《常微分方程》第六章 非线性微分方程
第六章 非线性微分方程 常微分方程课件 高教社ppt 王高雄教材配套课件

稳定性定理推广
d x f (x), f (0) 0, x Rn (14) dt
• 进一步的推广有
定理5 如果对微分方程组(14)存在定正函数V(x),其 通过方程组(14)的全导数dV(x)/dt为常负,但使 dV(x)/dt=0的x的集中除零解x=0外不包含方程(14)的整 条正半轨线,则方程组(14)的零解是渐近稳定的。
1
a1, 2
a1 a3
a0 a2
, 3
a1 a3 a5
a0 a2 a4
其中ai=0(对一切i>n)。
0 a1 , a3
a1 , n a3
a2n1
a1 a2
a2n2
0 0
ann1
an
定理3 方程(8)的一切根均具负实部充分必要条件为成立不等
式
a1 0, 2 0, 3 0, , n1 0, an 0
x0
D时,满足初值条件x(t0)=
x0的解x(t)均有
lim
t
x(t)
0
则域D0称为(渐近)稳定域或吸引域。
• 若稳定域为全空间,即 0 =+∞,则称零解x=0是全局渐近
稳定的或简称为全局稳定的。
• 当零解x=0不是稳定时,称它是不稳定的,
• 即:如果对某给定的 ,不管怎样小,总有x0满足||x0||≤ , 使方程组(5)的由初值条件x(t0)= x0确定的解x(t) ,至少存在 某有t1>t0,有||x(t1)||= 。
其中a>0,b>0,c>0. 考虑其根均具负实部时参数c的变化范围. 解 对应方程,有
a0 1, a1 a b 1, 2 (a b 1)(b(a c) 2ab(c 1), a3 2ab(c 1)
常微分方程考研讲义第六章非线性微分方程和稳定性

常微分⽅程考研讲义第六章⾮线性微分⽅程和稳定性第六章⾮线性微分⽅程和稳定性[教学⽬标]1. 理解解的稳定性、零解稳定性及零解渐进稳定性的概念。
2. 掌握平⾯初等奇点的分类⽅法。
3. 了解拟线性近似决定微分⽅程组的稳定性及⽤李雅谱若夫第⼆⽅法判别稳定性的⽅法。
4. 了解周期解和极限环的概念。
[教学重难点] 奇点的分类与相应零解的稳定性。
[教学⽅法] 讲授,实践。
[教学内容] 解的稳定性定义,相平⾯、相轨线与相图;平⾯⾃治系统的性质,奇点的分类及相应零解的稳定性;拟线性近似,李雅谱若夫第⼆⽅法判别稳定性,周期解和极限环的概念。
[考核⽬标]1.奇点的分类及相应零解的稳定性。
2.李雅谱若夫第⼆⽅法判别稳定性。
3.会求周期解和极限环。
§1 相平⾯、相轨线与相图把xoy 平⾯称为平⾯⾃治系统==),(),(y x Q y y x P x(6.1)的相平⾯.把(6.1)式的解(),()x x t y y t ==在xoy 平⾯上的轨迹称为(6.1)式的轨线或相轨线. 轨线族在相平⾯上的图象称为(6.1)式的相图.注意:在上述概念中,总是假设(6.1)式中的函数(,),(,)P x y Q x y 在区域)(||,|:|+∞≤<(6.1)式的解(),()x x t y y t ==在相平⾯上的轨线,正是这个解在(,,)t x y 三维空间中的积分曲线在相平⾯上的投影.下⾯讨论⼆阶线性系统+=+=ya x a dtdx y a x a dtdx22211211 (6.2)奇点(0,0)附近轨线的分布:上述系统写成向量形式为⽅程组)0(det d d ≠=A AX Xt它存在线性变换TX X =~,可化成标准型X J X ~d ~d =t由A 的特征根的不同情况,⽅程的奇点可能出现四种类型:结点型,鞍点型,焦点型,中⼼型. 1.结点型如果在某奇点附近的轨线具有如图5-1的分布情形,我们就称这奇点为稳定结点.因此,当µ<λ<0时,原点O 是==y tyxt µλd d d dx(6.3) (5.4)式的稳定结点.图 6-1 图 6-2如果在某奇点附近的轨线具有如图5-2的分布情形,我们就称这奇点为不稳定结点.因此,当µ>λ>0时,原点O 是(5.4)的不稳定结点.如果在奇点附近的轨线具有如图5-3和图5-4的分布,就称这奇点为临界结点.图 6-3 图 6-4当λ<0时,轨线在t→+∞时趋近于原点. 这时,我们称奇点O为稳定的临界结点;当λ>0时,轨线的正向远离原点,我们称奇点O为不稳定的临界结点.如果在奇点附近轨线具有如图5-5及图5-6的分布,就称它是退化结点.当λ<0时,轨线在t→+∞时趋于奇点,称这奇点为稳定的退化结点;当λ>0时,轨线在t→+∞时远离奇点,称这奇点为不稳定的退化结点.图 6-5 图 6-62.鞍点型如果在某奇附近的轨线具有如图5-7或图5-8的分布情形,我们称这奇点为鞍点.因此,当µ,λ异号时,原点O是(5.25)的鞍点.图 6-7 图 6-83.焦点型如果在某奇附近的轨线具有如图5-9的分布情形,我们称原点O 是稳定焦点;⽽当α>0时,相点沿着轨线远离原点,这时,称原点是不稳定焦点 (见图5-10).图 6-9图 6-104.中⼼型如α=0,则轨线⽅程成为:C =ρ或 222C y x =+它是以坐标原点为中⼼的圆族.在奇点附近轨线具有这样的分布,称奇点为中⼼.图 6-11 图 6-12综上所述,⽅程组)0(det d d ≠=A AX Xt(6.4)经过线性变换TX X =~,可化成标准型X J X ~d ~d =t(6.5) 由A 的特征根的不同情况,⽅程的奇点可能出现四种类型:结点型,鞍点型,焦点型,中⼼型.当0det ≠A ,根据A 的特征根的不同情况可有如下的类型:同号——结点相异(⾮零)实根实根异号——鞍点临界结点重(⾮零)实根退化结点实部不为零——焦点复根因为A 的特征根完全由A 的系数确定,所以A 的系数可以确定出奇点的类型.§2李雅普诺夫稳定性1、稳定性定义李雅普诺夫稳定性概念如果对于任意给定的0>ε和0t ≥0都存在0),(0>=t εδδ,使得只要0x 满⾜δ<-10x x就有ε?<-),,(),,(1000x x x t t t t对⼀切0t t ≥成⽴,则称微分⽅程),(d d x xt f t= (6.6) 的解),,(10x x t t ?=是稳定的.否则是不稳定的.假设),,(10x x t t ?=是稳定的,⽽且存在)0(11δδδ≤<,使得只要0x 满⾜1δ<-10x x就有0)),,(),,((lim 1000=-∞→x x x t t t t t ?则称(6.6)的解),,(10x x t t ?