影响高压电缆泄漏电流测试结果的因素及预防
高压电缆常见故障分析与预防措施

高压电缆常见故障分析与预防措施高压电缆在输电过程中起着非常重要的作用,但在使用过程中会出现各种故障。
了解高压电缆常见故障的原因和预防措施对确保输电系统的安全和稳定运行非常重要。
本文将就高压电缆常见故障进行分析,并提出预防措施。
一、高压电缆常见故障分析1. 绝缘老化故障绝缘老化是高压电缆中最为常见的故障之一。
常见的绝缘老化原因包括高温、潮湿环境、电压过高以及材料质量不过关等。
绝缘老化会导致电缆绝缘材料的性能下降,甚至出现击穿现象,引发短路故障。
2. 金属护套腐蚀故障金属护套腐蚀是高压电缆常见的故障之一,主要是由于长期暴露在潮湿、酸性或碱性环境中,导致金属护套表面产生腐蚀。
金属护套腐蚀会降低电缆的耐压能力,甚至导致金属护套断裂,造成安全隐患。
电缆在安装和维护过程中,可能会由于外力作用或操作不当,导致绝缘层破损,或者是在运行过程中被物体划伤,从而导致绝缘层出现破损故障。
绝缘层破损会导致电缆绝缘性能下降,容易引发短路故障。
4. 过载故障过载是导致高压电缆故障的常见原因之一。
在电缆输电过程中,如果电流超过了电缆额定电流的额定值,就会引起电缆过载。
长期的过载运行会导致电缆绝缘材料老化,甚至烧毁,影响电力系统的安全运行。
5. 外力损伤故障外力损伤是高压电缆常见故障之一,主要是由于电缆受到外部物体碰撞、挤压或拉伸等力的作用,导致电缆外部保护层损坏。
外力损伤会使电缆暴露在恶劣环境中,容易受到潮湿、腐蚀等因素影响,加速电缆的老化和损坏。
1. 加强绝缘检测对于高压电缆而言,绝缘性能的检测是非常重要的。
可以采用直流电桥法、介质损耗测试仪、局部放电测试仪等设备,定期对电缆的绝缘进行检测,及时发现绝缘老化现象,采取相应的维护措施。
2. 优化环境条件为了避免金属护套腐蚀,应尽量选择干燥、通风良好的环境进行电缆安装,避免将电缆暴露在潮湿、酸性或碱性环境中,可以通过防水、防腐涂料等方式加强保护。
3. 定期维护检测4. 控制负载合理控制负载,避免电缆长期过载运行,可以有效延长电缆的使用寿命,降低故障的发生。
直流泄露电流及直流耐压实验中影响泄露电流的因素及解决方法

任 伟
( 黑龙 江省 克 山县 电业局 , 黑龙 江 齐齐哈 尔 1 6 1 6 0 0 )
摘
要: 电力设 备在 运 行 中 , 绝缘 长 期 受到 电场 、 温度 、 和 机 械振 动 的 作 用会 逐 渐发 生 劣化 其 中包括
整体 劣化 , 形 成缺 陷。 直 流耐压 试验 虽然试 验 电压 比较 高 , 能发现 一 些绝缘 的 弱点 , 通过 试验后 , 设备 有较
在进 行泄 露电流试验 时 , 不希望表 面泄露 电流混入体积泄
露电流中 , 而影响对绝缘状况 的正确判 断。加屏蔽环可 以 消除表面泄露 电流的影 响。
6 空气 湿度对 表面泄露电流 的影响
当空气湿度 大时 ,表 面泄露 电流远大 于体积 泄露 电 流, 被试品表面脏污易于吸潮 , 使 表面泄露 电流增加 , 所 以
8 结 语
直流 耐压及泄漏 电流试验是 用来检查 设备 的绝缘缺 陷 的
4 升 压 速 度 的 影 响
对 于具有大容量 的试 品 ,由于存 在缓慢的吸收过程 , 升压速度快慢的不同使得所读得的电流值也不一样。在试 验时, 大都是读取加压后 1 mi n或 5 mi n时的电流值 。如果
压, 再换算出加于试品的电压。如果由于电源 、 调压设备等
影响 , 使供给整 流的交流 电压 变为非正 弦波形 , 如 这时仍 旧在低压侧测量 , 则会使试验结果产生误差。为此 , 可 以采 日 以线电压而 不是相 电压作 为电源 ,以 自耦调压器调压 , 在试 品端直接测量电压等措施 。
电气设备泄漏电流测试方法及注意事项

