第六章烃类热裂解解读
烃类热裂解

§5 冷量的综合利用
获得相同的冷量,T↓,能耗↑。
冷剂选择:
>50℃,水冷 ~0℃,盐水冷(NH3冷换热) -30℃,直接NH3冷
C2 为冷剂
甲烷塔 乙烯塔 丙烯塔
操作温度:-100℃ 操作温度:-50℃ 操作温度:20℃
C3 为冷剂
NH3或冷冻盐水为冷剂
一.复迭制冷
2
5´′ -50º C
原料:重油
3、管式裂解炉
§4. 裂解气的分离
一.裂解气组成
目的物:烯烃、芳烃, 杂质:CO2、H2S、H2O、炔烃等。
聚合级烯烃对杂质(如C2≡、H2S、 H2O、CO2等)含量要求十分苛刻,需把烯 烃提纯。
二.裂解气分离过程 1.气体净化系统 碱洗除CO2、H2S(酸性气体)。
分子筛脱水(水会在深冷分离时冻结,堵塞管道)。 催化选择性加氢除C2≡、C3≡,丙二烯。 Cat.: Pd/Al2O3 ;Ni-Co/Al2O3 付反应: 乙炔聚合生成液体产物(绿油) 乙烯的进一步加H反应 乙炔分解生成C和H 加氢除CO(CO+3H2→CH4+H2O)→甲烷化法
五.冷箱 (P.330)
利用节流制冷,分离甲烷和氢气并回收乙烯的 一个装置,为防止散热,常装在一个绝热的方形 容器中,俗称冷箱。
提高裂解温度可增大链引发速率常数,产生 的自由基增多。β-断裂反应速率常数也增大,但 与前者相比增大的程度较小。对链终止反应, 温度升高则没有影响。链引发和β-断裂反应速率 常数的增大,都对增产乙烯有利。
(4)停留时间 裂解温度越高,允许停留的时间则越
短;反之,停留时间就要相应长一些。
目的:控制二次反应,让裂解反应停 留在适宜的裂解深度上。
2.压缩和冷冻系统 将裂解气加压、降温,为分离创造条件。
第六章_烃类热裂解

(2)、乙烷裂解反应的活化能
K E RT
可由速率常数K =A e
求得,故先求算速率常数K
从乙烷裂解反应的机理可知,其动力学方程:
d[C2 H 6 ] =K1[C2 H6 ] +K 2 [C 2 H 6 ][CH 3 ] dt
(K1、K 2、K 3、K 4、K 5 与基元反应有关)
自由基机理: 1934年美国F.O赖斯和K.F赫茨菲尔德首先提出。
1967年,美国S.B茨多尼克等人,对此作了较
详细的解释。虽然他们只能解释了C2-C6各种烃,在 低转化率裂解时所得到的产品的分布情况,但仍是
指导预见和关联裂解数据的有效工具。
(一)、烷烃裂解的自由基反应机理 1、乙烷裂解反应 (1)、乙烷裂解反应的类型 乙烷分子中 键能(kJ/mol) C-C 346 C-H 406
也叫石墨化过程。 结焦过程的△G0为一般是很大的负值,但是乙
烯生成苯的速度不大,所以乙烯结焦是可以避免的。
如何避免?是动力学问题。
==> 由1、2、3、4讨论可知,二次反应产物有小分
子烯烃和烷烃、二烯烃和炔烃、还有比原料更重的 烃,如单环芳烃、稠环芳烃甚至有焦炭生成。其中, 只有小分子烯烃是有利的。在二次反应中,只有较 大分子烯烃的裂解增产小分子烯烃(类型1),如乙 烯。其余二次反应,均消耗乙烯,使乙烯收率下 降。所以,应该防止二次反应的发生。
K1
E1=359.8,活化能(kJ/mol)
②、链传递 CH3· + C2H6
3
K2 CH4 + C2H5· ; E2=45.1
K 4H2 + C2H5· H· + C2H6
; E4=29.3
③、链终止
分析烃类热裂解的操作影响因素

水蒸汽的加入量随裂解原料而异