=是渐近稳定的.注意:微分⽅程(6.6)式中的函数),(x t f 对nR D ?∈x 和(,)t ∈-∞+∞连续,对x 满⾜局部李普希兹条件.⼀般情况下,我们把解),,(10x x t t ?=的稳定性化成零解的稳定性问题进⾏讨论. 这样就有下⾯的关于零解0=x 稳定性的定义:定义1 若对任意0ε>和00t ≥,存在0),(0>=t εδδ,使当δ<0x 时有ε<),,(00x x t t对所有的0t t ≥成⽴,则称(6.6)的零解是稳定的.反之是不稳定的.定义2 若(6.6)的零解是稳定的,且存在10δ>, 使当1δ<0x 时有0),,(lim 00=∞→x x t t t则称(5.1)的零解是渐近稳定的. 2、李雅普诺夫第⼆⽅法定义3(李雅普诺夫函数)若函数R G →:)(x V满⾜V (0)=0, )(x V 和),,2,1(n i x i=??V都连续,且若存在0)0(0)(<>x V ,则称)(x V 是正(负)定的;既不是常正⼜不是常负的函数称为变号的.定理1(零解稳定判别定理)对系统n R x x F tx∈=),(d d (6.7)若在区域D 上存在李雅普诺夫函数V (x )满⾜(1) 正定;(2)∑=??=ni i iF x Vt1)2.5()(d d x V 常负. 则(6.7)的零解是稳定的.注意:(6.7)式中T n x F x F x F ))(,),(()(1 =在{}K G ≤∈=x R x n |上连续,满⾜局部李普希兹条件,且(0)0F =.引理若V (x )是正定(或负定)的李雅诺夫函数,且对连续有界函数()x t 有0))((lim =∞→t t x V则.0)(lim =∞→t x t定理2(零解渐近稳定判别定理)对系统(5.2),若在区域D 上存在李雅普诺夫函数V (x )满⾜(1) 正定,(2)(6.7)1d ()d ni i iVtx =?=?∑V F x 负定,则(6.7)的零解渐近稳定.定理3(零解不稳定判别定理)对系统(5.11)若存在李雅普诺夫函数V (x )满⾜(1)∑=??=ni i ix F x Vdtd 1)2.5()(V 正定,(2)V (x )不是常负函数,则系统(6.7)的零解是不稳定的.。
非线性微分方程及稳定性

定理 (1) 若矩阵A的全部特征值都具有负实部,则系统 (6.12)的零解是渐近稳定的;
(2) 若矩阵A的全部特征值中至少有一个具有正实部,则系统 (6.12)的零解是不稳定的.
定理(Hurwitz准则) 实系数 n 次代数方程
的所有根具有负实部(包括负实根)的充分必要条件是:
定理 若特征方程
没有零根或零实部的根,则非
就有
则称系统(6.3)的零解
是渐近稳定的; 区域
称为
吸引域;如果吸引域是全空间,则称
是全局渐近
稳定的
. (3) 若
都
与
使
但
则称
是不稳定的。
6.3 相平面
现在讨论二阶微分方程组
(6.5)
它的解
(6.6)
如果把时间t当做参数,仅考虑x,y为坐标的(欧氏)空间, 此空间成为方程组(6.5)的相平面(若方程组是高阶的,则称为 相空间)。在相平面(相空间)中方程组的曲线称为轨线。对一般 的方程组(6.5)在相平面上一个点可能有不止一条轨线经过。但 如果方程组(6.5)是驻定方程组,即其右端函数不显含时间t的情 形,此时(6.5)式变成:
为研究(6.1)的特解
邻近的解的性态,通常先利用
变换: 把方程(6.1)化为:
(6.28) (6.3)
其中 此时显然有:
(6.4)
6.2 稳定性的基本概念
定义6.1 设
是系统(6.3)适合初值条件
的解
(1) 若
使得只要
对一切
恒有
则称系统(6.3)的零解
是稳定的。
(2) 若 1)
是稳定的;
2)
使得只要
)趋近于它时,称此极限圈为
稳定的。如果轨线是负向(即
第六章非线性微分方程

第六章 非线性微分方程教学目的:使学生重点掌握二维自治系统奇点的分类及其附近的轨线分布;理解稳定性概念及其判定定理,会应用稳定性概念、线性化系统的特征值、Liapunov 第二方法讨论自治系统的解的稳定性;了解周期解和极限环的概念.教学内容:1、存在唯一性定理、稳定性2、相平面相平面、奇点分类、按线性近似决定微分方程组的稳定性. 3、Liapunov 第二方法 Liapunov 第二方法. 4、极限圈 周期解、极限环.教学重难点:奇点的分类与相应零解的稳定性 教学过程:§6.1 稳定性6.1.1 常微分方程组的存在唯一性定理本章讨论非线性常微分方程组n R Y Y t G dtdY∈=),;( (6.1)的解的性态.设给定方程组(6.1)的初值条件为00)(Y t Y =, (6.2) 考虑包含点),,,;(),(02010000n y y y t Y t Λ=的某区域 b Y Y a t t R ≤-≤-00,:. 在这里Y 的范数Y 定义为∑==ni iyY 12. 所谓),(Y t G 在域G 上关于Y 满足局部利普希茨条件是指:对于G 内任一点),(00Y t ,存在闭邻域G R ⊂,而),(Y t G 于R 上关于Y 满足利普希茨条件,即存在常数0>L ,使得不等式Y Y L Y t G Y t G -≤-~);()~;( (6.3) 对所有R Y t Y t ∈),(),~,(成立. L 称为利普希茨常数.存在唯一性定理 如果向量函数),(Y t G 在域R 上连续,且关于Y 满足利普希茨条件,则方程组(6.1)存在唯一解),;(00Y t t Y ϕ=,它在区间h t t ≤-0上连续,而且0000),;(Y Y t t =ϕ 这里);(max ),,min(),(Y t G M Mba h G Y t ∈==.解的延拓与连续定理 如果向量函数),(Y t G 在域G 内连续,且关于Y 满足局部利普希茨条件,则方程组(6.1)的满足初值条件(6.2)的解),;(00Y t t Y ϕ=)),((00G Y t ∈可以延拓,或者延拓到∞+(或∞-);或者使点)),;(,(00Y t t t ϕ任意接近区域G 的边界. 而解),;(00Y t t ϕ作为00,;Y t t 的函数在它的存在范围内是连续的.可微性定理 如果向量函数),(Y t G 及),,2,1,(n j i y G jiΛ∂∂在域G 内连续,那么方程组(6.1)由初值条件(6.2)确定的解),;(00Y t t Y ϕ=作为00,;Y t t 的函数,在它的存在范围内是连续可微的.6.1.2 李雅普诺夫稳定性考虑一阶非线性方程2By Ay dtdy-= (6.4)其中B A ,为常数且0>⋅B A ,初值条件为0)0(y y =.