电气设备泄漏电流测试方法及注意事项测量泄漏电流的原理和测量绝缘电阻的原理本质上是完全相同的,而且能检出缺陷的(1)试验电压高,并且可随意调节,容易使绝缘本身的弱点暴露出来。
因为绝缘中的某些缺陷或弱点,只有在较高的电场强度下才能暴露出来。
(2)泄漏电流可由微安表随时监视,灵敏度高,测量重复性也较好。
(3)根据泄漏电流测量值可以换算出绝缘电阻值,而用兆欧表测出的绝缘电阻值则不可换算出泄漏电流值。
(4)可以用i=f(u)或i=f(t)的关系曲线并测量吸收比来判断绝缘缺陷。
泄漏电流与加压时间的关系曲线如图1-1所示。
在直流电压作用下,当绝缘受潮或有缺陷时,电流随加压时间下降得比较慢,最终达到的稳态值也较大,即绝缘电阻较小。
1. 测量原理对于良好的绝缘,其泄漏电流与外加电压的关系曲线应为一直线。
但实际上的泄漏电流与外加电压的关系曲线仅在一定的电压范围内才是近似直线,如图1-2中的OA段。
若超过此范围后,离子活动加剧,此时电流的增加要比电压增加快得多,如AB段,到B点后,如果电压继续再增加,则电流将急剧增长,产生更多的损耗,以致绝缘被破坏,发生击穿。
在预防性试验中,测量泄漏电流时所加的电压大都在A点以下。
将直流电压加到绝缘上时,其泄漏电流是不衰减的,在加压到一定时间后,微安表的读数就等于泄漏电流值。
绝缘良好时,泄漏电流和电压的关系几乎呈一直线,且上升较小;绝缘受潮时,泄漏电流则上升较大;当绝缘有贯通性缺陷时,泄漏电流将猛增,和电压的关系就不是直线了。
通过泄漏电流和电压之间变化的关系曲线就可以对绝缘状态进行分析判断。
2. 影响测量结果的主要因素(1)高压连接导线由于接往被测设备的高压导线是暴露在空气中的,当其表面场强高于约20kV/cm时,沿导线表面的空气发生电离,对地有一定的泄漏电流,这一部分电流会流过微安表,因而影响测量结果的准确度。
一般都把微安表固定在试验变压器的上端,这时就必须用屏蔽线作为引线,用金属外壳把微安表屏蔽起来。
高压电缆常见故障的分析及预防措施

高压电缆常见故障的分析及预防措施高压电缆是输送电能的重要组成部分,常见的故障会影响电力系统的正常运行。
为了提高高压电缆的可靠性和安全性,我们需要对常见故障进行详细分析,并针对每一种故障制定相应的预防措施。
1. 绝缘老化绝缘老化是高压电缆最常见的故障之一。
当电缆长时间运行,绝缘材料会因为电压、温度等因素而老化,可能导致绝缘破裂,引起短路。
为了预防绝缘老化,首先要选择合适的绝缘材料,并确保在设计和安装过程中严格按照要求进行。
定期对电缆进行绝缘电阻和介质损耗测试,发现问题及时更换绝缘材料。
2. 绝缘击穿绝缘击穿是指电缆绝缘材料在电压过高或电压冲击下失去绝缘性能,使电缆失去绝缘作用,引起故障。
预防绝缘击穿的措施包括:选择合适的绝缘材料,增加绝缘层厚度,严格控制电压等级,避免过载运行,同时加装过电压保护装置,及时对击穿部位进行修复或更换。
3. 外力损伤外力损伤是指电缆被机械物体刺伤、挤压、弯曲等导致绝缘破裂,引起短路等故障。
为了预防外力损伤,需要选择抗拉、抗压、抗弯曲等性能良好的电缆。
在安装过程中,应注意避开可能对电缆造成损伤的区域,并采取合适的保护措施,如安装护管、套管等。
4. 接头和终端故障高压电缆的接头和终端是电缆系统中容易出现故障的部分。
接头和终端通常存在温升、接触不良等问题,可能导致电缆发生故障。
为了避免接头和终端故障,应选择合适的接头和终端,遵循正确的接头和终端设计和安装规范。
对接头和终端进行定期巡检,发现问题及时进行维修和更换。
高压电缆常见故障的分析及预防措施包括:选择合适的绝缘材料,定期测试绝缘电阻和介质损耗;加装过电压保护装置,避免绝缘击穿;选择耐外力损伤的电缆,并采取保护措施;选择合适的接头和终端,并定期检查和维修。
通过合理的预防措施,可以减少高压电缆故障的发生,提高电力系统的可靠性。
高压电缆泄漏电流和直流耐压试验分析

