常微分方程(王高雄)第三版
常微分方程-王高雄-第三版参考答案

习题1.2 1.dxdy=2xy,并满足初始条件:x=0,y=1的特解。
解:ydy =2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy2ydy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++ 解:原方程为:dx dy =y y 21+31x x +y y 21+dy=31xx +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:yy −1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c 另外 x=0,y=0也是原方程的解。
5.(y+x)dy+(x-y)dx=0 解:原方程为:dx dy =-yx y x +−令x y =u 则dx dy =u+x dxdu代入有: -112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y. 6. xdxdy-y+22y x −=0 解:原方程为:dx dy =x y +x x ||-2)(1xy − 则令x y =u dx dy =u+ x dxdu 211u − du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c. 8dxdy +y e xy 32+=0解:原方程为:dx dy =ye y 2e x32 ex3-3e 2y −=c.9.x(lnx-lny)dy-ydx=0 解:原方程为:dx dy =xy ln x y令x y =u ,则dxdy =u+ x dxduu+ xdxdu=ulnu ln(lnu-1)=-ln|cx| 1+lnxy=cy. 10.dxdy =e yx − 解:原方程为:dxdy =e x e y− e y=ce x11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u+du=dx arctgu=x+c arctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21uu-arctgu=x+c y-arctg(x+y)=c. 13.dx dy =1212+−+−y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=c xy-y 2+y-x 2-x=c14:dx dy =25−−+−y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0 dxy-d(21y 2+2y)-d(21x 2+5x)=0y 2+4y+x 2+10x-2xy=c.15: dxdy =(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy =(x+4y)2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du =4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y (1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y+ 证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x 1dx所以原方程可化为变量分离方程。
常微分方程第一到四章知识

教材及参考资料
• 教 材: 常微分方程,(第三版)(07年精品教材), 王高雄等 (中山大学), 高教出版社
• 参考书目: [1] 常微分方程, 东北师大数学系编,高教出版社 [2] 常微分方程讲义,王柔怀、伍卓群编,高教出版社 [3] 常微分方程及其应用,周义仓等编,科学出版社 [4] 微分方程定性理论,张芷芬等编,科学出版社。
"
证明: 对y sinx,由于
y y sin x sin x 0
"
y cosx,y sin x 故对x (, ), 有
' "
故y sinx是微分方程 y" y 0在(,)上的一个解 . 同理y cosx是微分方程 y" y 0在(,)上的一个解 .
y sinx,y cosx都是方程 y y 0的特解 .
"
可在通解y c1sinx c2cosx中分别取 c1 1, c2 0, 得到: y sinx, c1 0, c2 1, 得到: y cosx.
定解条件
为了从通解中得到合乎要求的特解,必须根据实 际问题给微分方程附加一定的条件,称为定解条件 求满足定解条件的求解问题称为定解问题 常见的定解条件是初始条件,n阶微分方程的初始 条件是指如下的n个条件:
课程的教学目的与任务
• 通过该课程的学习,使学生正确理解常微分 方程的基本概念,掌握其基本理论和主要方法, 具备良好的解题能力,为学习本学科近代发展理 论和后继课程打下基础。同时通过一些成功利用 微分方程解释实际现象问题的著名范例,培养学 生利用微分方程建立数学模型解决实际问题的能 力,认识到数学来源于实践,又服务于实践,从 而培养学生的数学实践观和加强数学实践能力。 该课程又是数学分析的继续和进一步学习泛函分 析、数理方程等必不可少的基础,对提高学生的 素质,使之更好地适应当前经济建设的需要提供 必备的知识基础。
常微分方程第三版答案(王高雄)

dx
2 2
y
1 2 = ln x − ln 1 + x + ln c (c ≠ 0), (1 + 2
y )(1 + x ) = c x
1+
y
2
(1 + x ) = c x
2
2
4 (1 + x) ydx + (1 − y ) xdy = 0 y=0 x=0 ln x + x + ln y − y = c, xy ≠ 0 ln xy + x − y = c, 1+ x 1− y dx = dy = 0 x y
按
dy 1 − 2 x y −1 dx 够 x 2 次0 个 dy 1 − 2 x y +1 dx 次- x 2 个
18.
x dy = = f ( xy ) y dx x dy 2 + x 2 y 2 = y dx 2 − x 2 y 2 xy = u, x
xy = u
1 . y (1 + x 2 y 2 )dx = xdy (2).
y+x
dy dy = , dx dx
x
dy du = −y dx dx
1 du du u 1 − 1 = f(u), = (f(u) + 1) = (uf(u) + u) y dx dx = y(f(u) + 1) x x x=0 y=0 du 1 3 = (2u + u ), dx x xy ≠ 0s du 2u + u
在个
次个e 次 ce
− sin t
+ sin t − 1 个个个
个
截
dy x − y = ex xn dx n 个个 个个个n
常微分方程第一章绪论