为研究方程组(6.1)的特解)(t Y ϕ=邻近的解的性态,通常先利用变换)(t Y X ϕ-= (6.6) 把方程组(6.1)化为);(X t F dtdX=, (6.7)其中))(;())(;()();();(t t G t X t G dtt d Y t G X t F ϕϕϕ-+=-=. 此时显然有 0)0;(=t F (6.8) 而把方程组(6.1)的特解)(t Y ϕ=变为方程组(6.7)的零解0=X . 于是,问题就化为讨论方程组(6.7)的零解0=X 邻近的解的性态.驻定微分方程常用的特解是常数解,即方程右端函数等于零时的解,如方程(6.4)的特解)(),(21t y t y . 微分方程的常数解,又称为驻定解或平衡解.考虑微分方程组(6.7),假设其右端函数),(X t F 满足条件(6.8)且在包含原点的域G 内有连续的偏导数,从而满足解的存在唯一性、延拓、连续性和可微性定理的条件.定义1 如果对任意给定的0>ε,存在)(00有关和一般与t εδδ>,使当任一0X 满足δ≤0X 时,方程组(6.7)的由初值条件00)(X t X =确定的解)(t X ,对一切0t t ≥均有ε<)(t X .则称方程组(6.7)的零解0=X 为稳定的.如果(6.7)的零解0=X 稳定,且存在这样的00>δ使当00δ≤X 时,满足初值条件00)(X t X =的解)(t X 均有0)(lim =+∞→t X t ,则称方程组(6.7)的零解0=X 为渐近稳定的.如果零解0=X 渐近稳定,且存在域0D ,当且仅当00D X ∈时满足初值条件00)(X t X =的解)(t X 均有0)(lim =+∞→t X t ,则域0D 称为(渐近)稳定或吸引域. 若稳定域为全空间,即+∞=0δ,则称零解0=X 为全局渐近稳定的或简称全局稳定的.当零解0=X 不是稳定时,称它是不稳定的. 即是说:如果对某个给定的0>ε不管0>δ怎样小,总有一个0X 满足δ≤0X ,使由初值条件00)(X t X =所确定的解)(t X ,至少存在某个01t t >使得ε=)(1t X ,则称方程组(6.7)的零解0=X 为不稳定的.二维情形零解的稳定性态,在平面上的示意图如图(6.2)(见254页)6.1.3 按线性近似决定稳定性 考虑一阶常系数线性微分方程组AX dtdX= (6.10) 由第五章5.3的(5.52)式可知,它的任一解均可由n i e t cii lm t m im≤≤∑=1,0λ (6.11)的线性组合,这里i λ为方程组(6.10)的系数矩阵A 的特征方程0)det(=-E A λ (6.12) 的根,i l 为零或正整数,由根i λ的重数决定.根据(6.11),与第五章相对应的可得如下结论.定理1 若特征方程(6.12)的根均具有负实部,则方程组(6.10)的零解是渐近稳定的;若特征方程(6.12)具有正实部的根,则方程组(6.10)的零解是不稳定的;若特征方程(6.12)没有正实部的根,但有零根或具有零实部的根,则方程组(6.10)的零解可能是稳定的也可能是不稳定的,这要看零根或具有零实部的根其重数是否等于1而定.考虑非线性方程组)(X R AX dtdX+=, (6.13)其中0)0(=R ,且满足条件0)(→XX R (当0→X 时). (6.14)显然0=X 是方程组(6.13)的解. 亦是方程组的奇点.问题 在什么条件下,(6.13)的零解稳定性能由线性微分方程组(6.10)的零解的稳定性来决定. 这便是所谓按线性近似决定稳定性的问题.定理2 若特征方程(6.12)没有零根或零实部的根,则非线性微分方程组(6.13)的零解的稳定性态与其线性近似的方程组(6.10)的零解的稳定性态一致. 这就是说,当特征方程(6.12)的根均具有负实部时,方程组(6.13)的零解是渐近稳定的,而当特征方程(6.12)具有正实部的根时,其零解是不稳定的.(6.2中再补充证明)该定理说明非线性微分方程组(6.13)的零解是否为渐近稳定的取决于其相应的特征方程(6.12)的全部的根是否具有负实部.临界情形至于特征方程(6.12)除有负实部的根外还有零根或具零实部的根的情形,非线性微分方程组(6.13)的零解的稳定性态并不能由线性近似方程组(6.10)来决定. 因为可以找到这样的例子,适当变动)(t R (条件(6.14)仍满足),便可使非线性微分方程组(6.13)的零解是稳定的或是不稳定的.例1 考虑有阻力的数学摆的振动,其微分方程为0sin 22=++ϕϕμϕl gdt d m dtd , (6.15) 这里长度l ,质量m 和重力加速度g 均大于0,并设阻力系数0>μ. 令dtd y x ϕϕ==,,将方程(6.15)化为一阶微分方程组x lg y m dt dy y dt dx sin ,--==μ (6.16) 原点是方程组的零解.赫尔维茨(Hurwitz )判别代数方程的根的实部是否均为负的法则. 定理3 设给定常系数的n 次代数方程0122110=+++++---n n n n n a a a a a λλλλΛ, (6.18)其中00>a ,作行列式,,0,,345123013231211Λa a a a a a a a a a a a a =∆=∆=∆ ,000142322212012301-----∆==∆n n nn n n n n a a a a a a a a a a a a ΛM MM M M ΛΛ 其中0=i a (对一切n i >).那么,方程(6.18)的一切根均有负实部的充分必要条件是下列不等式同时成立: 0,0,,0,0,01321>>∆>∆>∆>-n n a a Λ. 证明见高等代数的课本,略.例2 考虑一阶非线性微分方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧+--+=++-=+-+-=),(,,222232z y e z y x dtdz z y x y x dtdy e x z y x dt dx x x 例3 对三次方程0)1(2)()1(23=-++++++c ab c a b b a λλλ,其中0,0,0>>>c b a ,考虑其根均具有负实部时参数c 的变化范围.