• 水蒸汽的加入量随裂解原料而异,一般地 说,轻质原料裂解时,所需稀释蒸汽量可 以降低,随着裂解原料变重,为减少结焦, 所需稀释水蒸汽量将增大。
0.0278
乙烷单程转化率,%
14.8
34.4
按分解乙烷计的乙 烯产率,%
89.4
86.0
理论上烃类裂解制乙烯的最适宜温度一般在 750~900℃之间。
裂解温度
• < 750 ℃ 生成乙烯的可能较小 • >750 ℃ 生成乙烯的可能性较大, • 750 ~ 900℃ 温度愈高,反应的可能性愈
大,乙烯的产率愈高。 • > 900℃ 生焦生碳反应
832
832
停留时间,秒
0.0278
0.0805
乙烷单程转化率,%
14.8
60.2
按分解乙烷计的乙烯收 率,%
89.4
76.5
停乙不烯同留的的时峰裂值解间收温的率度越,选高所择,对相应主对的要应峰的取值最收决适率宜于不的同裂停,留解温时度温间越越度高短,,
这是因为二次反应主要发生在转化率较高的裂解后期,
• 原料在反应区停留时间过长,对促进一次反应 是有利的,故转化率较高,但二次反应更有时间充 分进行,一次反应生成的乙烯大部分都发生二次反 应而消失,乙烯收率反而下降。
• 同时二次反应的进行,生成更多焦和碳,缩短了 裂解炉管的运转周期,既浪费了原料,又影响正常 的生产进行。
温度℃
停留时间对乙烷转化率和 乙烯收率的影响
一、管式炉的基本结构和炉型
• 管式炉炉型结构简单,操作容易,便于控 制和能连续生产,乙烯、丙烯收率较高, 动力消耗少,热效率高,裂解气和烟道气 的余热大部分可以回收。
烃的热裂解

(二)我国乙烯工业现状 我国乙烯工业已有 40 多年的发展历 史,60年代初我国第一套乙烯装置在兰州化工厂 建成投产,多年来,我国乙烯工业发展很快,乙 烯产量逐年上升,2005 年乙烯生产能力达 到 773 万吨/年,居世界第三位。随着国家新建和改 扩建乙烯装置的投产, 到 2010 年我国乙烯生产 能力将超过 1600 万吨。
烃的热裂解
任务一:烃的热裂解工业概貌检索
《1》基本性质 《2》 工业现代及发展趋势
概况
烃类热裂解是将烃类原料(天然气、炼厂 气、石脑油、轻油、柴油、重油等)经高 温(750℃以上)、低压(无催化剂)作用, 使烃类分子发生碳链断裂或脱氢反应,生 成分子量较小的烯烃、烷烃和其他分子量 不同的轻质和重质烃类。 烃类热裂解非常复杂,具体体现在 (1)原料复杂:烃类热裂解的原料包括天 然气、炼厂气、石脑油、轻油、柴油、重 油甚至是原油、渣油等;
(2)反应复杂:烃类热裂解的反应除了断 裂或脱氢主反应外,还包括环化、异构、 烷基化、脱烷基化、缩合、聚合、生焦、 生碳等副反应; (3)产物复杂:即使采用最简单的原料乙 烷,其产物中除了H2、 CH4、C2H4、C2H6、 外,还有C3、C4、等低级烷烃和C5以上的液 态烃。 烃类热裂解按原料的变化可分为:在低级 不饱和烃中,以乙烯最重要,产量也最大。 乙烯产量常作为衡量一个国家基本化学工 业的发展水平的标志
氢较少,该自由基主要分解出H. 生成同碳数的烯烃
分子,
从分解或从夺氢反应中所生成的自由基,只要其碳
数大于3,则可继续分解反应,生成碳数少的烯烃。
化学热力学和动力学
裂解反应的热效应 裂解反应通常看作等压过程,由热力学第一定律, 等压反应热效应 :
热效应计算中所需的生成热数据可从文献中查取,
烃类热裂解名词解释

烃类热裂解名词解释嘿,朋友!咱们今天来聊聊烃类热裂解这回事儿。