高压电缆泄漏电流和直流耐压试验分析摘要:本文针对高压电缆泄漏电流和直流耐压试验,简单介绍了试验的方法及原理,深入分析了影响泄漏电流和直流耐压试验的主要因数,并针对这些因数提出了合理的预防措施。
通过对试验结果分析判断方法的探讨,较为全面的提出了关于电缆泄漏电流和直流耐压试验的判断依据和指导性意见。
关键词:泄漏电流;吸收比;闪络;XLPEAbstract:In view of the leakage of electricity and DC withstanding voltage testfor high voltage power cable, this article introduces the method and principle of the test. It goes deep into analyses the main factors which can influence the leakage of electricity and DC withstanding voltage test. It also advanced some reasonable guard against measures for the factors. Through discussing the analysis method of the test, it advanced the basis of judgment and the guiding suggestions about the leakage of electricity and DC withstanding voltage test for high voltage power cable.keywords:the leakage of electricity;absorptance;flashover;XLPE1引言在电气工程安装施工过程中,所有高压电缆在敷设后,均要进行安装交接试验;运行中的电缆及电力设备由于容易受不良环境的影响而造成不同程度的损伤,使得其绝缘性能下降,因此也要进行定期的预防性试验。
影响测量泄漏电流的因素及排除方法

2012年5月内蒙古科技与经济M ay2012 第10期总第260期Inner M o ngo lia Science T echnolo gy&Economy N o.10T o tal N o.260影响测量泄漏电流的因素及排除方法段华杰(内蒙古国电能源投资有限公司金山热电厂,内蒙古呼和浩特 010050) 摘 要:测量泄漏电流是电气预防性试验中一个重要的试验项目,但影响泄露电流值的因素很多,针对影响测量泄漏电流的几种因素,从原理上进行了分析探讨,并提出了相应的排除方法。
关键词:泄露电流;原因分析;排除 中图分类号:T M862 文献标识码:A 文章编号:1007—6921(2012)10—0103—02 测量泄漏电流作为电气预防性试验中一个重要的试验项目,能灵敏的反映瓷质绝缘的裂纹,夹层绝缘的内部受潮及局部松散断裂、绝缘油劣化、绝缘表面碳化等缺陷。
测量泄漏电流的原理与测量绝缘电阻的原理本质上是完全相同的,但直流泄漏试验的电压比兆欧表的电压高,电压分阶段加到绝缘物上,因此国外了称为阶段直流电压试验,与绝缘电阻测量相比,泄漏电流测量中所用的电源一般均由高压整流设备供给,用微安表直测泄漏电流,测量重复性也好,可以做到随时监视,灵敏度高,根据泄漏电流测量值可以换算出绝缘电阻值,并且可以用电压和电流,电流和时间的关系曲线来判断绝缘的缺陷。
测量泄漏电流试验广泛用于变压器、发电机、电动机、电缆、避雷器等高压电气设备上,但由于影响泄露电流值的因素很多,现场试验中常发生泄露电流偏大、超标、超出历史数据等问题,影响试验人员的正确判断。
1 影响泄漏电流测量结果的因素及排除方法1.1 高压连接导线的影响主要是杂散电流和电晕电流的影响。
高压引线表面场强大于20kV/cm时,沿导线表面的空气发生电离,产生一定的对地泄漏电流,这一部分电流是不经过被试品的,就可能使所测结果偏大,甚至到不可接受的情况。
排除方法: 为消除这种影响,可使用屏蔽线,并使用如图1中微安表I的位置接法,使高压导线对地的泄漏电流不通过测量用的微安表。
高压电缆直流漏泄实验分析及预防措施