习题6.1 第260页1(1),(3);3(1),(3);4(1),(3);5§6.2 V 函数方法6.2.1 李雅普诺夫定理对于数学摆的振动,当摆有阻力时可由其线性近似方程组决定它的稳定性. 但当摆无阻力时,方程组(6.16)变成x lg dt dy y dt dx sin ,-== (6.19) 属于临界情形,不能按线性近似决定其稳定性. 为判断其零解的稳定性态. 直接对方程组(6.19)进行处理. 李雅普诺夫第二方法的思想:构造一个特殊的函数),(y x V ,并利用函数),(y x V 及其通过方程组的全导数dty x dV ),(的性质来确定方程组解的稳定性. 具有此特殊性质的函数),(y x V 称为李雅普诺夫函数,简称V 函数.如何应用V 函数来确定非线性微分方程组的解稳定性态问题. 只考虑非线性驻定微分方程组)(X F dtdX= (6.20)定义2 假设)(X V 为在域H X ≤内定义的一个实连续函数,0)0(=V . 如果在此域内恒有0)(≥X V ,则称函数V 为常正的;如果对一切0≠X 都有0)(>X V ,则称函数V 为定正的;如果函数V -是定正的(或常正的),则称函数V 为定负(或常负)的.进而假设函数)(X V 关于所有变元的偏导数存在且连续,以方程(6.20)的解代入,然后对求t 导数i ni ii n i i f x Vdt dx x V dt dV ∑∑==∂∂=∂∂=11, 这样求得的导数dtdV称为函数V 通过方程(6.20)的全导数. 例1函数 2)(),(y x y x V +=是常正的;而函数42)(),(y y x y x V ++=是定正的;定理4 如果对微分方程组(6.20)可以找到一个定正函数)(X V ,其通过(6.20)的全导数dtdV为常负函数或恒等于零,则方程组(6.20)的零解是稳定的. 如果有定正函数)(X V ,其通过(6.20)的全导数dtdV为定负的,则方程组(6.20)的零解是渐近稳定的.如果存在函数)(X V 和某非负常数μ,而通过(6.20)的全导数dtdV可以表示为)(X W V dtdV+=μ, 且当0=μ时,W 为定正函数,而当0≠μ时W 为常正函数或恒等于零;又在0=X 的任意小邻域内都至少存在某个X ,使0)(>X V ,那么,方程组(6.20)的零解是不稳定的. 证明详见第265页.几何解释 由未知函数组成的空间称为相空间,二维相空间又称为相平面,微分方程的解在相空间中的轨迹称为轨线,轨线亦可定义为积分曲线在相空间中的投影.以平面微分方程组为例,从相平面上轨线与V 函数的关系来说明稳定性定理的几何意义.例2 考虑平面微分方程组33,ay x dtdyax y dtdx+=+-=, (6.26)定理4是李雅普诺夫稳定性的基本定理,对含有时间t 的非驻定的微分方程组及含有时间t 的V 函数),(X t V 也有相应的定理,其证明也一样.定理5 如果存在定正函数)(X V ,其通过方程组(6.20)的全导数dtdV为常负,但使 0)(=dtt dV 的点X 的集中除零解0=X 之外并不包含方程组(6.20)的整条正半轨线,则方程组(6.20)的零解是渐近稳定的. 定理5的证明与定理4的类似.例3 数学摆的稳定性问题 6.2.2 二次型V 函数的构造应用李雅普诺夫第二方法判断微分方程组零解的稳定性的关键是找到合适的V 函数. 如何构造满足特定性质的V 函数是一个有趣而复杂的问题. 这里考虑常系数线性微分方程组构造二次型V 函数的问题,并利用它来补充证明按线性近似决定稳定性的定理2定理6 如果一阶线性方程组AX dtdX= (6.10)的特征根i λ均不满足关系),,2,1,(0n j i j i Λ==+λλ,则对任何负定(或正定)的对称矩阵C ,均有唯一的二次型 )()(B B BXX X V T T== (6.27)使其通过方程组(6.10)的全导数有)(C C CX X dtdVT T ==. (6.28)且对称矩阵B 满足关系式C BA B A T=+, (6.29) 这里TA ,TB ,TC TX 分别表示X C B A ,,,的转置.如果方程组(6.10)的特征根均具有负实部,则二次型(6.27)是定正(或定负)的;如果方程组(6.10)有均正实部的特征根,则二次型(6.27)不是常正(或常负)的.例4 考虑二阶线性微分方程02322=++x dt dxdtx d , 经过变换y dtdx= 习题6.2 1(1),(3),(5);2(1),(3);3(1),(3),(5);4;5§6.3 奇点考虑二维(平面)一阶驻定微分方程组⎪⎩⎪⎨⎧==),,(),,(y x Y dtdy y x X dt dx(6.33)同时满足0),(,0),(==y x Y y x X 的点),(**y x 是微分方程组(6.33)的奇点,*=x x ,*=y y 是方程的解. 可从通过坐标平移将奇点移到原点)0,0(,此时0)0,0()0,0(==Y X .考虑驻定微分方程组是线性的情形下其轨线在相平面上的性态,并根据奇点邻域内轨线分布的不同性态来区分奇点的不同类型. 这时方程的形式为⎪⎩⎪⎨⎧+=+=.,dy cx dtdyby ax dt dx(6.36)显然,坐标原点0,0==y x 是奇点. 如果方程组的系数满足条件0≠dc b a (6.37)则此奇点还是唯一的. 以下假定条件(6.37)成立.按特征根为相异实根、重根或共轭复根,分五种情形进行讨论. 情形1 同号相异实根 这时方程的标准形式为ηληξλξ21,==dtd dt d ,(6.40) 其解为t tBe t Aet 21)(,)(λληξ==, (6.41)其中21,λλ为实特征根,而B A ,是任意实数.21,λλ同为负实数时,方程的零解是渐近稳定的,称对应的奇点为稳定结点. 21,λλ同为正实数时,方程的零解为不稳定的,而对应的奇点称为不稳定结点.情形2 异号实根, 奇点称为鞍点.鞍点是不稳定的. 情形3 重根 这时可分两种情况讨论:(1)0≠b 或0≠c . 如前面所指出的,这时方程可化为如下标准形式ληηηλξξ=+=dtd dt d ,, (6.42) 其解为t tAe t eB At t λληξ=+=)(,)()(, (6.43)其中λ为实特征根,而B A ,是任意实常数.当0<λ时,奇点称为稳定退化结点. 