你知道吗,烃类热裂解就像是一场奇妙的化学大冒险!它指的是在高温条件下,烃类分子发生分解和重组的过程。
这就好比一群小伙伴本来手拉手好好的,突然被一股神秘的力量给拆开,然后又重新组合成了新的小伙伴团队。
烃类,听起来是不是有点陌生?其实啊,咱们生活中常见的石油、天然气里就有好多烃类物质。
比如甲烷、乙烷、乙烯这些。
而热裂解呢,就是让它们在高温这个大熔炉里发生变化。
想象一下,高温就像一个厉害的魔法师,对着烃类施展魔法。
原本稳定的烃分子被这股魔法力量冲击得七零八落,化学键断裂,原子们重新排列组合。
这一过程可不简单,涉及到好多复杂的化学反应。
比如说,乙烷在热裂解的时候,它的化学键就像是脆弱的绳子,被高温一烤,“啪”地断了,然后变成了乙烯和氢气。
这是不是很神奇?就好像一个大拼图被打乱,又拼成了新的图案。
烃类热裂解可不是随便玩玩的,它在工业上有着超级重要的地位。
咱们用的好多化工产品,像塑料、橡胶、纤维等等,很多都是通过烃类热裂解得到的原料再进一步加工出来的。
你想想,如果没有烃类热裂解,咱们的生活得少了多少方便和乐趣呀?没有那些五颜六色的塑料制品,没有舒适的合成纤维衣服,那得多糟糕啊!而且,烃类热裂解的条件要求也很严格呢。
温度得恰到好处,高了不行,低了也不行,这就像炒菜,火候掌握不好,菜就不好吃啦。
还有压力、停留时间等等因素,都得精心控制,稍有差错,结果就大不一样。
所以说,烃类热裂解可真是一门高深的学问,是化学世界里的一场精彩大戏!它让那些看似普通的烃类物质焕发出新的生机,为我们的生活带来了无数的可能。
你说,这是不是很厉害?总之,烃类热裂解在化工领域中举足轻重,是创造丰富多样化学产品的关键魔法!。
烃类热裂解[高级课件]
![烃类热裂解[高级课件]](https://img.taocdn.com/s3/m/908a3d0e336c1eb91b375d43.png)
严选内容
20
环烷烃的裂解反应规律
• 侧链烷基断裂比开环容易 • 脱氢生成芳烃优于开环生成烯烃 • 五环比六环烷烃难裂解 • 比链烷烃更易于生成焦油,产生结焦
严选内容
21
(三)芳烃热裂解
➢ 烷基芳烃的侧链脱烷基反应或断键反应 ➢ 环烷基芳烃的脱氢和异构脱氢反应 ➢ 芳烃缩合反应 产物:多环芳烃,结焦 特点:不宜做裂解原料
界第三位 • 单 裂 解 炉 生 产 能 力 由 20kt/a 发 展 到 100-
120kt/a,最大达210kt/a • 中东、亚洲是新建、扩建裂解装置的重点地域
严选内容
4
本章主要内容
1.1 热裂解过程的化学反应与反应机理 1.2 烃类管式炉裂解生产乙烯 1.3 裂解气的净化与分离 1.4 裂解气深冷分离流程 1.5 裂解分离系统的能量有效利用 1.6 烃类裂解技术经济指标评比与展望 1.7 烃类生产乙烯的其他方法 1.8 烃类裂解生产乙炔
一次裂解反应的规律性 ➢ 4. 烃类热裂解的一次反应主要有哪几个?烃类热裂解
的二次反应主要有哪几个 ➢ 5. 什么叫焦,什么叫碳?结焦与生碳的区别有哪些? ➢ 6. 试述烃类热裂解的反应机理。 ➢ 7. 什么叫一级反应?写出一级反应动力学方程式和以
氢生成芳烃
• 芳构化反应 C6以上烯烃脱氢生成芳烃
严选内容
26
主要产物:乙烯、丙烯、丁二烯;环烯烃 特点: • 烯烃在反应中生成 • 小分子烯烃的裂解是不希望发生的,需
要控制
严选内容
27
