第6章常微分方程与差分方程

合集下载

常微分方程与差分方程

常微分方程与差分方程

数值解法的改进
高精度算法
随着计算机技术的发展,人们开发出了许多高精度、高效率的数值解法,如谱方法、有限元方法等。
自适应算法
自适应算法可以根据问题的复杂性和解的特性自动调整计算精度和计算量,提高了数值解法的可靠性和效率。
THANKS FOR WATCHING
感谢您的观看
常微分方程的解法
总结词
求解常微分方程的方法有多种,如分离变量法、积分 因子法、参数变易法等。
详细描述
求解常微分方程的方法有多种,其中分离变量法和积 分因子法是比较常用的方法。分离变量法是将方程中 的变量分离出来,转化为多个简单的微分方程,然后 分别求解。积分因子法是通过引入一个因子,将原方 程转化为易于求解的形式。此外,参数变易法也是求 解常微分方程的一种常用方法,它通过将参数引入到 原方程中,使得原方程转化为易于求解的形式。
VS
详细描述
根据形式和性质的不同,常微分方程可以 分为多种类型。常见的一阶常微分方程是 形式为dy/dx = f(x, y)的方程,其中f(x, y)是一个关于x和y的函数。二阶常微分方 程是形式为y'' = f(x, y')的方程,其中y'表 示y对x的导数。此外,根据是否含有线性 项和非线性项,常微分方程还可以分为线 性常微分方程和非线性常微分方程。
02 差分方程的基本概念
差分方程的定义
差分方程是描述离散变量之间关系的 数学模型,通常表示为离散时间点的 函数值的差分关系式。
它与微分方程类似,但时间变量是离 散的,而不是连续的。
差分方程的分类Leabharlann 01一阶差分方程只包含一个差分的方程,如 (y(n+1) - y(n) = f(n))。

6考研数学大纲知识点解析(第六章微分方程和差分方程(数学一))

6考研数学大纲知识点解析(第六章微分方程和差分方程(数学一))

满足初始条件
的特
【解析】令
,则
,原方程化为
,即

于是 因
,得
,故
,由

知,应取
.

,解得
,又由
,得
,故

(3)型如: 间变量,即
.方程的特点是不显含自变量 .令 ,由复合函数求导的链式法,则有
,视 为中
将之代入方程,得 这是函数 关于变量 的一阶微分方程.若能求出其通解
则可再由方程

两边积分后求得方程的通解
【解析】 将
代入方程
(D)

,得
由题设可知 从而有
类似地,将
代入方程
解得
,故选(A).

,得

【例题】(89 年,数学一/数学二/数学三)设线性无关的函数
都是二阶非齐次线性
方程 .
的解,
是任意常数,则该非齐次方程的通解是
(A)

(B)ቤተ መጻሕፍቲ ባይዱ

(C)
. (D)

【答案】(D).
【解析】根据解的性质,
均为齐次方程的解,且线性无关,因此

(2) 求出特征根 和 ;
(3) 根据特征根的不同情形按下表写出方程(1)的通解:
表 二阶常系数线性齐次微分方程的通解
特征根情形
通解形式
相异实根 相同实根 共轭复根
【例题】求微分方程 【解析】特征方程为 故齐次微分方程的通解为
的通解.
,解特征根为

