2018年泉州市初中学业质量检查数学参考答案及评分标准
泉州市3月质检(理科数学)参考答案与评分细则(简案终稿)

泉州市2018届普通高中毕业班质量检查理科数学试题参考答案及评分细则评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可在评卷组内讨论后根据试题的主要考查内容比照评分标准制定相应的评分细则.2.对计算题,当考生的解答在某一步仅出现严谨性或规范性错误时,不要影响后续部分的判分;当考生的解答在某一步出现了将影响后续解答的严重性错误时,后继部分的解答不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分60分.(1)B (2)B (3)C (4)A (5)B (6)C (7)B(8)C(9)C(10)D(11)B(12)D二、填空题:本大题共4小题,每小题5分.(13)5 ; (14)6; (15)4; (16) 三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)解:(Ⅰ)由已知1,n a ,n S 成等差数列,得21n n a S =+…①, ........................................................ 1分当1n = 时,1121a S =+,所以11a =; ............................................................................. 2分 当2n ≥时,1121n n a S --=+…②, ....................................................................................... 3分 ①②两式相减得122n n n a a a --=,所以12nn a a -=, ............................................................ 4分 则数列{}n a 是以11a =为首项,2q =为公比的等比数列,............................................... 5分所以1111122n n n n a a q ---==⨯=. ......................................................................................... 6分(Ⅱ)由(Ⅰ)得()()()()11122 112121nn n n nn n a b a a ++++==---- ................................................. 7分 1112121n n +=---, ......................................................................................... 9分 所以,12n b b b +++ 2231111111212121212121n n +⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭11121n +=--.............................................................................................. 11分因为1221213n +-≥-=,1110213n +<≤-, 所以12111321n +≤-<-,即证得12213n b b b ≤+++<. .......................................... 12分(18)(本小题满分12分)解:(Ⅰ)连结CE .在四边形ABCD 中,//AD BC ,90BAD ∠=︒,23AB,4BC ,6AD ,13AEAD , ∴12A E AE ==,4BE DE ==, ....................................................................................... 1分 ∴四边形BCDE 为菱形,且BCE ∆为等边三角形.又∵P 为BE 的中点,∴CP BE ⊥. ....................................................................................... 2分 ∵1122A P BE ==,CP =14A C ,满足22211A P CP A C +=,∴1CP A P ⊥, ............................................................................................................................ 3分 又∵1A PBE P =,∴CP ⊥平面1A BE . ............................................................................ 4分∵CP ⊂平面1A CP ,∴平面1A CP平面1A BE . .............................................................. 5分(Ⅱ)以P 为原点,向量,PB PC 的方向分别为x 轴、y 轴的正方向建立空间直角坐标系P xyz -(如图), ...................................................................................................................... 6分 则()0,0,0P (0,C,(4,D -,(1A -,所以(1PA =-,(4,PD =-, ...................................................................... 7分 设(),,x y z =n 是平面1A PD 的一个法向量,则10,0,PA PD ⎧⋅=⎪⎨⋅=⎪⎩n n即0,40,x x ⎧-=⎪⎨-+=⎪⎩ ....................................................................................... 8分 取1z =,得2,1)=n . ...................................................................................................... 9分 取平面1A BE 的一个法向量()0,1,0=m . ............................................................................ 10分∵cos ,222===n m n m n m , .................................................................................. 11分 又二面角1B A P D --的平面角为钝角, 所以二面角1BA P D --的余弦值为 ....................................................................... 12分D(19)(本小题满分12分)解:(Ⅰ)由图19-2可知,100株样本树苗中高度高于1.60的共有15株,以样本的频率估计总体的概率,可得这批树苗的高度高于1.60的概率为0.15. ............. 1分 记X 为树苗的高度,结合图19-1可得:2(1.20 1.30)(1.70 1.80)0.02100f X f X <≤=<≤==, ............................................... 2分 13(1.30 1.40)(1.60 1.70)0.13100f X f X <≤=<≤==, ............................................... 3分1(1.40 1.50)(1.50 1.60)(120.0220.13)0.352f X f X <≤=<≤=-⨯-⨯=, .......... 4分又由于组距为0.1,所以0.2, 1.3, 3.5a b c ===. .............................................................. 5分 (Ⅱ)以样本的频率估计总体的概率,可得:从这批树苗中随机选取1株,高度在[1.40,1.60]的概率(1.40 1.60)(1.40 1.50)(1.50 1.60)0.7P X f X f X <≤=<≤+<≤=. ............ 6分 因为从这批树苗中随机选取3株,相当于三次重复独立试验,所以随机变量ξ服从二项分布(3,0.7)B , ............................................................................ 