➢天然石油中不含烯烃,但石油加工所得的各 种油品中则可能含有烯烃,在裂解时会发生 断链和脱氢反应,生成低级烯烃和二烯烃。
化学工艺学讲解

一、烃类热裂解1.烃类热裂解产物中的有害物质有哪些?存在哪些危害?如何脱除?答:烃类热裂解产物中的有害物质包括:硫化氢等硫化物,二氧化碳,炔烃和水。
硫化氢的危害:硫化氢会腐蚀设备和管道,使干燥的分子筛的寿命缩短,使脱炔用的加氢催化剂中毒并使烯烃聚合催化剂中毒。
二氧化碳的危害:在深冷分离裂解气时,二氧化碳会结成干冰,堵塞管道及设备,影响正常生产;对于烯烃聚合来说,是烯烃聚合过程的惰性组分,在烯烃循环时造成积累,使烯烃的分压下降,从而影响聚合反应速度和聚合物的分子量。
炔烃的危害:炔烃使乙烯和丙烯聚合的催化剂中毒。
水的危害:在深冷分离时,温度可达-100℃,水在此时会结冰,并与甲烷,乙烷等形成结晶化合物(CH4·6H2O,C2H6·7H2O,C4H10·7H2O),这些结晶会堵塞管道和设备。
脱除方法:硫化氢和二氧化碳用氢氧化钠碱液吸收来脱除;炔烃采用选择性加氢法来脱除。
水采用分子筛干燥法脱除。
2.类裂解发生的基元反应大部分为自由基反应哪三个阶段?链引发反应、链增长反应、链终止反应三个阶段。
链引发反应是自由基的产生过程;链增长反应时自由基的转变过程,在这个过程中一种自由基的消失伴随着另一种自由基的产生,反应前后均保持着自由基的存在;链终止是自由基消亡生产分子的过程。
3.各族烃类的裂解反应难易顺序为?正烷烃>异烷烃>环烷烃(六碳环>五碳环)>芳烃4.裂解气出口急冷操作的目的?裂解炉出口的高温裂解气在出口高温条件下将继续进行裂解反应,由于停留时间的增长,二次反应增加,烯烃损失随之增多。
为此,需要将裂解炉出口高温裂解气尽快冷却,通过急冷以终止其裂解反应。
当裂解气温度降至650℃以下时,裂解反应基本终止。
急冷有间接急冷和直接急冷之分。
5.在烃类热裂解的过程中,加入水蒸气作为稀释剂具有哪些优点?答:在烃类热裂解的过程中,加入水蒸汽作为稀释剂具有如下优点:(1)水蒸汽的热容较大,能对炉管温度起稳定作用,因而保护了炉管。
第6章 烃类裂解及裂解气分离

Ⅲ、芳烃→无侧链芳烃基本上不易裂解为烯烃有侧链的芳 烃主要是侧链逐步断裂及脱氢,芳环则倾向于脱氢缩合生 成稠环芳烃,直至结焦
Ⅳ、烯烃→大分子的烯烃能裂解为乙烯、丙烯等低级烯 烃,烯烃脱氢生成二烯烃能进一步反应生成芳烃以及焦 裂解易难顺序为: 异构烷烃>正构烷烃>环烷烃(C6>C5)>芳烃
2.烃类裂解二次反应
CH2CH2CH2CH=CH2 + C5H12 C长侧链先在侧链中央断裂, 有侧链的环烷烃比无侧链的环烷烃裂解能得到较多的烯烃
Ⅱ、环烷烃脱氢生成芳烃比开环生成烯烃容易 Ⅲ、五碳环比六碳环较难裂解 Ⅳ、环烷烃比链烷烃更易生成焦油、产生焦炭
⑶芳香烃裂解
裂解气
再生载气
去深冷
加热炉
5.脱炔
• 乙炔、甲基乙炔、丙二烯 • 危害:炔烃影响乙烯和丙烯衍生物生产过程 影响催化剂寿命 恶化产品质量 形成不安全因素 产生不希望的副产品 • 要求:乙炔<5×10-5 丙二烯<5×10-5 • 脱炔方法:溶剂吸收、催化加氢
溶剂吸收法
• 吸收裂解气中的乙炔 • 同时回收一定量的乙炔 • 常用溶剂 二甲基甲酰胺(DMF)(图3-25) N-甲基吡咯烷酮(NMP) 丙酮 主要根据沸点和熔点及溶解量选择溶剂
3
2.操作条件的影响
⑴常用裂解指标 ⑵操作条件影响 Ⅰ、裂解温度(一次反应产物分布及对二次反应的竞争)