拉格朗日 (1736 – 1813)
法国数学家. 他在方程论, 解析函数论, 及数论方面都作出了重要的贡献, 近百 余年来, 数学中的许多成就都直接或间 接地溯源于他的工作, 他是对分析数学 产生全面影响的数学家之一.
例3 R-L-C电路问题。
如图所示,R-L-C电路是由电阻R、电感 L、电容C和电源E串联组成的电路。其中, R、L、C常数,电源电动势是时间t的已知 函数:E=e(t)。试建立当开关K合上后电流 I(t)应满足的微分方程。
例4 单摆运动问题 单摆是一根长为l的线段的上端固定而
下端系一质量为m的摆锤的简单机械装置。 开始时将单摆拉开一个小角度φ0,然后放 开,使其在摆锤的重力作用下在垂直平面 上摆动。试建立单摆的运动方程。
2u x2
2u y2
2u z2
0
1 )如果微分方程中未知数只依赖于一个自变量,
称为常微分方程。例如:
xky0,
xx2 sint,
2 )如果微分方程中未知数依赖于两个或更多的自 变量,称为偏微分方程。例如:
v v v, t s
2u x2
2u y2
2u z2
0
注:我们不特别声明,就称常微分方程为微分方程或方程。
若存在 (x,c1,,cn) 的一个邻域,使得
,
, ,
c1
c2
cn
, c1
, c2
,
cn 0
(n1) ,
(n1) ,
,
(n1)
c1
c2
cn
则称 y(x,c1,,cn) 含有n个相互独立的常数。
例:yc1cox sc2sixn是 yy0的通解。 因为 y c1sixn c2co x而s
§ 1.1 微分方程的概念
常微分方程(王高雄)第三版 2.1教学教材

(I)齐次方程
ddyxg(yx)
(II) 形如 ddyxfaa21xxbb12yycc12的方,程 其中 a1,b1,c1,a2,b2,c2为任意.常数
(I) 形如
dyg(y) dx x
(2.5)
方程称为齐次方程, 这里g(u)是u的连续函. 数
求解方法: 10 作变量代换(引入新变量)u y ,方程化为
x
du g(u)u, (这里d由 yx于 duu)
dx x
dx dx
20 解以上的变量分离方程
30 变量还原.
例4 求解方程 xdy 2xyy dx
(x0)
解: 方程变形为 dy2 yy dx x x
(x0)
这是齐次方程, 令u y 代入得 x
x du u 2 uu 即 x du 2 u
dx
为 (1)的情形,可化为变量分离方程求解.
解的步骤:
10解方 程 aa21xx 组 bb1 2yy cc1200,
得解yx
,
20 作变换 YXyx,方程化为
dY a1Xb1Y dX a2Xb2Y
g
(
Y X
)
30再经变 u换 Y,将以上方程化离 为方 变程 量分
X
40 求解
50 变量还原
dx
10 分离变量, 当 (y)0时 ,将 (2.1)写成
dy f (x)dx,
(y)
这样变量就“分离”开了.
20 两边积分得
dy
(y)f(x)d xc (2.2)
1 的某一原函数 f (x)的某一原函数 ( y)
由 (2.2)所确定 y的 (x,c)就 函 (2 为 .数 1)的.解
例:
分离变量:
常微分方程(王高雄)第三版 3.4

(3.23)
曲线族(3.23)的包络包含在下列两方程
( x, y , c ) 0 ' c ( x , y , c ) 0
消去参数c而得到的曲线 F ( x, y) 0之中,
曲线F ( x, y) 0称为(3.23)的 c 判别曲线.
注: c 判别曲线有时除包络外还有其它曲线.
9 3 x , 对 y 0 x0 c0 , 2 l 在 x0 , y0 点的切线的斜率为 2 c0 3 . y x 3 k c0 1, y 2 2 2 2 所以 l1 * : y x 不是 ( y c) ( x c) 0 的包络;
y c,
于是得到一支c-判别曲线
l1 * :
2、将
y x;
代入(2), 得另一支c-判别曲线
xc
2 0 3
l2 * :
2 4 2 y x x . 3 9 9
显然
2 2( x c ) x y 2( y c)
考察 解之得, 对
消去参数p便得方程的一个解.
如果令 则
( x, y, c) xc f (c) y 0,
'c ( x, y, c) x f ' (c) 0,
解: 令
y ' p, 求得它的通解为: ( y c) 2 ( x c) 3 0.
( x, y, c) ( y c) 2 ( x c)3 0, 令 ( x, y, c) 2( y c) 3( x c) 2 0. 消去参数c,得到 c y x 和 y x 4 . 27 2 3 经检验: y x 不是 ( y c) ( x c) 0 的包络,从而
常微分方程(王高雄)第三版