.其中
为任意常数.
【例题】求微分方程 【解析】特征方程为 故齐次方程的通解为

设非齐次方程

常微分方程的差分的方法

常微分方程的差分的方法

对于二阶常微分方程 $y'' = f(t, y, y')$,可以采用隐式差分法或显式差 分法进行求解。
VS
隐式差分法需要解方程组,计算量大, 但精度高;显式差分法精度低但计算 量小。
复杂微分方程组的求解实例
对于多个一阶或二阶常微分方程组成的复杂微分方程组,可以采用耦合差分法或龙格-库塔法进行求 解。
差分方法的基本概念和原理
基本概念
差分方法的基本概念是将时间或空间离散化,将连续的微分方程转化为离散的差 分方程。在时间离散化中,我们使用向前、向后或中心差分近似微分项;在空间 离散化中,我们使用有限差分近似微分项。
原理
差分方法的原理是将连续的微分方程转化为离散的差分方程,然后通过迭代或递 推的方式求解该差分方程。在每一步迭代或递推中,我们使用已知的函数值和差 分近似来计算新的函数值,直到达到所需的精度或收敛条件。
耦合差分法是将多个微分方程转化为耦合的差分方程组进行求解;龙格-库塔法是一种迭代算法,通过 已知的$y_n$和$y'_n$来求解$y_{n+1}$。
THANKS
感谢观看
REPORTING
https://
改进的龙格-库塔方法
引入预估校正步骤
为了提高数值解的精度和稳定性,可以在龙 格-库塔方法中引入预估校正步骤。通过预 估和校正两个步骤的结合,可以减小数值误 差并提高方法的收敛速度。
考虑非线性项的处理
在求解二阶常微分方程时,非线性项的处理 对于数值解的精度和稳定性具有重要影响。 通过改进非线性项的处理方式,可以进一步 提高改进的龙格-库塔方法的性能。
有限差分法
有限差分法的原理
有限差分法是一种基于离散化的数值方法, 通过将微分方程转化为差分方程来求解。该 方法的关键在于选择合适的差分格式和离散 化方案,以保证数值解的精度和稳定性。

微分方程和差分方程解的区别与联系

微分方程和差分方程解的区别与联系

微分方程和差分方程解的区别与联系哎,说起这微分方程和差分方程啊,简直就是数学里的双胞胎,长得有点像,性格却又大相径庭。

我呢,学数学那会儿,可没少被它们俩搞得头昏脑涨。

不过呢,经过一番苦战,我总算是摸出点门道来,今天就跟大家聊聊这俩家伙的区别与联系,希望能帮到同样被它们困扰的同学们。

首先啊,咱们说说微分方程。

这家伙就像是数学里的“连续剧”,讲的是变量随着时间或者其他什么因素连续变化的故事。

比如说,你扔个石头到水里,水面上的波纹就会随着时间一圈圈地扩散开去,这个过程就可以用微分方程来描述。

微分方程里头的那个“微分”,就像是连续剧里的每一帧,细腻地刻画了变化的每一个瞬间。

而差分方程呢,它更像是数学里的“动画片”,走的是离散化的路子。

它不看重那些连续的、细腻的变化,而是关注变量在每个时间节点上的跳跃式变化。

比如说,你养了一盆花,每天记录一下它的高度,这些离散的数据点之间,就可以通过差分方程来找出规律。

差分方程里的“差分”,就像是动画片里的每一帧,虽然不如连续剧那样细腻,但也能把变化的轮廓勾勒出来。

那么,这俩家伙到底有啥区别呢?简单来说,微分方程擅长处理连续变化的问题,就像是在画一幅流畅的线条画;而差分方程呢,它更擅长处理离散变化的问题,像是在用一块块拼图拼凑出一幅完整的画面。

不过,别看它们性格迥异,其实还是有不少共同点的。

比如说,它们都是用来描述变量之间关系的工具,都能帮助我们找出隐藏在数据背后的规律。

而且啊,在某些情况下,它们还能互相转化呢。

就像是你看一部动画片,虽然它是离散的,但当你把它放慢无数倍,每个画面都连接起来,就变成了一部连续的“电影”。

差分方程在某些条件下,也可以转化为微分方程,让我们从另一个角度去看待问题。

记得有一次,我在解一道复杂的微分方程时,卡壳了半天。

后来,我突然灵光一闪,试着把它转化成了差分方程,嘿,你还别说,这一转化,思路立马就清晰了起来,问题也迎刃而解了。

那一刻,我简直觉得自己就像是个数学界的魔术师,把难题变得无影无踪。

第6章 常微分方程与差分方程

第6章 常微分方程与差分方程

第六章 常微分方程与差分方程 一、基本盖帘 1.常微分方程含有自变量、自变量未知函数及未知函数的导数或微分的方程,称为微分方程,当未知函数是一元函数时,则称为常微分方程 2.微分方程的阶在微分方程中出现的未知函数的最高阶导数的阶数,称为微分方程的阶 3.微分方程的解若把某函数及其导数代入微分方程能使该方程称为恒等式,则称这个函数是该微分方程的一个解。