高压电缆直流漏泄实验分析及预防措施作者:席斌来源:《科技创新与应用》2015年第24期摘要:高压电缆在敷设后需要进行安装交接试验,运行中的电缆也要进行定期的预防性实验,满足相关国家规范。
实验要按照标准对电缆加以高压直流,在耐压的试验同时通过微安表测量漏泄电流值。
而影响这一结果是否测量准确,由诸多因素造成,可能会使得测试值出现很大的误差,这对判断电缆绝缘体内是否存在缺陷带来影响,有时甚至会造成误判。
因此,试验过程中我们必须采取相应措施来预防产生测量错误。
关键词:漏泄电流;微安表;预防措施影响测量结果的主要因素有以下几方面。
1 微安表接线方式的影响微安表用于测量泄漏电流。
表的量程可以根据试品的种类适当选择。
在测量中微安表有两种接线方式:(1)微安表接在试品高压端,如图1中PA1位置这种接线的有点是测出的泄漏电流准确,直接是电缆的漏泄电流,排除了除了电缆以外的设备造成的电流的影响,接线简单。
缺点是微安表处于高电位,必须有良好的绝缘屏蔽;微安表位置距离实验员较远,读数不便,更换量程不易。
放电时必须严格规范操作,先串电阻接地放电,等释放了大部分电后方可直接放电,否则会烧坏微安表,另外,有一些微安表头在高电压磁场下易极化,造成较大的测量误差。
在被试品接地端无法断开时常采用这种接线。
这种方式是比较常用的。
(2)微安表接在高压试验变压器T2的一次(高压)绕组尾部,如图1中PA2位置这种接线的微安表处于低电位,具有读数安全、切换量程方便等优点。
一般成套直流高压装置中的微安表采用这种接线。
这种接线的缺点是高压导线(包括使用设备)对地部分的杂散电流均通过微安表,测量结果误差较大,也不便于直接判断是否为电缆绝缘问题(如图2)。
2 温度的影响与绝缘电阻测量相似,温度对泄漏电流测量结果有显著影响。
所不同的是温度升高,泄漏电流增大。
由于温度对泄漏电流测量有一定影响,所以测量最好在被试设备温度为30-80℃时进行。
因为在这样的温度范围内,泄漏电流的变化较为显著,而在低温时变化小,故应在停止运行后的热状态下进行测量,或在冷却过程中对几种不同温度下的泄漏电流进行测量,这样做也便于比较。
漏电流因素

影响高压电缆泄漏电流测试值的因素在高压电缆的安装交接和定期预防性试验中,都要按标准对电缆施以高压直流,在耐压试验的同时测其泄漏电流值,以判断电缆绝缘体是否良好。
但泄漏电流的测试是在高压直流下测读微安计电流值的,由于测试线路中各元件、开关以及电极的支架本身的绝缘电阻都不是无限大,在它们中间可能存在着漏电流,电缆所处环境的温度、湿度,电缆两端芯线间的分叉距离,芯线下绝缘层表面受潮与污染况状以及电缆的支撑物等等都可能产生漏电流;工作人员操作不当也会造成不应有的漏电流。
这些外界因素的影响,对本身就很微小的泄漏电流来说,可能使得测试值出现很大的误差,这给判断电缆绝缘体内是否存在缺陷带来的困难,有时甚至造成错误判断。
下面就我们多年现场测试中遇到的因素简述如下:1.测试装置本身的泄漏电流测试线路见图1。
测试装置本身是否漏电,可以在未接电缆芯线B点前,通过预送高压直流电检微安表是否有电流指示的方法来断定。
若微安表有电流指示,则表明测试装置本身有漏电流。
应采取保护技术等方法加以消除。
2.温度的影响分为电缆本身的温度和环境温度的影响。
环境温度的影响当然也要通过电缆本身温度的升高而起作用。
电缆本身的温度影响是指运行中的电缆,特别是满负荷运行的电缆芯线温度可达65-90℃,而短路运行时的温度则更高。
这些运行中的电缆停电后未冷却到室温,如果此时测试,因其绝缘电阻随温度的升高而降低,相应的泄漏电流大,会成倍地超过标准参考值。
我国标准电气试验室测试温度规定为20℃,但现场测试不可能都合此温度。
根据我们的经验,环境温度在50℃以下,对多数是地下埋设的电缆来说,其影响是不大的。
3.温度的影响空气中的温度对不同的绝缘材料的泄漏影响不尽相同。
对油浸纸绝缘的电缆在未做电缆头或电缆头漏油的情况下影响很显著。
特别是电缆两端高低位差大时,未做电缆头时测试,绝缘油会从电缆中流出来。
潮湿空气中的水分会渗入绝缘油中,附着于露在空气中芯线和绝缘油中,附着于露在空气中芯线和绝缘纸上形成如图2所示的路径,构成对铠装带和其它芯线的表面泄漏电流。