假如0>λ,奇点是不稳定退化结点.(2)0==c b ,这时方程组(6.36)取形式 d a y dtdy x dt dx ====λλλ,,, 其解为t tBe t y Ae t x λλ==)(,)(,于是 x ABy =. 奇点称为奇结点,且0<λ时为稳定的,而0>λ时为不稳定的.情形4 非零实部复根 这时方程的标准形式为αηβξηβηαξξ+-=+=dtd dt d ,,(6.44) 这里βα,分别为特征根的实部和虚部. 方程(6.44)的解的极坐标形式B t Ae r t +-==βθα,, (6.45) 其中0>A 和B 为任意常数.奇点为焦点,且0<α时为稳定的,而0>α时为不稳定的. 情形5 纯虚根奇点称为中心. 零解为稳定,但非渐近稳定的. 定理7 如果平面线性驻定方程组(6.36)的系数满足条件(6.37),则方程的零解(奇点)将依特征方程(6.39)的根的性质而分别具有如下的不同特性:(1)如果特征方程的根21λλ≠为实根,而021>λλ时奇点为结点,且当01<λ时结点是稳定的,而对应的零解为渐近稳定的,但当01>λ时奇点和对应的零解均为不稳定的;当021<λλ时奇点为鞍点,零解为不稳定的.(2)如果特征方程具有重根λ,则奇点通常为退化结点,但在0==c b 的情形奇点为奇结点. 又当0<λ时,这两类结点均为稳定的,而零解为渐近稳定的,但当0>λ时奇点和对应的零解均为不稳定的.(3)如果特征方程的根为共轭复根,即21λλ=,则当0Re 1≠λ时奇点为焦点,且当0Re 1<λ时焦点为稳定的,对应的零解为渐近稳定的,而当0Re 1>λ时奇点和对应的零解均为不稳定的;当0Re 1=λ时奇点为中心,零解为稳定但非渐近稳定的.程(6.36)的奇点)0,0(O ,当0det ≠A 时,根据A 的特征根的不同情况可有如下的类型:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧中心—实部为零焦点—实部不为零复根退化结点临界结点重(非零)实根鞍点—异号结点—同号相异(非零)实根实根 A 的系数与奇点分类的关系1)042>-q p○1 0>q奇点为结点二根同负二根同正--⎭⎬⎫><00p p○2 奇点为鞍点二根异号--<0q 2)042=-q p结点奇点为临界结点或退化负的重根正的重根--⎭⎬⎫><00p p 3)042<-q p0≠p 复数根的实部不为零,奇点为焦点 0=p 复数根的实部为零,奇点为中心.综合上面的结论,由曲线q p 42=,q 轴及p 轴把q p 0平面分成几个区域,不同的区域,对应着不同类型的奇点(见288页(图6.10)).例1 考虑二阶线性微分方程02322=++x dt dxdtx d , 通过变换y dt dx=可将它化为下列方程组 ⎪⎩⎪⎨⎧--==,32,y x dtdyy dt dx习题6.3 1;2;3.§6.4 极限环和平面图貌6.4.1 极限环对于二阶常系数微分方程组,除了在中心型奇点邻域内轨线是一族围绕原点的闭曲线(对应于方程组的周期解)外;其余的情形均是一端趋于奇点(+∞→t 或-∞→t ),另一端趋于无穷远(-∞→t 或+∞→t )或两端都趋于无穷远的轨线,不存在其他的复杂情形. 对于非线性微分方程组,在6.1中利用线性近似方程组讨论了奇点邻域的轨线性态,至于全相平面的轨线图貌,情况就复杂多了.例1 对平面二阶非线性驻定方程组⎪⎩⎪⎨⎧+-+-=+-+=)(),(2222y x y y x dtdy y x x y x dt dx (6.47) 如取极坐标θcos r x =,θsin r y =,则方程组(6.47)可化为)1(2r r dt dr -=,1-=dtd θ, 孤立的周期解(闭轨线),在相平面上称为极限环. 当极限环附近的轨线均正向(即+∞→t 时)趋近于它时,称此极限环为稳定的. 如果轨线是负方向(即-∞→t 时)趋近于它时,称此极限环为不稳定的. 当此极限环的一侧轨线正向趋近于它时,称此极限环为半稳定的.不先求出特解(如上例的1=r ),而仅仅由构造出的环域D 便可以证明在此环域内必存在极限环. 这种构造特殊环域来寻求极限环的方法称为本迪克松(Bendixson )方法. 定理8 如果G 内存在有界的环形闭域D ,在其内不含有方程组(6.33)的奇点,而(6.33)的经过域D 上点的解)(),(t y y t x x ==,当0t t ≥(或0t t ≤)时不离开该域,则或者其本身是一个周期解(闭轨线),或者它按正向(或负向)趋近于D 内的某一周期解(闭轨线).通过构造有特殊性质的域D 可以确定周期解(极限环)的存在性,能否通过构造具有别的性质的域*D 来否定周期解(极限环)的存在呢?定理9 如果于G 内存在单连通域*D ,在其内函数yY x X ∂∂+∂∂不变号且在*D 内的任何子域上不恒等于零,则方程组(6.33)在域*D 内不存在任何周期解,更不存在任何极限环.例2 考虑6.1例1的数学摆,范德波尔微分方程 0)1(222=+-+x dt dx x dtx d μ, (6.49) 考虑所谓的李纳(Lienard )微分方程0)()(22=++x g dt dx x f dt x d , (6.50)如果记⎰=x dx x f x F 0)()(,并设)(x F dt dx y +=,则方程(6.50)可化为平面微分方程组 )(),(x g dtdy x F y dt dx -=-=. (6.51) 对于方程(6.50)或方程组(6.51),有下面的定理.定理10 假设(1))(x f 及)(x g 对一切x 连续,)(x g 满足局部利普希茨条件;(2))(x f 为偶函数,)(,0)0(x g f <为奇函数,当0≠x 时0)(>x xg ;(3)当±∞→x 时,)(;)(x F x F ±∞→有唯一正零点a x =,且对)(,x F a x ≥是单调增加的.那么,方程(6.50)有唯一周期解,即方程组(6.51)有一个稳定的极限环6.4.2 平面图貌奇点和极限环是相平面上两种特殊的轨线,希望在相平面上画出一般的轨线的图貌,以了解微分方程的解的性态.定理11 两种群竞争一般模型(6.53)的每一条轨线,当∞→t 时都趋于有限个平衡点之一.定理12 平面驻定微分方程(6.33)在平面有界区域上结构稳定的充要条件是(1) 只有有限个奇点,且均为双曲的;(2) 只有有限个闭轨,且均为单重极限环;(3) 没有鞍点之间的分界线.习题6.4 第307页 1(1),(3);2(1),(3).。