7分故ξ的分布列为:33()C 0.30.7(0,1,2,3)n n nP n n ξ-==⋅⋅=, ......................................... 8分即:.................................................................................................................................................... 8分()00.02710.18920.44130.343 2.1E ξ=⨯+⨯+⨯+⨯=(或()30.7 2.1E ξ=⨯=). .............................................................................................. 9分 (III )由(1.5,0.01)N ,取 1.50μ=,0.1σ=,由(Ⅱ)可知,()P X μσμσ-<≤+=(1.40 1.60)0.7>0.6826P X <≤=, ...... 10分 又结合(Ⅰ),可得:(22)P X μσμσ-<≤+=(1.30 1.70)P X <≤2(1.60 1.70)(1.40 1.60)f X P X =⨯<≤+<≤0.96>0.9544=, ................................................................... 11分所以这批树苗的高度满足近似于正态分布(1.5,0.01)N 的概率分布,应认为这批树苗是合格的,将顺利获得该公司签收. .............................................................................. 12分(20)(本小题满分12分)解:(Ⅰ)设M 点坐标()00,x y ,N 点坐标()0,0x ,P 点坐标(),x y ,由3NP NM =可得00=,,x x y y ⎧⎪⎨=⎪⎩..................................................................................... 2分 因为M 在圆C :224xy +=上运动,所以点P 的轨迹E 的方程为22143x y +=.... ..................................................................... 4分 (Ⅱ)当直线l 的斜率不存在时,直线l 的方程为0x =,此时AB =,4ST =,所以AB ST ⋅= ......................................................................................................... 5分 当直线l 的斜率存在时,设直线l 的方程为1y kx =+,()11,A x y ,()22,B x y ,联立方程组221143y kx x y =+⎧⎪⎨+=⎪⎩,,消去y ,整理得()2243880k x kx ++-=, ........................ 6分因为点()0,1Q 在椭圆内部,所以直线l 与椭圆恒交于两点, 由韦达定理,得122843k x x k -+=+,122843x x k -=+, ..................................................... 7分所以AB ==,=, ........ 8分 在圆C :224x y +=,圆心()0,0到直线l 的距离为d =,所以ST == ................................................................................ 9分所以AB ST ⎡⋅=⎣. ....................... 11分又因为当直线l 的斜率不存在时,AB ST ⋅=所以AB ST ⋅的取值范围是⎡⎣. .................................................................... 12分(21)(本小题满分12分)解:(Ⅰ)()f x '()()()e 2e x x ax x a =-+-- ...................................................................................... 1分()()1e 21x x a x =--- ()()1e 2x x a =--.因为0a >,由()0f x '=得,1x =或ln 2x a =.①当e 2a =时,()()()1e e 0xf x x '=--≥,()f x 单调递增,故()f x 无极值. ....... 2分 ②当e0a <<时,ln 21a <.x ,()f x ',()f x 的关系如下表:故()f x 有极大值()()2ln 2ln 22f a a a =--,极小值()1e f a =-. ..................... 4分 ③当ea >时,ln 21a >.x ,()f x ',()f x 的关系如下表:故()f x 有极大值()1e f a =-,极小值()()2ln 2ln 22f a a a =--. ................. 5分 综上:当e 02a <<时,()f x 有极大值()2ln 22a a --,极小值e a -; 当e2a =时,()f x 无极值; 当e 2a >时,()f x 有极大值e a -,极小值()2ln 22a a --. .................... 6分(Ⅱ)令()()e g x f x a =-+,则()1()0x g x -≥.(i )当0a ≤时,e 20xa ->,所以当1x <时,()()(1)(e 2)0x g x f x x a ''==--<,()g x 单调递减, 所以()()10g x g >=,此时()1()0x g x -<,不满足题意. ................................ 8分 (ii )由于()g x 与()f x 有相同的单调性,因此,由(Ⅰ)知:①当e2a =时,()g x 在R 上单调递增,又()10g =, 所以当1x ≥时,()0g x ≥;当1x <时,()0g x <.故当e2a =时,恒有()1()0x g x -≥,满足题意. ........................................... 9分 ②当e02a <<时,()g x 在()ln 2,1a 单调递减,所以当()ln 2,1x a ∈时,()(1)0g x g >=,此时()1()0x g x -<,不满足题意. ................................................................ 10分 ③当e2a >时,()g x 在()1,ln 2a 单调递减, 所以当()1,ln 2x a ∈时,()(1)0g x g <=,此时()1()0x g x -<,不满足题意. ................................................................ 11分综上所述:e 2a =. .............................................................................................. 12分请考生在第(22)、(23)两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. (22)(本小题满分10分)选修44-:坐标系与参数方程【试题简析】解法一:(Ⅰ)由4cos ρθ=,可得24cos ρρθ=,所以224x y x +=,即2240x y x +-=, .............................................................................................. 1分当π4α=时,直线l的参数方程1,21,x y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数),化为直角坐标方程为y x =, ........... 2分联立22,40,y x x y x =⎧⎨+-=⎩解得交点为(0,0)或(2,2), ............................................................................. 3分 化为极坐标为(0,0),π)4............................................................................................................... 5分(Ⅱ)由已知直线恒过定点(1,1)P ,又021=+t t ,由参数方程的几何意义知P 是线段AB 的中点, ............................................................................................................................................................... 