通常要求微分方程的解具有和该微分方程的阶数同样阶数的连续导数 4.微分方程的通解和特解含有与微分方程的阶数同样个数的独立任意常数的解,称为微分方程的通解,不含任意常数的解,称为微分方程的特解 5.微分方程的初始条件给定微分方程中未知函数及其导数在指定点的函数值的条件,称为微分方程的初始条件,初始条件的个数应与微分方程的阶数相同二、一阶微分方程一阶微分方程的基本类型是变量可分离的方程和一阶线性微分方程,而齐次微分方程可通过变量代换为变量可分离的方程 (一)变量可分离的方程 1.变量可分离方程的概念称为变量可分离的方程或dy y N x Q dx y M x P y g x f y )()()()()()('==2.变量可分离方程的特解⎰⎰⎰⎰+=+=≠≠方程的通解就是分别上述两个微分分,然后求积分,所得积端,把变量分离分别同除微分方程的两或时,用或用变量分离法:当,)()()()()()()()()(0)()(,0)(C dx x Q y P dy y M y N C dx x f y g dyy N x Q y g y N x Q y g(二)齐次微分方程1.齐次微分方程的标准形式)('xy f y =2.齐次微分方程的求解丢掉解,在求解过程中不要常数的解也是原微分方程的或注意:即可得到原方程的通解换回最后把可得通解于是有则首先作变量代换,令)()(0)(,0)(;0)(ln )()(','',u u f y M x Q y g xyu Cx C x dxu u f du u u f xu xu u y xyu -===+=+=--=+==⎰⎰(三)一阶线性微分方程1.一阶线性微分方程的标准形式性微分方程否则称为一阶非齐次线方程,称为一阶齐次线性微分即方程,当其中的自由项0)(',0)()()('=+≡=+y x p y x q x q y x p y 2.一阶线性微分方程的求解[],即得通解公式两端积分后再同乘乘积的导数公式同乘方程的两端,根据,积分因子法,用方法:性微分方程的通解公式代入即得一阶非齐次线积分可求出满足微分方程,把它代入原来的非齐次解即设非齐次微分方程的该为函数把其中的常数的通解,性微分方程先求对应的一阶齐次线:常数变易法方法公式:公式法直接利用通解方法⎰⎰=+⎰=⎰+⎰=⎥⎦⎤⎢⎣⎡⎰⎰⎥⎦⎤⎢⎣⎡⎰+⎰=⎰+==⎰⎰=⎰==+⎥⎦⎤⎢⎣⎡⎰+⎰=⎰⎰⎰-----dxx p dx x p dx x p dx x p dx x p dx x p dxx p dx x p dx x p dx x p dx x p dx x p dxx p dx x p dx x p e e x q y x p y e e x yp e y ye e e x q C e y e x q C x C x q e x C x C e x C y x C C Ce y y x p y e x q C e y )(-)()()()()()()()()()()()()()()()(')(''3)()()(),()(')()(),(0)('2)(1三、线性微分厂房解的性质与结构二阶线性方程的一般形式均为连续函数,其中)(),(),()()(')(''x f x q x p x f y x q y x p y =++ 否则称为非齐次方程称二阶线性齐次方程,当右端项0)(≡x f的特解是则的两个特解与分别是方程与,设解的性质(叠加原理))()()(')('')()()()(')('')()(')('')()(.121212121x f x f y x q y x p y x y x y x f y x q y x p y x f y x q y x p y x y x y +=+++=++=++是非齐次方程的解则其的任意特解一阶、二阶为齐次方程的一个特解,一阶、二阶为非齐次方程若的特解一阶、二阶是对应齐次方程则其差的两个特解一阶、二阶为非齐次方程,若的解一阶、二阶仍为齐次方程则其线性组合的两个特解一阶、二阶为齐次方程,若)()()()()()()3()()(-)()()()()2()()()()()()()1(2121221121x y x y x y x y x y x y x y x y x y C x y C x y x y ++**为任意常数其中的通解为解,则二阶非齐次方程是二阶非齐次方程的特由二阶齐次方程的通解为个线性无关的特解,则为二阶非齐次方程的两,若为任意常数解,其中是一阶非齐次方程的通则个特解是一阶非齐次方程的一又的通解为特解,则一阶齐次方程是一阶齐次方程的非零设通解的结构212211*********,)()()()()()()()()2()()()(),()()1(.2C C x y x y C x y C y x y x y C x y C y x y x y C x y x Cy y x y x Cy y x y ****++=+=+==四、二阶常系数齐次线性微分方程(一)二阶常系数齐次线性微分方程的形式,0)(')(''2=++=++q p q p y x q y x p y λλ为常数,其特征方程为,其中分方程二阶常系数齐次线性微(二)二阶常系数齐次线性微分方程通解的形式 依据特征方程判别式的符号,其通解有三种形式为两个任意实数,其中,通解,特种方程有共轭复根,通解,特种方程有重根,通解,的实根,特种方程有两个相异212121*********),sin cos ()(04.3)()(04.2)(04.11121C C x C x C e x y i q p e x C C x y q p e C e C x y q p x xx x βββαλλλλλλλλ+=±-=∆+===-=∆+=-=∆五、二次常系数非齐次线性微分方程(一)二阶常系数非齐次微分方程的一般形式自由项已知函数,称为方程的的为一个不恒等于为常数,,其中微分方程二阶常系数非齐次线性0)(,)()(')(''x f q p x f y x q y x p y =++(二)二阶常系数非齐次微分方程的通解形式为待定系数次多项式,为系数待定的表中的B A n x R n ,)(六、含变限积分的方程对某些含变限积分的方程,可通过对方程求导的方法,转化为求解相应的微分方程的通解或微分方程初值问题的特解七、差分的概念及其性质 (一)差分的概念tt t t t t t t t t t t t t t t t t n t y y y y y y y y y y y y y y y y y y y y y y y t t f y +-=--=∆-∆=∆∆=∆-=∆∆-=++++++++1211212112102)(-)()(,...,,...,,,)(二阶差分分,记为的差分,也称为一阶差称为函数差个数列,则其值可以排列成一记其函数值为取所有的非负整数,并中的自变量设函数(二)差分的性质tt t t t t t t t t t t t t z y y z z y y z z y b a z b y a bz ay ∆+∆=∆+∆=⋅∆∆+∆=+∆++11)()2(,,)()1(为常数其中八、一阶常系数线性差分方程(一)一阶常系数线性差分方程的概念及一般形式0),(11=+≠=+++t t t t ay y a t f ay y 对应的齐次方程为其中常数式为线性差分方程的一般形分方程,一阶常系数及其差分方程,称为差自变量,自变量未知数同微分方程类似,含有(二)一阶常系数线性差分方程的通解与特解tt t t t t t t t t t t a C y y y t f ay y a C y C y C a C y ay y )()()(,)(010001-+==+-==-==+**++通解之和,与对应齐次方程的一个特解其通解也是非齐次方程对于非齐次方程即为满足该条件的特解则定初始条件是一个任意常数,若给,其中的通解齐次方程为下表总结了几种常见情形下非齐次方程特解所应具有的形式形式两种情况来设定特解的他们可以分别归结为前,而当,或当是两个待定系数和次多项式,是待定系数的上表特解中t m M t N t M M t N t M B A m t Q )1(sin cos ,sin cos 20)(-=+∏==+∏==ωωωωωωω九、常考题型及其解题方法与技巧题型一、变量可分离的方程与齐次微分方程的解法 题型二、一阶线性微分方程的解法题型三、有关线性微分方程解的性质及解的机构问题题型四、二阶常系数线性微分方程的解法题型五、含变限积分方程的求解题型六、由自变量与因变量增量间的关系给出的一阶方程题型七、综合题与证明题题型八、一阶常系数线性差分方程的解法题型九、微分方程的应用问题。