常微分方程中的几种非线性方程的解法1

2015年度本科生毕业论文(设计)常微分方程中几种非线性方程的解法教学系:数学学院专业:数学与应用数学年级:2011级姓名:杨艺芳学号:20110701011053导师及职称:刘常福教授2015年5月毕业论文(设计)原创性声明本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。
据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经撰写或发表过的研究成果。
对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。
作者签名:日期:毕业论文(设计)授权使用说明本论文(设计)作者完全了解文山学院有关保留、使用学生毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。
有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。
学校可以公布论文(设计)的全部或部分内容。
保密的论文(设计)在解密后适用本规定。
作者签名:指导教师签名:日期:日期:杨艺芳毕业论文(设计)答辩委员会(答辩小组)成员名单姓名职称单位备注主任(组长)摘要非线性常微分方程是常微分方程中重要的一部分,源于应用数学、物理学、化学等许多科学领域,高阶微分方程比二阶微分方程研究要困难得多,并且研究还不成熟。
鉴于非线性微分方程在理论上和实践上的重要意义。
本文将采用列举法,对非线性常微分方程的一些解题方法进行分析。
如“利用初等积分法与引入变量法”、“首次积分法”“常数变易法”、“化为线性微分方程求解法”等方法。
在说明这些方法的同时,说明这些方法的特点以及解题思路,随之附上应用对应方法的例题,在例题的基础上理解方法的精髓。
这种对非线性方程地学习,对未来研究非线性方程地解法具有一定的参考价值。
关键词:常微分方程;非线性常微分方程;通解英文目录一、引言 (1)二、线性微分方程与非线性微分方程的区别 (1)2.1线性微分方程 (1)2.2非线性微分方程 (1)三、非线性微分方程的解法 (2)3.1利用初等积分与引入新变量法 (2)3.1.1形如()(),0n F x y =型的方程分的两种情形............................23.1.2形如()()',,...,0n F y y y =型的方程. (3)3.1.3形如()()',,...,0n F x y y =型的方程........................................43.2首次积分法 (4)3.3常数变易法 (5)3.3.1引用定理3.1 (5)3.3.2形如dy y y g dx x x ⎛⎫=+ ⎪⎝⎭型的方程............................................63.3.3形如()()'y y P x e Q x +=型的方程 (6)3.3.4形如'x y xy y+=型的方程..................................................73.4可化为线性方程法 (7)3.4.1通过变换方程化为线性方程的方程 (7)3.4.2通过求导运算化为线性的方程 (8)3.4.3伯努利方程 (8)3.4.4黎卡提方程 (8)3.4.5二阶非线性方程()''',,,0F x y y y =或()''',,y f x y y =型 (9)四、结束语.....................................................................................10参考文献........................................................................................10致谢. (11)1一、引言在学习了常微分方程的基础上,我们接触了非线性常微分方程,非线性微分方程对于当代大学生来说,是一个难点。
第六章常微分方程

第六章 常微分方程一 基本概念定义1 微分方程: 含有自变量、未知函数及未知函数导数或微分的方程称为微分方程. 定义2 常微分方程:未知函数是一元函数的微分方程称为常微分方程. 一般形式:()(,,,,)0n F x y y y '= ;标准形式:()(1)(,,,,)n n y f x y y y -'= 定义3 方程的阶: 微分方程中的导数或微分的最高阶称为方程的阶。
定义4 方程的解 函数()y f x =满足微分方程()(,,,,)0n F x y y y '= ,则称()y f x =是微分方程()(,,,,)0n F x y y y '= 的解.方程解分为显示解和隐示解.定义5 通解: 含有任意常数,任意常数的个数与方程的阶数相同的解称为方程的通解. 定义6 特解:满足某个初始条件的解称为方程的特解.二 基本方法1.变量可分离的方程 (1)d ()()d y p x q y x=,分离变量;则有d ()d ()y p x x q y =,两边积分d ()d ()y p x x q y =⎰⎰.(2)1212()()d ()()d 0M x M y x N x N y y +=, 分离变量;则有 2121()()d d ()()N y M x y x M y N x =-,两边积分2121()()d d ()()N y M x y x M y N x =-⎰⎰2.齐次方程d d y y x x ϕ⎛⎫= ⎪⎝⎭ 基本解法:令y u x =,则y ux =,两边对变量x 求导,d d d d y ux u x x=+,于是有 d ()d uu x u xϕ=+,从而化为变量分离方程为d d ()ux u uxϕ=-.3.一阶线性非齐次方程 ()()y p x y q x '+=公式解:()d ()d e [()e d ]p x x p x xy q x x C -⎰⎰=+⎰4.伯努利方程 ()()ny p x y q x y '+=, 基本解法:令1nz y-=,则有(1)()(1)()z n p x z n q x '+-=-,从而方程化为一阶线性非齐次方程,所以该方程解为(1)()d (1)()d 1e [(1)()e d ]n p x x n p x xnyn q x x C ----⎰⎰=-+⎰5.全微分方程若方程(,)d (,)d 0M x y x N x y y +=满足M N yx∂∂=∂∂,则称该方程为全微分方程.解法1 特殊路径积分解法0(,)d (,)d x y x y M x y x N x y y C +=⎰⎰其中点00(,)x y 一般可以任意选取,只要有利于积分,通常情况下,选取00(,)x y 为(0,0).解法2 凑微分(分组凑微分)(,)d (,)d d (,)M x y x N x y y u x y +=则方程的通解是(,)u x y C =.注1 凑微分方法对某些全微分方程是非常好用的,但对一些方程是不适用的。