6分 曲线C 是以(2,0)C 为圆心,半径r 2=的圆,且||PC =, .......................................................... 8分由垂径定理知:||AB === ............................................................... 10分 解法二:(Ⅰ)依题意可知,直线l 的极坐标方程为π(R)4θρ=∈, ................................................. 1分 当0ρ>时,联立π,44cos θρθ,⎧=⎪⎨⎪=⎩解得交点π)4, ........................................................................ 3分 当0ρ=时,经检验(0,0)满足两方程, ................................................................................................. 4分 当0ρ<时,无交点;综上,曲线C 与直线l 的点极坐标为(0,0),π)4. .................................................................... 5分(Ⅱ)把直线l 的参数方程代入曲线C ,得22(sin cos )20t t αα+--=, ..................................... 7分可知120t t +=,122t t ⋅=-, ................................................................................................................... 8分所以12||AB t t =-==.................................................................................. 10分 (23)(本小题满分10分)选修45-:不等式选讲【试题简析】解:(Ⅰ)当1a =时,()12f x x x =-++, ①当2x -≤时,()21f x x =--,令()5f x ≤ 即215x --≤,解得32x --≤≤, ................................................................................... 1分 ②当21x -<<时,()3f x =,显然()5f x ≤成立,所以21x -<<, .................................................................................................... 2分③当1x ≥时,()21f x x =+,令()5f x ≤ 即215x +≤,解得12x ≤≤, ............................................................................................ 3分综上所述,不等式的解集为{}|32x x -≤≤. ........................................................................................ 5分 (Ⅱ)因为()2()(2)2f x x a x x a x a =-++--+=+≥, ........................................................ 7分 因为0R x ∃∈,有()21f x a +≤成立,所以只需221a a ++≤, ....................................................................................................................... 8分 化简可得210a -≥,解得11a a -≤或≥, ............................................................................................. 9分 所以a 的取值范围为(,1][1,)-∞-+∞. ............................................................................................. 10分。
2018年福建省泉州市中考数学试卷含答案

福建省泉州市2018年中考数学试卷一、选择题<每小题3分,共21分):每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答一律得0分.D.的形状是体的正视图是< )C .D .4.<3分)<2018•泉州)把不等式组的解集在数轴上表示出来,正确的是B .D .解:,,7,则圆积V<m3)一定的污水处理池,池的底面积S<m2)与其深度h<m)满足关系式:C .D .<h要掌握它的性质才能灵活解题.反比例函数y=8.<4分)<2018•泉州)的立方根是.考点:立方根分析:根据立方根的定义即可得出答案.解答:解:的立方根是;故答案为:.点评:此题考查了立方根,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方,由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.考点:因式分解-运用公式法专题:因式分解.分析:分解因式1﹣x2中,可知是2项式,没有公因式,用平方差公式分解即可.解答:解:1﹣x2=<1+x)<1﹣x).故答案为:<1+x)<1﹣x).点评:本题考查了因式分解﹣运用公式法,熟练掌握平方差公式的结构特点是解题的关键.千M,考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:110000=1.1×105,故答案为:1.1×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.OA D,若QC=QD,则∠AOQ= 35 °.5PCzVD7HxAAOQ=A0B=×70°=35°.13.<4分)<2018•泉州)计算:+= 1 .解:原式=14.<4分)<2018•泉州)方程组的解是.故原方程组的解为.F、G、H,则四边形EFGH的形状一定是平行四边形.jLBHrnAILgAC AC和BD相交于点O,AC:BD=1:2,则AO:BO= 1:2 ,菱形ABCD的面积S=16 .xHAQX74J0XAO8AB=2S==16直平分,菱形的四条边相等和菱形的面积为两对角线乘积的一x的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是 3 ,依次继续下去…,第2018次输出的结果是 3 .LDAYtRyKfEx代入x第6次输出的结果为×4=2;.÷x=.x=、C作BE⊥AD于点E,CF⊥AD交AD的延长线于点F,求证:BE=CF.Zzz6ZB2Ltk外没有任何区别,现将它们放在盒子里搅匀.dvzfvkwMI1<1)随机地从盒子里抽取一张,求抽到数字3的概率;<2)随机地从盒子里抽取一张,将数字记为x,不放回再抽取第二张,将数字记为y,请你用画树状图或列表的方法表示所有等可能的结果,并求出点<x,y)在函数y=图象上的概率.rqyn14ZNXI比例图象上的情况数,即可求出所求的概率.的概率为;P==<1)求a的值;<2)若点A<m,y1)、B<n,y2)<m<n<3)都在该抛物线上,试比较y1与y2的动,设有征文、独唱、绘画、手抄报四个工程,该校共有800人次参加活动.下面是该校根据参加人次绘制的两幅不完整的统计图,请根据图中提供的信息,解答下面的问题.EmxvxOtOco<1)此次有200 名同学参加绘画活动,扇形统计图中“独唱”部分的圆心角是36 度.请你把条形统计图补充完整.SixE2yXPq5<2)经研究,决定拨给各工程活动经费,标准是:征文、独唱、绘画、手抄报每人次分别为10元、12元、15元、12元,请你帮学校计算开展本次活动共需多少扇形统计图中“独唱”部分的圆心角是296×10+80×12+200×15+224×12=9608动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点A、B以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程l<cm)与时间t<s)满足关系:l=t2+t<t≥0),乙以4cm/s的速度匀速运动,半圆的长度为21cm.kavU42VRUs<1)甲运动4s后的路程是多少?<2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?<3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?l=t2+t=8+6=14<cm甲走过的路程为t2+t则t2+t+4t=21则t2+t+4t=63B、C,点A<﹣2,0),P是直线BC上的动点.y6v3ALoS89<1)求∠ABC的大小;<2)求点P的坐标,使∠APO=30°;<3)在坐标平面内,平移直线BC,试探索:当BC在不同位置时,使∠APO=30°的点P的个数是否保持不变?若不变,指出点P的个数有几个?若改变,指出点P的个数情况,并简要说明理由.M2ub6vSTnP。