《高等数学II》第6章常微分方程练习题

《高等数学II》第6章常微分方程练习题

第六章 常微分方程与差分方程一、单项选择题1.微分方程0)'()''(3)'''(5423=++-x y y y 阶数是 ( )A.4阶 B .3阶 C .2阶 D .1阶2.微分方程222y x dxdy x +=是 ( ) A.一阶可分离变量方程 B.一阶齐次方程 C.一阶非齐次线性方程 D.一阶齐次线性方程3.下列方程中,是一阶线性微分方程的是 ( )A.0'2)'(2=+-x yy y xB.0'2=-+x yy xyC.0'2=+y x xyD.0)()67(=++-dy y x dx y x4.方程x y xy =-'满足初始条件11==x y 的特解是 ( )A.x x x y +=lnB.Cx x x y +=lnC.x x x y +=ln 2D.Cx x x y +=ln 25.微分方程y y x 2='的通解为 ( )A .2x y =B . c x y +=2C . 2cx y =D .0=y 6.微分方程y y x ='满足1)1(=y 的特解为 ( )A.x y =B. c x y +=C.cx y =D.0=y7.微分方程y xy xy -='是 ( )A 可分离变量方程B 齐次方程C 一阶齐次线性方程 D.一阶非齐次线性方程8.微分方程05))(sin(2''=+-+x y y xy y 是 ( )A 一阶微分方程B 二阶微分方程C 可分离变量的微分方程D 一阶线性微分方程9.微分方程0)()(=++-++dy e e dx e e y y x x y x 为 ( )A 齐次方程B 一阶线性齐次方程C 一阶线性非齐次方程D 可分离变量的微分方程10.下列方程中是可分离变量的微分方程的是( )A x x y x y cos )(tan '2-+=B 0ln '=--y y y xey x C dxdy xy dx dy x y =+22 D 0)cos 1(cos sin ln '=-+y x y y x xy 11.微分方程02=+'-''y y y 的一个特解是 ( )A x e x y 2=B x e y =C x e x y 3=D x e y -=A 0'''=-y yB 0'''=+y yC 0''=-y yD 0''=+y y13.微分方程052=+'+''y y y 的通解y 等于 ( )A.x c x c 2sin 2cos 21+B. )2sin 2cos (21x c x c e x +C.)2sin 2cos (21x c x c e x +-D.)2sin 2cos (21x c x c x +14.微分方程:0''=+y y 满足初始条件2|',1|00====x x y y 的特解为 ( )A x x y sin cos +=B x x y sin 2cos +=C 122++=x x yD x C x C y sin cos 21+=15.设21,y y 是二阶常系数微分方程0=+'+''qy y p y 的两个解,则下列说法不正确的是( )A .21y y +是此方程的一个解 B.21y y -是此方程的一个解C .2211y c y c +是此方程的通解 (21,c c 为任意常数)D .若21,y y 线性无关,则2211y c y c +是此方程的通解(21,c c 为任意常数)16.用待定系数法求微分方程x xe y y 2''=-的一个特解时,应设特解的形式为 ( )A.x e Bx Ax y )(2*+=B.x e B Ax y )(*+=C.B Axe y x +=*D. x e Ax y 2*=17.用待定系数法求微分方程x e y y y 396=+'-''的一个特解时,应设特解的形式为( )A.x e Ax y 32*=B.x e x y 32*=C.x Axe y 3*=D.x Ae y 3*=18.二阶线性微分方程5y 3y 4y '''=-+对应的齐次方程的特征方程为 ( )A .5342=-+r r B.0342=-+r r C.534=-+r r D.0342=-+r r r19.已知722-=x y 是微分方程32"2-=+x y y 的一个特解,则其通解为 ( )A 72sin cos 221-++=x x c x c xB 72221-++=-x ec e c x x x C 72221-++=-x ec c x x D ()72221-++=x e x c c x x 20.微分方程x xe y y y 2'"44=+-的特解形式为 ( )A x eB Ax 2)(+ B x e B Ax x 2)(+C x e B Ax x 22)(+D xe Ax 23 21.下列函数中哪组是是线性无关的 ( )A.2x ln ,x ln B.x ,x ln C.x 2ln ,x D.2x ln ,x lnA.0'''=-y yB.0'''=+y yC.0''=-y yD.0''=+y y二、填空题1.微分方程()03"')4(3=++y y y y 的阶数为______; 2.微分方程0=+y dxdy 的通解是_______ ___; 3.微分方程02=+'xy y 的通解是______________; 4.微分方程0e y y x =+'+的通解是_______ ___;5.微分方程x y sin ''=的通解是________________; 6.微分方程04'4''=+-y y y 的通解为_________;7.微分方程02'"=+y y 的通解为_____________; 8.微分方程x e y y 2'=+的通解为____________ 9.求微分方程x x e y y 2''y =+'+的特解的形式为_________________________________;10.若)(x f 是方程x y dx y d 2sin 422=+的一个特解,则方程的通解为__________________; 三.求解下列常微分方程1.0ln ln =+ydy x xdx y 2.dxdy xy y dx dy x=+3.x e y y =-' 4.0,cos 0sin ==+'=-x x y e x y y5.0)1()1(22=-+-dy x y dx y x 6.()01=+-xdy dx y7.0'=-y xy 8.y2x y 2dx dy -=9.x ey y -=+' 10.0)6(22=-+dy x y ydx11.1='+''y y 12.x y y +'=''13.1)1(,12=-=y x dx dy xy14.02='+''y y15.1x y y +='+'' 16.02'''=--y y y17.0y 'y 4''y 4=++ 18.09'6"=++y y y ,1',000====x x y y19.x e y y y 232'''=-+ 20.233'2"+=--x y y y四.已知特征方程的两个根为:i r +-=21,i r --=22,求相应的二阶常系数的齐次线性微分方程及其通解。