Ⅱ、停留时间(减少二次反应的发生,增加乙烯收率)
Ⅲ、压力(有利于提高一次反应平衡转化率,抑制二次反应)
Ⅳ、稀释剂、烃分压(高温不宜真空操作)
稀释剂降压(惰性气、水蒸汽)
优点 一般采用水蒸汽: ①水蒸汽热容大,稳定炉温 ②水蒸汽易于分离、价廉易得,抑制原料中硫对炉的腐蚀 ③对炉管壁的铁、镍氧化形成氧化膜,抑制生炭反应 ④高温下能与裂解管中积炭、焦反应,有一定的清焦作用 适宜的稀释比
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京燕山乙烯装置
内容简介
国内乙烯工业简介 §8.1 热裂解过程的化学反应 §8.2 裂解过程的工艺参数和操作指标 §8.3 管式裂解炉及裂解工艺过程 §8.4 裂解气的预分馏及净化 §8.5 压缩和制冷系统 §8.6 裂解气的精馏分离系统 §8.7 乙烯工业的发展趋势
乙烯工业现状与前景 ——乙烯产量常作为衡量一个国家基本有
(2)芳环侧链的断链或脱氢反应。
Ar-CnH2n+1
ArH+CnH2n Ar-CkH2k+1+CmH2m
(3)芳烃缩合,进一步生成焦的反应。
芳烃缩合反应
R1
R2
+
R3
+ R4H
特点:不宜做裂解原料
5. 裂解过程中结焦生碳反应
各种烃在高温下不稳定
900-1000℃以上乙烯经过乙炔中间阶段而生碳;
CH CH HCH CH HCH CH HCH C HC C
芳烃——芳环不易裂解,主要发生侧链的断链和脱氢反 应,有结焦倾向。
几种烃原料的裂解结果比较(单程)
8.1.2 烃类裂解的反应机理
自由基反应举例(丙烷裂解)
链引发:
链增长: 得到两个自由基
途径A:
和 ,通过两个途径进行链的传递.
正丙基自由基
生成的正丙基自由基进一步分解
反应结果是: 途径B:
异丙基自由基
8.1 热裂解过程的化学反应
8.1.1 烃类裂解反应规律
裂解过程复杂,即使是单一组分裂解如下。
石油烃裂解如下图:
8.1.1 烃类裂解的反应规律
1. 烷烃的裂解反应
(1) 断链反应
Cm+nH2(m+n)+2 (2) 脱氢反应
CnH2n+CmH2m+2
CmH2m+2
CmH2m+H2
(3)环化反应(C5以上) CH3(CH2)4CH3
+ H2
各种键能比较
碳链碳越氢长键的烃分子k键愈J/m能易ol 同裂C解正.构烷碳烃碳断键链比脱氢容k键易J/m能。ol
H3C-H
426.8
CH3-CH3
346
CH3CH2-H
405.8
CH3-CH2-CH3
343.1
CH3CH2CH2-H
397.5
CH3CH2-CH2CH3
异构C比H3正-CH构(C烷H3)烃H 更易裂38解4.9或脱氢.CH3CH2CH2-CH3
2
2
2
Cn
500-900℃经过芳烃中间阶段而结焦。
单环或少环芳烃 多环芳烃 稠环芳烃
液体焦油 固体沥青质 焦
典型的连串反应。
焦和碳的区别
形成过程不同:烯烃经过炔烃中间阶段 而生碳;经过芳烃中间阶段而结焦 。
氢含量不同:碳几乎不含氢,焦含有微 量氢(0.1-0.3%)。
6. 小结
各族烃裂解生成乙烯、丙烯能力的规律:
338.9 341.8
CH3CH2CH2CH2-H
393.2
H3C-C(CH3)3
314.6
CH3CH2CH(CH3)H
376.6
CH3CH2CH2-CH2CH2CH3
325.1
CH3-C(CH3)2H
364
CH3CH(CH3)-CH(CH3)CH3 310.9