(福建泉州)2018-2019学年第二学期八年级数学教学质量检测(一)参考答案(华师大版)

2018-2019学年第二学期八年级数学教学质量检测(一)参考答案及评分建议一、选择题(每小题4分,共40分)1.C ; 2.C ; 3.D ; 4.B ; 5.D ; 6.C ; 7.D ; 8.A ; 9.C ; 10.B二、填空题(每小题4分,共24分)11.x =2; 12.59.6310-⨯; 13.269ba ;14 15.m =-1; 16.3<x <6.三、解答题(9小题,共86分)17.原式=…=5…………………………6分18.解:(1)原式=…=454b a - ……………………5分(2)原式=…=243a a ++…………………10分19 解:原式2224a a a a a a -⎛⎫=-⋅ ⎪-+⎝⎭222424a a a a a a a a --=⋅-⋅-+1244(2)a a -=-+224(2)a a a +-+=+12a =+当a =4222aa a a a a ⎛⎫-÷ ⎪-+-⎝⎭=122a =+…………8分 另解:原式(2)(2)2(2)(2)(2)(2)4a a a a a a a a a a ⎛⎫+--=-⋅ ⎪-++-⎝⎭22222(2)(2)4a a a a a a a a+-+-=⋅-+ 4124a a a=⋅+ 12a =+20. 解:方程249221x A B x x x x -=-+-+- 化简得22()24922A B x A B x x x x x --+-=+-+-() ∴429A B A B -=⎧⎨+=⎩解得17353A B ⎧=⎪⎪⎨⎪=⎪⎩…………………………8分21.问题:求甲从A 地到B 地步行所用时间设甲从A 地到B 地步行所用时间为x 小时, 由题意得:3015101x x=+-, 化简得:22530x x --=,解得:x 1=3,212x =-, 检验:x 1=3,212x =-都是原分式方程的解,但212x =-不符合题意,所以x =3 答:甲从A 地到B 地步行所用时间为3小时.……………………………………10分 (答案不唯一,也可以提出求甲步行速度的问题,列分式方程解决)22.解:当x <-x ,即x <0时,所求方程变形得:21x x x +-=, 去分母得:x 2+2x +1=0,即x =-1;当x >-x ,即x >0时,所求方程变形得:21x x x+=,即x 2-2x =1,解得:1x =+1x =, 经检验x =-1与1x =+{}21 x Max x x x +-=,的解. ………10分23.解:由已知可知ac 、bc 、ab 均不为零,将已知条件分别取倒数, 得345a b ab b c bc a c ac +⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩,即113114115a b c ba c ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩三式相加可得1116a b c ++=, 将所求代数式取倒数得1116ab ac bc abc a b c ++=++=, ∴16abc ab ac bc =++.……………………………………………………10分 24.解:(1)直线y =-x +b 交y 轴于点P (0,b ),由题意,得b >0,t ≥0,b =1+t .当t =3时,b =4.∴y =-x +4. …………………………4分(2)当直线y =-x +b 过M (3,2)时,2=-3+b .解得b =5.5=1+t .∴t =4.当直线y =-x +b 过N (4,4)时,4=-4+b .解得b =8.8=1+t .∴t =7.∴4t <t <7.………………………………………10分(3)t =1时,点M 关于l 的对称点落在y 轴上;t =2时,点M 关于l 的对称点落在x 轴上. ………………………12分 25.解:(1)A 型商品的进价为160元,B 型商品的进价为150元…………………4分(2)购进A 型商品m 件,则B 型商品(250-m )件,()()()80250240160220150250m m y m m ≤≤-⎧⎪⎨=-+--⎪⎩,解得80≤m ≤125 函数关系式为:y =10m +17500(80≤m ≤125)…………………………9分(3)y =10m +17500-ma =(10-a )m +17500当0<a <10时,y 随m 的增大而增大,故m =125时,利润最大,y max =1250-125a +17500=18750-125a当a =10时,y =17500,y max = 17500当a >10时,y 随m 的增大而减小,故m =80时,利润最大,y max =800-80a +17500=18300-80a答略…………………………………………………………………………14分。
(完整)2018年泉州市初三质检数学试题及答案,推荐文档

2018年泉州市初三质检数学试题一、选择题(本题共10小题,每小题4分,共40分) (1)化简|-3|的结果是( ). (A)3 (B)-3 (C)±3 (D)31(2)如图是由八个相同小正方体组合而成的几何体,则其主视图是( ).(3)从泉州市电子商务中心获悉,近年来电子商务产业蓬勃发展截止到2018年3月,我市电商从业人员已达873 000人,数字873 000可用科学记数法表示为( ). (A)8.73×103 (B)87.3×104 (C)8.73×105 (D)0.873×106 (4)下列各式的计算结果为a 5的是( ) (A)a 7-a 2 (B)a 10÷a 2 (C)(a 2)3 (D)( -a )2·a 3 (5)不等式组⎩⎨⎧≥+->-06301x x 的解集在数轴上表示为( ).(6)下列图形中,是中心对称图形,但不是轴对称图形的是( ).(7)去年某市7月1日到7日的每一天最高气温变化如折线图所示, 则关于这组数据的描述正确的是( ). (A)最低温度是32℃ (B)众数是35℃ (C)中位数是34℃ (D)平均数是33℃(8)在《九章算术》中有“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问人数是多少?若设人数为x ,则下列关于x 的方程符合题意的是( ). (A)8x -3=7x +4 (B)8(x -3)=7(x +4) (C)8x +4=7x -3 (D)81371=-x x +4 (9)如图,在3×3的网格中,A ,B 均为格点,以点A 为圆心,以AB 的长为半径作弧,图中的点C 是该弧与格线的交点,则sin ∠BAC 的值是( ).(A)21 (B) 32(C) 35 (D) 552(10)如图,反比例函数y=xk的图象经过正方形ABCD 的顶点A 和中心E ,若点D 的坐标为(-1,0),则k 的值为( ). (A)2 (B) 2- (C)1 (D) 1- A B C D(A) (B) (C) (D) A BC D EO xy(A) (B) (C) (D)二、填空题(本题共6小题,每小题4分,共24分) (11)已知a =(21)°,b=2-1,则a _______b (填“>”,“<”或“=”) . (12)正八边形的每一个内角的度数为________.(13)一个暗箱中放有除颜色外其他完全相同的m 个红球,6个黄球,3个白球现将球搅匀后,任意摸出1个球记下颜色,再放回暗箱,通过大量重复试验后发现,摸到黄球的频率稳定在30%附近,由此可以估算m 的值是________.(14)如图,将△ABC 绕点A 顺时针旋转120°,得到 △ADE .这时点D 、E 、B 恰好在同一直线上,则 ∠ABC 的度数为________.(15)已知关于x 的一元二次方程(m -1)x 2- (2m -2)x -1=0 有两个相等实数根,则m 的值为________.(16)在平行四边形ABCD 中,AB=2,AD=3,点E 为BC 中点,连结AE ,将△ABE 沿AE 折叠到△AB'E 的位置,若∠BAE=45°,则点B'到直线BC 的距离为________. 三、解答题:(本题共9小题,共86分) (17)( 8分)解方程:23-x 312+-x =1.(18) (8分)先化简,再求值:3223393a aa a a a +÷⎪⎪⎭⎫ ⎝⎛---,其中a =22.(19)(8分)如图,在锐角△ABC 中,AB=2cm ,AC=3cm . (1)尺规作图:作BC 边的垂直平分线分别交AC ,BC 于点D 、E(保留作图痕迹,不要求写作法); (2)在(1)的条件下,连结BD ,求△ABD 的周长.(20)(8分)为进一步弘扬中华优秀传统文化,某校决定开展以下四项活动:A 经典古诗文朗诵;B 书画作品鉴赏;C 民族乐器表演;D 围棋赛。
2018泉州市3月质检(文科数学)参考答案与评分细则

2 5 2 5 sin sin 5 或者 5 ,故 sin 2 2sin cos 4 . 解得 5 cos 5 cos 5 5 5
故选(A) . 解法二: sin 2 2 sin cos
a5 a10 a1 a6
(D) 8
命题意图:本小题主要考查等比数列的概念与性质等基础知识;考查推理论证能力、运算求 解能力;考查函数与方程思想、化归与转化思想.