差分方程与微分方程的区别

差分方程与微分方程的区别

差分方程与微分方程的区别
差分方程和微分方程是数学中两个不同的概念。

差分方程是描述离散时间下变量变化的数学方程。

它们通常表示为递归式形式,其中下一时间步的值取决于之前的值。

差分方程通常与迭代算法一起使用,以解决离散时间下的问题,例如数字信号处理和时间序列分析。

另一方面,微分方程是描述连续时间下变量变化的数学方程。

它们通常表示为微分式形式,其中变量的导数取决于自变量。

微分方程通常用于建模物理系统和自然现象,例如天体运动和流体力学。

总之,差分方程和微分方程都是解决数学问题的重要工具。

它们在不同的领域和应用中发挥着不同的作用。

了解它们的区别和相似之处有助于更好地理解和应用它们。

- 1 -。

常微分方程数值解法_OK

常微分方程数值解法_OK

y(xi )
O(h3)][yi
hf
(xi ,
yi )]
h2 2
y(xi ) O(h3 )
O(h2 )
欧拉法具有 1 阶精度。4
2. 隐式 Euler法
用向后差商公式代替导数项
y(xi1 ) h
y(xi )
y' (xi1 )
h 2
y' ' ( i
)
y(xi1 ) h
y(xi )
f (xi1, y(xi1 ))
i1 y(xi1 ) yi1 O(h3f)x ( x, y) f y ( x, y) f ( x, y) Step 1: 将 K2 在 ( xi , yi ) 点作 Taylor 展开
K2 f (xi ph, yi phK1)
f (xi , yi ) phfx (xi , yi ) phK1 f y (xi , yi ) O(h2 ) y(xi ) phy(xi ) O(h 2 )
f
(
xi
1
,
y(
xi
1
))]
h3 12
f
''( )
所以,有格式为:
yi1
yi
h[ f 2
(xi , yi )
f
(xi1, yi1 )]
上式称为梯形格式。
类似,可以算出梯形格式的误差估计式:
i1 O(h3 )
2阶的方法
梯形法是二阶、隐式单步的方法,要用迭代法求解。怎么求?
8
改进欧拉格式 /* modified Euler’s Formula */
xi1, yi h f ( xi , yi )
(i 0, ..., n 1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的两个解, 则 y2 y1 是相应的齐次线性(2)
方程的解.
11
5.线性微分方程解的性质及解的结构定理 定理4: 给定 n 阶非齐次线性方程(1)
是对应齐次方程(2)的 n 个线性
无关特解,
是非齐次方程(1)的特解,则非齐次方
程(1)的通解为
Y (x) y(x)
齐次方程通解 非齐次方程特解
12
(c2 c12 0).
(1) 当 a1 b1 时 , 令 u a x b y,
ab
化为可分离变量方程.
(2)
当 a1 a
b1 时, b

x
y
X Y
h ,(其中h和k是待定的常数)
k,
化为齐次方程.
6
4.一阶线性微分方程 •形式 d y P(x) y Q(x) .
dx 当 Q(x) 0时, 称为齐次方程; 当 Q(x) 0时, 称为非齐次方程. •齐次方程的解法 d y P(x) y 0
•n阶线性微分方程的形式
y(n) P1(x) y(n1) Pn1(x) y Pn (x) y f (x) (1)
特别地, n阶齐次线性微分方程
y(n) P1(x) y(n1) Pn1(x) y Pn (x) y 0
(2)
(2)称为(1)相应的齐次方程.
定理1:
是 n 阶齐次方程(2)
15
7.差分与差分方程的概念
•差分 设函数 y f (x) 为定义在非负整数集上的函数,
的 n 个解,则 y C1y1 Cn yn (Ck为任意常数)
也为齐次方程(2)的解. 齐次方程解的叠加原理
10
5.线性微分方程解的性质及解的结构定理
定理2:
是 n 阶齐次方程(2)
的 n 个线性无关解,则方程的通解为
y C1y1 Cn yn (Ck为任意常数) .
定理3:
是 n 阶非齐次方程(1)
作变量代换,
u y , 即 y xu,
x
dy u x du ,
dx
dx
代入原式得 u x du f (u) , dx
分离变量得 du dx ,
f (u) u x
两边积分,将u代回,便得到原方程的通解.
5
•可化为齐次的方程
dy f ( ax by c )
dx
a1x b1 y c1
0 , 不是特征方程的根 ; k 1, 是特征方程的 单特;
2 , 是特征方程的重根 .
14
•简单的非齐次线性微分方程特解的求法
( 2 ) f (x) e x a cos x bsin x
设方程的特解形式为: y xke x Acos x Bsin x
其中 A与B为待定系数,而
0 , i不是特征方程的根; k 1, i是特征方程的单根.
3
2.变量可分离的微分方程
•形式 dy f (x)g( y) .
dx
•解法 分离变量, dy f (x)dx ,
g( y)
两边积分,
dy f (x)dx , g( y)
G(y) F(x) C. 称为隐式通解,或通积分.
4
3.齐次微分方程
•形式 dy f ( y ) .
dx x
•解法
Q(x)

