的一条切线BE,E为切点.
①填空:如图1,当点A在⊙O上时,∠EBA的度数是;
②如图2,当E,A,D三点在同一直线上时,求线段OA的长;
(2)以正方形ABCD的边AD与OF重合的位置为初始位置
....,向左移动正方形(图3),至边BC与OF重合时结束移动,M,N分别是边BC,AD与⊙O的公共点,求扇形MON的面积的范围.
24.(12分)如图1,平面直角坐标系中,等腰直角....
三角板的直角边BC 在x 轴正半轴上滑动,点C 的坐标为(t ,0),直角边AC=4,经过O ,C 两点作抛物线()t x ax y -=
1(a 为常数,a >0),该抛物线与斜边AB 交于点E ,直线OA :kx y =2(K 为常数,k >0).
(1)填空:用含t 的代数式表示点A 的坐标及k 的值:A ( , ),k= . (2)随着三角板的滑动,当41=
a 时: ①请你验证:抛物线()t x ax y -=1的顶点在函数24
1x y -=的图象上; ②当三角板滑至点E 为AB 的中点时,求t 的值;
(3)直线OA 与抛物线的另一个交点为点D ,当t ≤x ≤t+4时,12y y -的值随x 的增大而减小;当x ≥t+4时,12y y -的值随x 的增大而增大.求a 与t 的关系及t 的取值范围.。

相关文档
最新文档