4 试题简析:已知 an 是等比数列,由 a1 1 , a3 2 ,可得 q 2 2 ,因为 a5 a1 q ,
泉州市 2018 届普通中学高中毕业班质量检查
文科数学试题参考答案及评分细则
评分说明: 1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可在评卷组内 讨论后根据试题的主要考查内容比照评分标准制定相应的评分细则. 2.对计算题,当考生的解答在某一步仅出现严谨性或规范性错误时,不要影响后续部分 的判分;当考生的解答在某一步出现了将影响后续解答的严重性错误时,后继部分的解答不 再给分. 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分. 一、选择题:本大题考查基础知识和基本运算.每小题 5 分,满分 60 分. (1)B (7)C (2)A (8)D (3)A (9)A (4)B (10)C (5)C (11)C (6)A (12)D
B
(D) {x | 1 x 4}
命题意图:本小题主要考查集合的概念及其表示,集合的运算和二次不等式的求解等基础知 识;考查推理论证能力和运算求解能力. 试题简析:因为 A {x Z|0 x 4} {0,1,2,3,4} , B {x | 1 x 3} ,
福建省泉州市2018-2019年最新最全5月初中毕业班质量检测数学试题(含答案解析)

2019届福建省泉州市初中学业质量检查数 学 试 题(试卷满分:150分;考试时间:120分钟)友情提示:所有答案必须填写在答题卡相应的位置上.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上相应题目的答题区域内作答.1. 下列各式正确的是( )A. -(-2018)=2018B. |-2018|=±2018C. 20180=0D. 2018-1=-20182. 计算(-2a2)3的结果是( )A. -6a2B. -8a5C. 8a5D. -8a63. 某几何体如下左图所示,该几何体的右视图是( )第3题图4. 一个正多边形的边长为2,每个外角都为60°,则这个多边形的周长是( )A. 8B. 12C. 16D. 185. 不等式组⎩⎪⎨⎪⎧x -1≤0-x <2,的整数解的个数为( ) A. 0个 B. 2个 C. 3个 D. 无数个6. 如图,▱ABCD 的对角线AC 与BD 相交于点O ,要使它成为矩形,需再添加的条件是( )A. OA =OCB. AC =BDC. AC ⊥BDD. BD 平分∠ABC第6题图7. 在学校演讲比赛中,10名选手的成绩折线统计图如图所示,则下列说法正确的是( )A. 最高分90B. 众数是5C. 中位数是90D. 平均分为87.5第7题图8. 如图,在△ABC 中,点D 、E 分别是边AB 、AC 上的点,且DE ∥BC ,若AD DB =12,DE =3,则BC 的长度是( ) A. 6 B. 8 C. 9 D. 10第8题图 9. 实数a 、b 、c 、d 在数轴上的对应点从左到右依次是A 、B 、C 、D ,若b +d =0,则a +c 的值( )A. 小于0B. 等于0C. 大于0D. 与a 、b 、c 、d 的取值有关10. 已知双曲线y =k x经过点(m ,n),(n +1,m -1),(m2-1,n2-1),则k 的值为( )A. 0或3B. 0或-3C. -3D. 3二、填空题:本大题共6小题,每小题4分,共24分.把答案填在答题卡的相应位置.11. 已知x =0是方程x2-5x +2m -1=0的解,则m 的值是________.12. 分解因式:x3-4x =________.13. 某口袋中装有2个红球和若干个黄球,每个球除颜色外其它都相同,搅匀后从中摸出一个球恰为红球的概率是15,则袋中黄球的个数为________.14. 抛物线y =x2-6x +7的顶点坐标是________.15. 在直角坐标系中,点M(3,1)绕着原点O 顺时针旋转60°后的对应点的坐标是________.16. 如图,在面积为16的四边形ABCD 中,∠ADC =∠ABC =90°,AD =CD ,DP ⊥AB 于点P ,则DP 的长是________.第16题图三、解答题:本大题共9小题,共86分.解答应写出文字说明,证明过程或演算步骤.在答题卡的相应位置内作答.17. (8分)先化简,再求值:x(x +2)+(x -1)(x +1)-2x ,其中x =2.18. (8分)解方程组:⎩⎪⎨⎪⎧x -y =13x +y =7.19. (8分)如图,在四边形ABCD 中,AB =AD =3,DC =4,∠A =60°,∠D =150°,试求BC 的长度.第19题图20. (8分)如图,E、F是▱ABCD的对角线AC上的两点,AE=CF,求证:DF=BE.第20题图21. (8分)某中学采用随机的方式对学生掌握安全知识的情况进行测评,并按成绩高低分成优、良、中、差四个等级进行统计,绘制了下面两幅尚不完整的统计图.请根据有关信息解答:第21题图(1)接受测评的学生共有________人,扇形统计图中“优”部分对应扇形的圆心角为________°,并补全条形统计图;(2)若该校共有学生1200人,请估计该校对安全知识达到“良”程度的人数;(3)测评成绩前五名的学生恰好是3个女生和2个男生,现从中随机抽取2人参加市安全知识竞赛,请用树状图或列表法求出抽到1个男生和1个女生的概率.22. (10分)某学校在“校园读书节”活动中,购买甲、乙两种图书共100本作为奖品,已知乙种图书的单价比甲种图书的单价高出50%.同样用360元购买乙种图书比购买甲图书少4本.(1)求甲、乙两种图书的单价各是多少元;(2)如果购买图书的总费用不超过3500元,那么乙种图书最多能买多少本?23. (10分)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E 是边AD 的中点,且AC =5,DC =1.(1)求证:AB =DE ;(2)求tan ∠EBD 的值.第23题图24. (13分)如图,AB 为⊙O 的直径,F 为弦AC 的中点,连接OF 并延长交AC ︵于点D ,过点D 作DE ∥AC ,交BA 的延长线于点E ,连接AD 、CD.(1)求证:DE 是⊙O 的切线;(2)若OA =AE =2时,①求图中阴影部分的面积;②以O 为原点,AB 所在的直线为x 轴,直径AB 的垂直平分线为y 轴,建立如图所示的平面直角坐标系,试在线段AC 上求一点P ,使得直线DP 把阴影部分的面积分成1∶2的两部分.第24题图25. (13分)如图,在直角坐标系中,抛物线y=-x2+bx+2与x轴交于A、B两点,与直线y=2x交于点M(1,m).(1)求m,b的值;(2)已知点N,点M关于原点O对称,现将线段MN沿y轴向上平移s(s >0)个单位长度.若线段MN与抛物线有两个不同的公共点,试求s的取值范围;(3)利用尺规作图,在该抛物线上作出点G,使得∠AGO=∠BGO,并简要说明理由.(保留作图痕迹)第25题图2019届福建省泉州市初中学业质量检查1. A 【解析】2. D 【解析】(-2a2)3=(-2)3(a2)3=-8a6,故选D.3. D 【解析】本题考查几何体的右视图,从右往左看,可看到两个矩形,一上一下叠放在一起,且所有棱都能看到,故轮廓线均为实线,符合条件的只有D.4. B 【解析】正多边形的每个外角都为60°,360°÷60°=6,所以这个多边形为正六边形,正六边形的周长为6×2=12.5. C 【解析】不等式组的解为-2<x ≤1,其中的整数解有-1,0,1,共3个.6. B 【解析】对角线相等的平行四边形是矩形,故选B.7. C 【解析】由折线统计图可知,十名选手的最高分为95分,A 错误;众数为90,B 错误;把成绩从低到高排,中间两数都为90,所以中位数为90,C 正确;x -=1080×2+85+90×5+95×2=88.5(分),故D 错误.8. C 【解析】∵DE ∥BC ,∴AB AD =BC DE,∵DB AD =21,∴BC DE =31,∵DE =3,∴BC =9.9. A 【解析】根据数轴上右边的数总比左边的大,得a<b<c<d ,∵b+d=0,∴b+c<0,∵b>a,∴a+c<0.10. D 【解析】把点(m,n),(n+1,m-1),(m2-1,n2-1)代入双曲线y=x k得,k=mn①,k=(n+1)(m-1)②,k=(m2-1)(n2-1)③,①代入②得m-n=1;②代入③中得,1=(m+1)(n-1),1=mn+n-m-1,mn=2+(m-n)=3,所以k=3.11. 