两边积分得 u Q(x)e P(x)d x dx C ,
公式法
故原方程的通解为
y
e
P(
x)
d
x
Q(
x)
e
P(
x)d
x
d
x
C
也即 y Ce P(x)d x e P(x)d x
Q(
x)
e
P(
x)
d
x
d
x
齐次方程通解
非齐次方程特解
8
•伯努利方程 d y P(x) y Q(x) yn ( n 0, 1) dx
解法:
除方程两边,得
yn d y P(x) y1n Q(x) , dx
令 z y1n , 则 d z (1 n) yn d y ,
dx
dx
d z (1 n) P(x) z (1 n)Q(x) . dx
(线性方程)
求出此方程通解后,换回原变量即得伯努利方程的通解.
9
5.线性微分方程解的性质及解的结构定理
13
•二阶常系数非齐次线性微分方程
对应齐次方程 y p y q y 0,
通解结构
y Y y ,
•简单的非齐次线性微分方程特解的求法
(1) f (x) Pn (x)e x (其中Pn (x)为n次多项式)
设方程的特解形式为: y xkQn (x)e x
其中Qn (x)与Pn (x)为同次多项式,而
•线性微分方程 方程中的未知函数及其个阶导数的次数都是 一次,且无交叉乘积项.
y y3 x2 y (sin x)(4) 1, 二阶非线性.
y p(x)y q(x)y f (x) ,

二阶线性.
2
•微分方程的解 代入微分方程能使方程成为恒等式的函数. 通解 解中所含独立的任意常数的个数与方程的阶数相同.
特解 不含任意常数的解.其图形称为积分曲线. 注意,通解不一定是方程的全部解. •初始条件 用来确定任意常数的条件. •初值问题 求微分方程满足初始条件的解的问题.
一阶:
y f (x, y)
y
x
x0
y0
过定点的积分曲线;
二阶:
y f (x, y, y)
y
x
x0
y0 , yxx0
y0
过定点且在定点的切线的斜率为定值的积分曲线.
6.二阶常系数齐次线性微分方程及简单的非齐次线性 微分方程
•二阶常系数齐次线性微分方程
其特征方程为: r2 p r q 0 , 特征根为:
特征根的情况
通解的表达式
两互不相同的实根 r1 r2 y C1er1x C2er2x
二重根 r1 r2
y (C1 C2 x) er1x
两个共轭复根 r1,2 i y e x (C1 cos x C2 sin x)
第五章 常微分方程与差分方程
1
考试内容
1.常微分方程的基本概念
•常微分方程 含有一元未知函数及其导数(或微分)的方程.
•微分方程的阶 微分方程中出现的未知函数的最高阶导数的 阶数.
一般地 , n 阶常微分方程的形式是
F(x, y, y,, y(n) ) 0

y(n) f (x, y, y,, y(n1) ) .
dx
分离变量,
两边积分得, ln y P(x)dx ln C ,
故通解为 y C e P(x) dx .
7
•非齐次方程的解法 d y P(x) y Q(x)
dx
用常数变易法: 作变换 y(x) u(x)e P(x)d x , 则
u
e
P(
x)
d
x
P(x)u eP(x)d x
P(x)u e P(x)d x
相关文档
最新文档