《常微分方程》课程大纲

《常微分方程》课程大纲一、课程简介课程名称:常微分方程学时/学分:3/54先修课程:数学分析,高等代数,空间解析几何,或线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化), 高等数学(多元微积分,无穷级数)。
面向对象:本科二年级或以上学生教学目标:围绕基本概念与基本理论、具体求解和实际应用三条主线开展教学活动,通过该课程的教学,希望学生正确理解常微分方程的基本概念,掌握基本理论和主要方法,具有一定的解题能力和处理相关应用问题的思维方式,如定性分析解的性态和定量近似求解等思想,并希望学生初步了解常微分方程的近代发展,为学习动力系统学科的近代内容和后续课程打下基础。
二、教学内容和要求常微分方程的教学内容分为七部分,对不同的内容提出不同的教学要求。
(数字表示供参考的相应的学时数,第一个数为课堂教学时数,第二个数为习题课时数)第一章基本概念(2,0)(一)本章教学目的与要求:要求学生正确掌握微分方程,通解,线性与非线性,积分曲线,线素场(方向场),定解问题等基本概念。
本章教学重点解释常微分方程解的几何意义。
(二)教学内容:1.由实际问题:质点运动即距离与时间关系(牛顿第二运动定律),放射性元素衰变过程,人口总数发展趋势估计等,通过建立数学模型,导出微分方程。
2.基本概念(常微分方程,偏微分方程,阶,线性,非线性,解,定解问题,特解,通解等)。
3.一阶微分方程组的几何定义,线素场(方向场),积分曲线。
4.常微分方程所讨论的基本问题。
第二章初等积分法(4,2)(一)本章教学目的与要求:要求学生熟练掌握分离变量法,常数变易法,初等变换法,积分因子法等初等解法。
本章教学重点对经典的几类方程介绍基本解法,勾通初等积分法与微积分学基本定理的关系。
并通过习题课进行初步解题训练,提高解题技巧。
(二)教学内容:1. 恰当方程(积分因子法); 2. 分离变量法3. 一阶线性微分方程(常数变易法)4. 初等变换法(齐次方程,伯努利方程,黎卡提方程)5.应用举例第三章常微分方程基本定理(10,2)(一)本章教学目的与要求:要求学生正确掌握存在和唯一性定理及解的延伸的含义,熟记初值问题的解存在唯一性条件,正确理解解对初值和参数的连续依赖性和可微性的几何含意。
常微分方程-基本概念

(1) y= kx, k 为常数;
(2) ( y - 2xy) dx + x2 dy = 0;
(3) mv(t) = mg - kv(t);
2019/11/21
3
(4) y 1 1 y2 ; a
(5)
d2q
dt 2
g sinq
l
0
(g, l 为常数).
微分方程中出现的未知函数最高阶导数的阶数,
1 dy f ( x)dx g( y)
的形式,使方程各边都只含有一个变量.
2019/11/21
15
(2) 两边积分
两边同时积分,得
左边
1 dy, g( y)
故方程通解为
右边 f (x)dx.
1 dy g( y)
f
( x)dx
C.
我们约定在微分方程这一章中不定积分式表示 被积函数的一个原函数, 而把积分所带来的任意常 数明确地写上.
2019/11/21
10
例 4 已知直角坐标系中的一条曲线通过点
(1, 2),且在该曲线上任一点 P(x, y) 处的切线斜率
等于该点的纵坐标的平方,求此曲线的方程.
解 设所求曲线的方程为 y = y(x),根据导数的
几何意义及本题所给出的条件, 得
y = y2,
即
dx dy
1 y2
,
积分得
x 1 C.
即 ( 1 1 )dy kadx. ya y
2019/11/21
22
两边积分,得 ln y a kax lnC. y
经整理,得方程的通解为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定理6.1 (稳定性的Liapunov判别法) 设有定义在 D Rn
上的定正(定负)函数 V (x), dV dt
(6.2)
表示 V (x) 沿系统(6.2)的轨线
的全导数
dV (1) 若 dt (6.2)
dV (2) 若 dt (6.2)
在 D 上是常负(常正)的,则 x 0 是稳定的; 在 D 上是定负(定正)的,则 x 0 是渐近稳定的;
称为 x 0 吸引域;如果吸引域是全空间,则称 x 0 是全局渐近
稳定的.
(3) 若 0 0, 0, 都 x0 与 t1 t0 , 使 x0 ,
但 x(t;t0, x0 , 则称 x 0 是不稳定的;
例如, 微分方程 dx ax
dt
满足初值条件 x(t0 ) x0 ,
(a)
(b)
又知,对任意常数,函数x cos(t ), y sin(t ), 也是方程组的解,它的积分曲线是经过(,1, 0)的螺旋
线,但是它们与解x cos t, y sin t有同一条轨线 x2 y2 1.
同是,我们也可以看出, x cos(t ), y sin(t )
(6.1)称为非自治系统, (6.2)称为自治系统,
6.1.1 非自治系统与自治系统的主要区别
自治系统不论是在相空间还是增广相空间,轨线匀不相交. 而非自
治系统在增广相空间积分曲线不相交,但在相空间轨线可能相交.
定义6.1 若存在 x* D 使 f (x*) 0, 则点 x* 称为系统(6.2)
的解为
x x0ea(tt0 ) .
6.3 判定稳定性的Liapunov函数法
定义6.3 设 D x x H Rn,V C(1) (D).