21【解析】把x=0代入方程得2m-1=0,∴m=21.12. x(x+2)(x-2) 【解析】x3-4x=x(x2-4)=x(x+2)(x-2)13. 8 【解析】口袋中球的个数为2÷51=10个,袋中黄球的个数为10-2=8个.14. (3,-2) 【解析】y=x2-6x+7=(x2-6x+9)-9+7=(x-3)2-2,所以抛物线的顶点坐标为(3,-2).15. (,-1) 【解析】如解图,由旋转的性质可知∠MOB=60°,OM =OB,又∵M(,1),可得∠MOC=30°,∴∠COB=30°,过点B作BC⊥OC 于点C,结合OB=OM可知,点B与点M关于x轴对称,∴B(,-1).第15题解图16. 4 【解析】如解图所示,过D点作DE⊥BC交BC的延长线于点E.∵∠ADC=∠ABC=90°,∴四边形DPBE是矩形.∴∠PDE=90°,∴∠ADP =∠CDE.∵AD=DC,∴Rt△APD≌Rt△CED,∴DP=DE,∴四边形PDEB是正方形,又∵四边形ABCD的面积为16,∴正方形DPBE的面积也为16,∴DP=DE=4.第16题解图17. 解:原式=x2+2x +x2-1-2x =2x2-1当x =时,原式=2×()2-1=4-1=3. 18. 解:3x +y =7 ②x -y =1 ①, ①+②得4x =8,∴x =2, 将x =2代入①得y =1. 所以该方程组的解为y =1x =2. 19. 解:如解图,连接DB ,第19题解图∵AB =AD ,∠A =60°, ∴△ABD 是等边三角形, ∴BD =AD =3,∠ADB =60°,又∵∠ADC =150°,∴∠CDB =∠ADC -∠ADB =150°-60°=90°, ∵DC =4, ∴BC ===5.20. 证明:在▱ABCD 中,CD ∥AB ,DC =AB , ∴∠DCA =∠BAC ,在△DCF 和△BAE 中,CF =AE ∠DCA=∠BAC,∴△DCF ≌△BAE(SAS), ∴DF =BE.21. (1)80,135,补全条形统计图如解图①所示;第21题解图①【解法提示】接受测评的学生共有20÷25%=80(人),安全知识达到“良”的人数为80-30-20-5=25(人),扇形统计图中“优”部分对应扇形的圆心角为8030×360°=135°.(2)该校对安全知识达到“良”程度的人数为: 1200×8030+25=825(人); (3)列表如下:所有等可能的结果为20种,其中抽到一男一女的为12种, 所以P(抽到1男1女)=2012=53. 或画树状图如解图②:第21题解图②所有等可能的结果为20种,其中抽到一男一女的为12种, 所以P(抽到1男1女)=2012=53.22. 解:(1)设甲种图书的单价是x 元,则乙种图书的单价是1.5x 元, 依题意得:x 360-1.5x 360=4. 解得:x =30,经检验x =30是原方程的解,且x =30,1.5x =45符合题意. 答:甲种图书的单价是30元,乙种图书的单价是45元. (2)设乙种图书能买m 本,依题意得:45m +30(100-m)≤3500, 解得:m ≤3100=3331,因为m 是正整数,所以m 最大值为33, 答:乙种图书最多能买33本.23. (1)证明:在矩形ABCD中,∠ADC=90°,AB=DC=1,∵AC=,DC=1,∴在Rt△ADC中,AD===2,∵E是边AD的中点,∴AE=DE=1,又∵AB=1,∴AB=DE;(2)解:如解图,过点E作EM⊥BD于点M,第23题解图∵BD=AC=,在Rt△DEM和Rt△DBA中,sin∠ADB=ED EM=BD BA,即1EM=51,解得:EM=55,又∵在Rt△ABE中,BE===,∴在Rt△BEM中,BM==)25=55,∴在Rt△BEM中,tan∠EBD=BM EM=55=31.第24题解图24. (1)证明:如解图,连接OC , ∵OA =OC ,F 为AC 的中点, ∴OD ⊥AC , 又∵DE ∥AC , ∴OD ⊥DE , ∵OD 为⊙O 的半径, ∴DE 是⊙O 的切线; (2)解:①由(1)得OD ⊥DE , ∴∠EDO =90°, ∵OA =AE =2, ∴OA =OD =AD =2, ∴△AOD 是等边三角形, ∴∠AOD =∠DAO =60°, ∴∠ACD =21∠AOD =30°, 又∵AC ⊥OD ,∴∠CAO =∠CAD =30°, ∴∠ACD =∠CAO , ∴CD ∥AB , ∴S △ACD =S △OCD , ∴S 阴=S 扇形OCD ,∵∠CAD =∠OAD -∠OAC =60°-30°=30°, ∴∠COD =2∠CAD =60°, ∴S 阴=36060π×22=32π;②由已知得:A(-2,0),C(1,), ∴直线AC 的表达式为y =33x +33,如解图,过点P1分别作P1M ⊥x 轴,P1N ⊥AD ,垂足分别M ,N , 由①得AC 平分∠OAD , ∴P1M =P1N ,设P1(x ,33x +33)(-2≤x ≤1), P1M =P1N =33x +33,∵直线DP1把阴影部分面积分成1∶2的两部分, 若S △AP1D =31S 阴,即21×2·(33x +33)=31×32π, 解得:x =93π-18,此时P1(93π-18,92π),若S △AP2D =32S 阴,同理可求得P2(93π-18,94π), 综上所述:满足条件的点P 的坐标为P1(93π-18,92π)和P2(93π-18,94π).25. 解:(1)把M(1,m)代入y =2x 得m =2×1=2,把M(1,2)代入y =-x2+bx +2得2=-12+b +2,即b =1; (2)由(1)得y =-x2+x +2,M(1,2),因为点N ,点M 关于原点O 对称,所以N(-1,-2),如解图①,过点N 作CN ⊥x 轴,交抛物线于C ,则C 的横坐标为-1, 所以C 的纵坐标为-(-1)2+(-1)+2=0,第25题解图①所以C(-1,0)与A 重合,则CN =AN =2,即当s =2时线段MN 与抛物线有两个公共点, 设平移后的直线表达式为y =2x +s , 由y =-x2+x +2y =2x +s得x2+x +s -2=0, 由Δ=12-4(s -2)=0,得s =49,即当s =49时,线段MN 与抛物线只有一个公共点,所以,当线段MN 与抛物线有两个公共点时,s 的取值范围为2≤s <49; (3)如解图②,在x 轴上取一点P(-2,0),以P 为圆心,OP 为半径作圆,⊙P 与抛物线的交点,即是所求作的点G(解图②中的G 与G ′),理由:第25题解图②当点G 在x 轴上方时,由作图可知,PG =2,PA =1,PB =4, 则PG PA=PB PG=21, ∵∠GPA =∠BPG , ∴△GPA ∽△BPG , ∴∠PBG =∠PGA , ∵GP =PO , ∴∠POG =∠PGO ,又∵∠POG =∠PBG +∠OGB , ∠PGO =∠PGA +∠AGO ,∴∠AGO=∠BGO,同理可证:当点G′在x轴的下方时,结论也成立.。
2018年福建省泉州市中考数学二模试卷含答案解析