正构烷烃一次反应的ΔGθ和ΔHθ(1000K)
热裂解工艺总流程
原 料 热裂解
反应部分 芳烃
预 分 裂解气 馏 ( 急 冷 ) 汽裂 油解
净 化
深分
( 冷离
脱
酸 、
压精
脱
缩馏
水
制分
、
冷离
脱 炔 )
系系 统统
分离部分
三烯
热裂解反应部分的学习内容
化学反应 反应规律、反应机理、热力学与动力学分析 工艺参数和操作指标 原料性质及评价、裂解温度、烃分压、停留时 间、裂解深度 工艺过程 管式裂解炉
(3)歧化反应
2C3 H 6 C2 H 4 C4 H8 2C3 H 6 C2 H 6 C4 H 6
2. 烯烃的裂解反应
(5)双烯合成反应
+
(6)芳构化反应
R
R
特点:除了大分子烯烃裂解能增加乙烯外,其余的 反应都消耗乙烯,并结焦。
3. 环烷烃的裂解反应
裂解反应包括:
断链开环反应 脱氢反应 侧链断裂 开环脱氢
机化学工业的发展水平
2008年国内 主要乙烯生 产企业产能 情况
(单位:万吨/年)
近年国 内新扩 建乙烯 项目
(单位:万 吨/年)
国内乙烯供应与需求现状
2013年,我国乙烯产能达1872万吨/年, 乙烯自给率将达到90.5%。
乙烯下游消费结构
世界乙烯消费构成情况
环氧乙烷 13.0%
其他 聚苯乙烯 5.0% 7.0%
α-烯烃 3.0%
聚氯乙烯 14.0%
醋酸乙烯 1.0%
聚乙烯 57.0%
丙烯
2013年产能达2082万吨/年
动手查资料:
了解中国现有乙烯装置有多少? 生产能力和技术水平如何?
福建炼油乙烯一体化合资项目新厂区
❖ 裂解的目的
C2 、C3 、C4 等低级烯烃分子中具有双键,化学性质活
泼,能与许多物质发生加成、共聚、自聚等反应,生成 一系列产品。但自然界没有烯烃的存在,只能将烃类原 料经高温作用,使烃类分子发生C-C断裂或脱氢反应, 使分子量较大的烃成为低级烯烃,同时联产丁二烯、苯 、甲苯、二甲苯,满足化学工业的需要。
烷烃——正构烷烃最有利于乙烯、丙烯的生成;分子量愈 小则烯烃总产率愈高。异构烷烃的烯烃总产率低于相同碳 原子的正构烷烃,但随着分子量增大,差别减少;
烯烃——大分子烯烃裂解为乙烯和丙烯。烯烃还可脱氢生 成炔烃、二烯烃进而生成芳烃;
环烷烃——优先生成芳烃而非单烯烃。相对于烷烃,丁二 烯、芳烃收率较高,乙烯收率较低;
3. 环烷烃的裂解反应
裂解规律为: (1)长链环烷烃较无侧链的裂解时乙烯产率
高。先在侧链中间断侧链再裂解。 (2)脱氢成芳烃比开环容易。 (3)五元环较六元环更难裂解。 (4)环烷烃更易于产生焦炭。
裂解产物组成: 苯 > 丙烯、丁二烯 > 乙烯、丁烯 > 己二烯
4. 芳烃的裂解反应 (1)在裂解条件下,芳环不开环。
生成的异丙基自由基进一步分解
•
•
i C3 H7 C3H6 H
反应结果是:
C30裂解产物中含H2、CH4、C2H4、C2H6、C3H6等
低温下,易夺取仲C-H,生成i-C3H7·,即生成H2和C3H6 高温下,易夺取伯C-H,生成n-C3H7·,即生成C2H4和CH4
趋向两端断裂,生成分子量较大的烯烃。
正构烷烃 特点: 是 生产乙烯、丙烯的理想原料。
异构烷烃 特点:
• 裂解所得乙烯、丙烯收率远较正构烷裂解 所得收率低,而氢、甲烷、C4及C4以上烯 烃收率较高。
2. 烯烃的裂解反应
(1)断链反应 Cm+nH2(m+n)
CmH2m+CnH2n
(2)脱氢反应
C4H8 C4H6 H 2