若 V (0) 0 且当 x D /0 时, V (x) 0( 0), 则称 函数 V 在 D 上是常正(常负)的;若 V (0) 0 且当 x D /0
a0
(6.5)
6.4 由线性近似系统判定稳定性
dx f (x), f : D Rn Rn , dt
(6.10)
设 x 0 为(6.10)的解, 利用TayLor公式 可将(6.10)化为
dx Ax (x), dt
称系统(6.11)的线性近似系统为
dx Ax, dt
(6.12)
定理 6.2 (1) 若矩阵A的全部特征值都具有负实部,则系统 (6.10)的零解是渐近稳定的;
(2) 若矩阵A的全部特征值中至少有一个具有正实部,则系统 (6.10)的零解是不稳定的.
定理 6.3 (Hurwitz准则) 实系数 n 次代数方程
a0n a1n1 an1 an 0
例6.5 判定系统 零解的稳定性.
dx
dt
y
z
2
x
2y
(sin
y
z 2 )ex ,
dz dt
x
y
z 1
z
,
内除x 0 外不含有系统(6.2)的整条轨线,
则 x 0 是渐近稳定的.
附注2 若 V (x)
在 x0
的邻域内是变号函数,而
dV dt
(6.2)
定号,则 x 0 是不稳定的.
例5.2 讨论系统
dx dt
y,
dy
dt
x
ay(1
y)2,
的零解 x y 0 的稳定性.
dV (3) 若 dt (6.2)
在 D 上是定正(定负)的,则 x 0 是不稳定的;
用来判定稳定性的这种函数 V (x, y) 称为Liapunov函数,也称为 V
函数.
附注1
若 V (x) 定正(定负),
dV dt (6.2)
常负(常正), 但集合
x
dV dt
(6.2)
0
6.1.2 相平面、相轨线与相图
dx
dt dy
dt
P(x, Q(x,
y) y)
(6.3)
我们把平面xoy称为(6.3)的相平面,而把(6.3)的解在平面 上的轨迹称为(6.3)的轨线或相轨线.轨线族在相平面上 的图像称为(6.3)的相图.
容易看出,解x x(t), y y(t)在相平面中的轨线正是这 个解在(t, x, y)三维空间中的积分曲线在相平面上的投 影.由相轨线来研究方程(6.3)的通解比用积分曲线要方 便得多.
6. 1 自治系统与非自治系统
dx f (t, x), f : G (a,b) D R Rn Rn, dt
(6. 1)
dx f (x), f : D Rn Rn , dt
(6. 2)
把t理解为时间,x理解为相空间 Rn 内动点的坐标, 那末(6.1) 确定了一个向量场(速度场), (6.2)确定一个定常场.
的积分曲线可以由x cost, y sin t的积分曲线向
下平移个单位而得到,由于的任意性,可知轨线
x2 y2 1对于着无数多条积分曲线.
为了画出方程组在相平 面上的相图,我们求得 方程组的通解为
x Acos(t )
y
A
sin(t
)
其中A,为任意常数.于是方程组的轨线就
的一个平衡位置, 也称为此系统的一个奇点.
轨线只可能与奇点无限接近, 但不可能通过奇点, 否则与解的 唯一性相矛盾. 对于一给定的自治系统来说, 奇点或平衡位置是人 们关心的重要问题, 在奇点附近轨线的分布情况是多种多样的, 这 也是对自治系统进行研究的重要内容之一,本书对此不作进一步讨 论,有兴趣的同学可参考常微分方程教材,我们在此主要讨论奇点的 的稳定性.
下面通过一个例子来说明轨线与积分曲线的关系
dx dt
y
dy
dt
x
很明显方程(6.4)有一个特解x cost, y sin t, 它在三维空间(t, x, y)的积分曲线是一条螺旋 线如图(a),它经过(0,1,0),当t增大时, 螺旋线向 上盘旋. 上述积分曲线在xoy平面上的投影是 一个圆x2 y2 1,这个圆正是上述特解在xoy 上的相轨线.
的所有根具有负实部(包括负实根)的充分必要条件是:
1
def
a1
0,
2
def
a1 a0
a3 0, a2
a def 1 3 a0
a3 a2
a5 a4
0,
a1
,
n
def
a0
a3 a2
a2n1 a2n2 0,
0 a1 a3
0 0 an
其中当 k n 时, ak 0.
时, V (x) 0( 0), 则称 函数 V 在 D 上是常正(常负)的;常
常正或常负的函数统称为常号函数;定正或定负的函数统称为
定号函数. 若 V (0) 0 且在 x 0 的任意领域内均既有使 V (x) 0 的点, 也有使 V (x) 0 的点, 则称函数 V 在 D
上是变号的.
是圆族.如图(b)
特别,x=0,y=0也是方程组(6.3)的解,它的轨线 就是原点O(0,0).
6.2 稳定性的基本概念
定义6.2 设 x(t;t0 , x0 ) 是系统(5.2)适合初值条件 x(t0 ) x0
的解
(1) 若 0, ( ) 0, 使得只要 x0 , 对一切
第六章 非线性微分方程
6.1 自治系统与非自治系统 6.2 稳定性的基本概念 6.3 判定稳定性的 Liapanov 函数法 6.4 由线性近似系统判定稳定性
为什么要研究微分方程的定性理论?
由于大多数微分方程,即使是低阶线性方程,它的解一般也难以求 得对于非线性微分方程(组),除了极少数特殊情况之外,要想用衽初等 方法去求解,往往是不可能的.这就迫使人们去寻找其它的研究途径, 本章4.3节中所介绍的幂级数解法就是途径之一,另一种重要的途径 是利用数值计算方法通过计算机去求其近似解,这是一种很实用的方 法,我们将在后续课程中专门学习.本节即将介绍的重要方法,就是不 通过求解而直接从微分方程的系数去研究其解的主要特征和性态,这 就是所谓的定性分析方法.这种方法在利于人们掌握解的最终趋势,了 解全部解的分布特征和相互关系.在理论分析和实际应用中,定性分析 法和数值计算法两者若能相互结合、相辅相成。将会产生更好的效 果。限于篇幅,本节我们主要介绍定性分析方法中稳定性理念的初 步知识,而且局限于对自治系统进行讲解。
t t0 恒有
x(t;t0, x0) ,
则称系统(5.2)的零解 x 0 是稳定的; (2) 若 1) x 0 是稳定的; 2) t 0, 1 0, 使得只要 x0 1, 就有
lim
t
x(t;
t0
,
x0
)
0,
则称系统(6.2)的零解 x 0 是渐近稳定的; 区域 x x 1