1 积分曲线 一阶微分方程
dy f (x, y) dx
的解 y(x所 ) 表x示 y平面上的一,条曲
称为微分方程的积分曲线.
而其通 y解 (x,c对 ) 应 xy平面上的一, 族
称这族曲线为族 积 . 分曲线
.
2 方向场
设函 f(x数 ,y)的定义 D,在 域 D内 为每(一 x,y)处 点 ,都画 上一f个 (x,y以 )的值为 ,中 斜心 率 (x,在 y)点的,线 称段 带 有这种直线 D为 段方 的 d程 y 区 f(x域 ,y)
dt
yn1
fn1(t;
y1,L
yn)
yn
fn(t;y1,L yn)
.
dx
Lorenz方程
dt dy
dt
a(y xz
x) cx
y
dz d t
y bz
Volterra两种种群竞争模型
dx d t
x(a bx cy )
dy
d t
y (d ex
fy )
c1
c2 cn
(,, ,(n1)) (c1,c2, ,cn)
c1
c2 cn 0
(n1) c1
(n1) c2
(n1) cn
其中 (k)表示ddkxk .
.
例3 验证 yc1exc2exc3e2x3是微分方
y'"2y"y' 2y6 的通. 解 证明: 由于 y' c1 exc2ex2c3e2x
七、驻定与非驻定
dyf(y),yDRn dt
与t无关,驻定系统
dyf(t,y),yDRn dt
与t有关,非驻定系统
.
八 相空间与轨线
常微分方程(王高雄)第三版 3.3