B. 8(������ ‒ 3) = 7(������ + 4) D.
1 ������ 7
‒ 3 = 8������ + 4
1
如图,在3 × 3的网格中,A,B 均为格点,以点 A 为圆心,以 AB 的长为半径作弧,图中的点 C 是该弧与格线的交点,则 ������������������∠������������������的值是( )
1
11. 已知
,������ = 2
‒1
,则 a______������(填“ > ”,“ < ”或“ = ”).
12. 正八边形的每一个内角的度数为______度. 13. 一个暗箱中放有除颜色外其他完全相同的 m 个红球,6 个黄球,3 个白球现将球 搅匀后,任意摸出 1 个球记下颜色,再放回暗箱,通过大量重复试验后发现,摸 到黄球的频率稳定在30%附近,由此可以估算 m 的值是______. 14. 如图,将 △ ������������������绕点 A 顺时针旋转120 ,得到 △ ������������������.这时点 D、E、B 恰好在同 一直线上,则∠������������������的度数为______.
,其中
������ =
2 2.
第 3 页,共 18 页
19. 某公交公司决定更换节能环保的新型公交车.购买的数量和所需费用如下表所示: A 型数量(辆) 3 2 B 型数量(辆) 1 3 所需费用(万元) 450 650
(1)求 A 型和 B 型公交车的单价; (2)该公司计划购买 A 型和 B 型两种公交车共 10 辆,已知每辆 A 型公交车年均载 客量为 60 万人次,每辆 B 型公交车年均载客量为 100 万人次,若要确保这 10 辆 公交车年均载客量总和不少于 670 万人次,则 A 型公交车最多可以购买多少辆?
福建省泉州市2017-2018学年八年上学期期末教学质量检测数学试题(附答案精品)

…20.(8 分)如图,四边形 ABCD 中,AB =CD ,AC ⊥AB 于点 A ,BD ⊥CD 于点 D .A(1)求证:AC =BD ;D(2)若 AB =AD ,试求出∠ABD 的度数.A DBC 的延长 BCEO第 14 题图 BC.则它的第三条边长为cm .a b,叫做 2 阶行列式,定义其运算c d2 x + 32 x -3 2 x - 3= .2 x + 321.(8 分)已知 a,b,c,为△ABC 的三边长,且满足 a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状.-1) . D 3小明∵a 2c 2-b 2c 2=a 4-b 4 ∴c 2(a 2-b 2)=(a 2-b 2)(a 2+b 2) ∴c 2= a 2+b 2∴△ABC 是直角三角形- 3x ) ,其中 x = - 5 .试判断小明的解题过程是否正确?若正确,请写出各步骤的理由;若不正确,请写出正确CF .求证:∠B =∠D .的解题过程.2017 年秋季八年级期末教学质量检测 数学试题 第 1 页(共 6 页) 2017 年秋季八年级期末教学质量检测 数学试题 第 2 页(共 6 页) 2017 年秋季八年级期末教学质量检测 数学试题 第 3 页(共 6 页)25.(14分)如图,Rt△ABC中,∠ACB=90°,CD⊥AB于D,AF平分∠CAB分别交CD、CB于E、F.(1)尺规作图:作线段AF,使得AF平分∠CAB分别交CD、CB于E、F(保留痕迹,不写作法);(2)求证:CE=CF;(3)将线段DE 向右平移至点E 恰好在CB 上,得到新的线段记为D'E',D'、E'分别在AB、CB 上.已知CF=3,请求出BE'的长度.CA D Bb 的长方形卡片拼出一个边页(共 6 页)2017 年秋季八年级期末教学质量检测数学试题第 6 页(共 6 页)…………………………………………………………………………………………………………………………………………………密封线内不要答题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
…………………………………4 分
证明: ∵四边形 ABCD 是矩形, ∴ AB CD, ABC DCB 90 .…………………………………………………………6 分
在 ABC 与 DCB 中,
AB DC ABC DCB BC CB
……………………………………………………………………………7 分
三、解答题(共 86 分) (17)(本小题 8 分)
(15) 0
(16) 2 2 . 3
解:去分母,得 3(x 3) 2(2x 1) 6, ……………………………………………………3 分
3 x 9 4 x 2 6, ………………………………………………………5 分
3 x 4 x 6 9 2, ………………………………………………………6 分
由 A 3,0, C1,2 可求得直线 AC 的解析式为 y x 1 .