dy f ( x, y ) , dx y ( x0 ) y0 (3.1) '
的解y ( x, x0 , y0 )都在区间 [a, b]上存在, 并且 ( x, x0 , y0 ) ( x, x0 , y0 ) , x [a, b] 则称初值问题(3.1) '的解y ( x, x0 , y0 )在点( x0 , y0 )
前提 解存在唯一
y0 ( x0 , x, y )
证明 在(3.1)满足y ( x0 ) y0的解存在区间内任取一值x1 ,
y1 ( x1 , x0 , y0 ), 则由解的唯一性知, (3.1)过点( x1 , y1 )与过点( x0 , y0 )的解是同一条积分曲线 , 即此解也可写成: y ( x, x1 , y1 ), 且显然有: y0 ( x0 , x1 , y1 ),
2 定理1 (解对初值的连续依赖性定理)
方程 条件: I. f ( x , y ) 在G内连续且关于 y满足局部Lips.条件;
dy f ( x, y) , dx ( x, y) G R2 (1)
II. y ( x , x0 , y0 ) 是(1)满足( x0 , y0 ) G 的解,定义
C 时,有 S G G 覆盖定理,存在N,当G i i 1 对 0 ,记 y , S ), min , / 2 d (G
N
Ci
G
L max L1,, LN 则以 为半径的圆,当其圆心从S的
G
左端点沿S 运动到右端点时,扫过 的区域即为符合条件的要找区域D
0
义, 其中 a x0 b, 则对 0, ( , a, b) 0, 使当
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.n阶线性微分方程的一般形式
d d x nn y a 1 (x )d d x n n 1 y 1 L a n (x )yf(x ) (2 )
这a 里 1(x) , an(x),f(x)是 x的已知 . 函数
.
四 微分方程的解
定义4 如果y函 (x数 ),xI,满足:条件 (1y)(x)在 I上有直 n阶到 的连;续导数
(5) z z z ; x y
(6) 2u2uxyuz0. x2 y2
.
1.常微分方程 如果在一个微分方程中,自变量的个数只有一个,
则这样的微分方程称为常微分方程.
如 (1) dy 2x; (2x)d y yd0 x; dx
(3) dd22xt txddxt3x0;
d4x d2x (4) d4t5d2t3xsitn;
c1
c2 cnຫໍສະໝຸດ (,, ,(n1)) (c1,c2, ,cn)
c1
c2 cn 0
(n1) c1
(n1) c2
(n1) cn
其中 (k)表示ddkxk .
.
例3 验证 yc1exc2exc3e2x3是微分方
y'"2y"y' 2y6 的通. 解 证明: 由于 y' c1 exc2ex2c3e2x
y" y sinxsinx 0
故 ysixn 是微y分 "y方 0在 (程 , ) 上的.一
同y 理 co x是 s 微y" 分 y方 0在 (程 , ) 上的.
.
1 显式解与隐式解
如果关系式(x, y) 0所确定的隐函数
y (x),xI为方程
F(x,y,
dy dx
,
,
dny dxn
)
0
的解,则称(x, y) 0是方程的一个隐式解.
§1.2 基本概念
.
一、常微分方程与偏微分方程
定义1: 联系自变量、未知函数及未知函数导数(或微 分)的关系式称为微分方程.
例1:下列关系式都是微分方程
(1) dy 2x; dx
(2x)d y yd0 x;
(3) dd22txtxddxt3x0;
(4) d4x5d2x3xsitn; d4t d2t
4e2x
c1 c3 c3 故yc1ex c2ex c3e2x 3是微分方程 y'"2y" y' 2y6.的通.解
注2: y (x,c1, ,cn)是微分方程的
F(x,
y,
dy, dx
,
dny dxn )
0
的通解,并不表示 y (x,c1, ,cn)包含了
该微分方程的所有 . 解
注3: 类似可定义方程的隐式通解,
如果微分方程的隐式解中含有任意常数,且所 含的相互独立的任意常数的个数与微分方程的 阶数相同,则称这样的解为该 方程的隐式通解.
.
定义6 在通解中给任意常数以确定的值而得到的解 称为方程的特解.
(c 8 3 8 c3 2 c3 2 c3)e .2x 6 6
故 yc1exc2exc3e2x3是 微分y方 '"2程 y"y' 2y6的.解
又由于
c1 '
c2 '
c3 '
ex ex
ex e x
e2x 2e2x 6e2x 0
c1 c2 c3 '' '' ''
ex ex
.
三 线性和非线性
1.如果方程
F(x,ddyyx,,,ddnxny)0
的左端y为 及dy,, dx
ddnxny的一次有理 , 式
则称其n为 阶线性方. 程
如 (1) dy 2x (2x)dy yd0 x dx
d4x d2x (4) 5 3xsitn
是线性微分方程.
d4t d2t
.
不是线性方程的方程称为非线性方程 如 (3) dd22txtxddxt3x0
都是常微分方程 .
2.偏微分方程 如果在一个微分方程中,自变量的个数为两个或两 个以上,称为偏微分方程.
如 (5) z z z ; x y
(6) x2u2 y2u2xyuz0.
都是偏微分方程.
注: 本课程主要研究常微分方程. 同时把常微分方程简称 为微分方程或方程.
.
二、微分方程的阶
定义2:微分方程中出现的未知函数的最高阶导数或 微分的阶数称为微分方程的阶数.
y''c1 ex c2 e x4 c3 e2x, y'''c1 exc2e x 8 c3 e2x 故 y'"2y"y' 2y (1 c exc2ex8c3e2x) 2 (1 c exc2e x4 c3 e2x)
(1 c exc2ex2c3e2x) 21 e (x cc 2 e x c 3 e2 x 3 ) (c1 2 c1 c1 2 c1)ex (c 2 - 2 c 2 c 2 2 c 2 )e x
例如: yc1sincx2cosc1,xc2为 , 任常数
是微分y"方 y程 0的通 . 解
n阶微分方程通解的一般形式为
y(x,c1,,cn)
其中c1, ,cn为相互. 独立的任.常数
注1: 称函 y数 (x,c1,,cn)含n有 个独立 ,是常 指
存(在 x,c1,,cn)的某一 ,使邻 得域 行列
定义4所定义的解为方程的一个显式解. y (x)
注:显式解与隐式解统称为微分方程的解.
.
例如 对一阶微分d方y程x dx y
有显式解:
y 1x2和 y1x2.
和隐式解:
x2 y2 1.
.
2 通解与特解
定义5 如果微分方程的解中含有任意常数,且所 含的相互独立的任意常数的个数与微分方程的 阶数相同,则称这样的解为该方程的通解.
如: (1) dy 2x (2x)dyd0 x
dx
是一阶微分方程; (3) dd22txtxddxt3x0 是二阶微分方程;
(4) d d44 xt5d d22 xt3xsitn 是四阶微分方程.
.
n阶微分方程的一般形式为
F(x,d d y,y x,d dnn yx)0 (1)
这里 F(x,ddyyx,,,ddnxyn )0是x,ydd,yx,,ddnxyn 的已知, 而且一定ddn含 xny,有 y是未知,函 x是数 自变 . 量
xIFx xx x ( 2 ) 对 有 : ( , ( ) ( , ) , ( n) ( ) 0 ) ,
则y称 (x为 ) 方F程 (xd d,yy x ,,,d dnn yx)0
在 I上的一 . 个解
.
例2 验证 ysinx,ycoxs都是微分方程 y" y0在(,)上的一个 . 解
证明: 对ysinx,由于 y' coxs,"ysin x 故 对 x ( , ),有