由题意设点 F m, 1 m2 m 3 (其中 m 1),则点 Em, m 1,
2
2
∴ EF 1 m2 m 3 m 1 1 m2 1 4 ,………………………………………7 分
∴ AEB ≌ AFD .…………………………4 分
∴ AF AE , ∴ CD 是⊙A 的切线.…………………………5 分
(Ⅱ)解:在菱形 ABCD 中, AB BC 6, AB CD , ∴ B C 180 . ∵ C 135, ∴ B180135=45.……………………6 分
解法二:画树状图如下:
由树状图可知,共有 16 种等可能的结果,其中他们参加的项目相同的有 4 种,
所以 P (项目相同)= 4 1 .………………………………………………………………8 分 16 4
2018 年泉州市初中学业质量检查数学参考答案
第2页共7页
(21)(本小题 8 分)
已知:如图,四边形 ABCD 是矩形, AC , BD 是对角线. ………………………………2 分 求证: AC BD .………………………………………………………………………………3 分
………………………………………………………………………3 分
∴二次函数的解析式为 y 1 x 12 2 . ……………………………………………4 分
2
(Ⅱ)由
1 x
2
12
2
0 得 x1
3, x2
1,
∴点 A1,0 .
过点 C 作 CH ⊥ x 轴于点 H,
∵点 C1,2 ,
(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数.
一、选择题(每小题 4 分,共 40 分) (1)A (2)C (3)C (4)D (5)C (6)A (7)D (8)A (9)B 二、填空题(每小题 4 分,共 24 分)
(10)B
(11) (12)135 (13) 11 (14) 30
2018 年泉州市初中学业质量检查
数学参考答案及评分标准
说明:
(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分. (二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原
则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.
∴设二次函数的解析式为 y ax 12 2 ,………………………………………………1 分
2018 年泉州市初中学业质量检查数学参考答案
第5页共7页
把 B 3,0代入得 a 3 12 2 0 ,…………………………………………………2 分
解得 a 1 . 2
在 Rt△AEB中,.AEB 90 .
∴ AE AB sin B 6 2 3 .……………………………………………………7 分 2
∴ S菱形ABCD BC AE 3 2 .……………………………………………………………8 分
2018 年泉州市初中学业质量检查数学参考答案
2018 年泉州市初中学业质量检查数学参考答案
第4页共7页
在矩形 ABCD 中, BC AD 3,AB CD 3. 设 BE x(其中0 x 3), 则 CE 3 x .
∴ BF BE CE x(3 x) 3 x 2 3x .………………………………………6 分
第1页共7页
23 5. ∴△ABD 的周长为 5cm. ……………………………………………………8 分
(20)(本小题 8 分)
解:(Ⅰ)50,144°; …………………………………………………………………3 分 (Ⅱ)条形统计图如图所示;………………………………………………………4 分
(Ⅲ)解法一:列表如下:
∴点 B,E,H,F 四点共圆,
连结 BH ,则 HBE 1 30. ……………………………………………………10 分
∴点 H 在以点 B 为端点,BC 上方且与射线 BC 夹角为 30°的射线上, …………11 分
过点 C 作 CH ' ⊥ BH 于点 H ,
∵点 E 从点 B 沿 BC 运动到点 C, ∴点 H 从点 B 沿 BH 运动到点 H ,………………………………………………………12 分
CD
3
3
3 (x 3)2 3 3 .……………………………………………………………7 分 324
∵ 3 0 ,且 0 x 3, 3
∴当 x 3 时, BF 存在最大值 3 3 .………………………………………………8 分
2
4
(Ⅲ)如图 2,连结 FH ,取 EF 中点 M,连结 BM , HM . .
第3页共7页
在菱形 ABCD 中, BAD C 135,AE 3 ,
∴ S扇形MAN
135 360
3 2 9 .……………………………………………………9 分 8
∴ S阴影 S菱形ABCD S扇形MAN 3
2 9. 8
即阴影部分的面积为 3 2 9 .………………………………………………………10 分 8
x 17 , …………………………………………………………………7 分
x 17 .………………………………………………………………8 分
(18)(本小题 8 分)
解:原式
a2 9 a3
a(a a3
3)
………………………………………………………………3 分
(a
3)(a a3
∵四边形 ABCD 为菱形, ∴AB=AD,∠B=∠D. …………………………………………………………………………2 分
∵BC 与⊙A 相切于点 E, ∴AE⊥BC,…………………………………………………………………………………………3 分
∴ AEB AFD 90 . 在 AEB 和 AFD 中, B D AEB AFD AB AD
∴ CH 2 , OH 1 , 又∵ AO 1, ∴ AH 2 CH ,
∴ 1 45 , AC AH 2 CH 2 2 2 .………5 分
在等腰 Rt DEF 中, DE DF AC 2 2 , FDE 90 ,
∴ 2 45 , EF DE 2 DF 2 4 , ∴ 1 2 , ∴ EF ∥ CH ∥ y 轴.……………………………………………………………………………6 分
(19)(本小题 8 分)
解:(Ⅰ)如图所示,直线 DE 为所求作的;………………3 分 (Ⅱ)∵ DE 垂直平分 BC ,
∴ BD CD .………………………………………5 分 ABD 的周长= AB AD BD
AB AD CD AB AC
2018 年泉州市初中学业质量检查数学参考答案
答:A 型公交车最多可以购买 8 辆.……………………………………………10 分
(24)(本小题满分 13 分)
解:(Ⅰ)证明:如图 1,在矩形 ABCD 中, B 90 , ∴ 1 2 90 .…………………………1 分 ∵ DE EF ,
∴ 3 90 , ∴ 2 4 180 3 90,
∴ 1 4 .…………………………2 分 又∵ AD∥ BC,
∴ 4 5 ,
∴ 1 5 .…………………………3 分
(Ⅱ)解:.如图 1,由(1)得 1 4 , B C 90 ,
∴△BFE ∽△CED,
∴ BF BE .……………………………………………………………………………4 分 CE CD
2
2
22
∴ m1 3 , m2 3 (不合舍去)
∴点 F 3,6 .……………………………………………………………………………………8 分
(Ⅲ)解:
结
小
果聪
A
B
C
D
小
明
A
AA
BA
CA
DA
B
AB
BB
CB
DB
C
AC
BC
CC
DC
D
AD
BD
CD
DD
……………………………………………………………………………………………………7 分
由列表可知,共有 16 种等可能的结果,其中他们参加的项目相同的有 4 种,
所以 P (项目相同)= 4 1 .…………………………………………………… FG, 点 H 是 EG 中点,
∴ FHE 90,1 1 EFG 30 .……………9 分 2
又∵点 M 是 EF 中点,